
TUG

RICHARD KOCH

1. Introduction

This is the root document for a series of related documents which explain how to construct
MacTeX.

This document is provided inside a build tree for MacTeX. Do not rearrange folders in this
tree. As MacTeX is constructed, these folders will gradually be filled with bits and pieces
of the package, until finally the complete package is inside one of the folders.

The MacTeX install package contains a series of subpackages which install the various
pieces of MacTeX. A user can choose which packages to install by clicking the “Custom”
button during installation. Each subpackage is built in a folder of the build system, and
each such folder contains a subfolder named “TUG” with the documentation needed to
build that portion of MacTeX. The subpackages needed for MacTeX are Ghostscript, GUI
Applications, and TeX Live.

The GUI portion requires a small subpackage named FixLink.

We build a special version of MacTeX for the DVD. That portion requires Ghostscipt, GUI
Applications, and TeXDist.

Finally we build one extra package: BasicTeX.

2. Building Binaries

MacTeX is constructed is follows. First, the binaries are compiled and sent to Karl Berry,
who adds them to the pretest repository. This step is entirely done in the Binary directory
of the build system.

Building binaries requires older systems. We build PowerPC binaries on a PPC Mac Pro
from 2003, running Leopard. We build 32 bit Intel binaries on an Intel Mac Pro from 2006,
or on a 17” Intel Portable from 2008, both running Leopard. We build 64 bit Intel binaries
on the same machines, this time running Snow Leopard.

Date: May 11, 2016.

1

TUG 2

The binaries from these compiles are then moved to a production machine used to build the
final install package. This machine currently runs El Capitan and can be any up-to-date
Macintosh.

When the TeX Live pretest is made available, it is installed in /usr/local/texlive on the
production machine, in the standard way. Then Apple’s PackageMaker software runs and
creates a TeX Live install package for this release.

One document in the Binary folder is so important that it is duplicated at the top level
of the folder as the file BuildStatus-2016. This is a plain text document. The document
explains everything needed to obtain the source code and compile it. The end result of
that operation will be a folder containing the 32 bit PowerPC binaries, a folder containing
the 32 bit Intel binaries, and a folder containing 64 bit Intel binaries. To compile, just
copy Terminal commands from the BuildStatus document, paste them into Terminal, and
execute.

Asymptote is a special case. Its source is contained in the TeX Live source, but it is
built separately. A folder in Build called AsymptoteBuild contains all material needed to
do that. To build, copy this folder to each building platform: Leopard Intel and Snow
Leopard Intel. Then follow the instructions in the document AsymptoteBuild-2016 inside
the AsymptoteBuild folder.

After these binaries are obtained, they are copied to the folder Binary/RawCodeFromCompile
on the machine used to make the final MacTeX. Two shell scripts in the Binary directory
combine these binaries and create tar.xz files to be sent to Karl Berry.

The documents BuildStatus-2016 and AsymptoteBuild-2016 are plain text files so they can
be easily edited. New flags or compile steps may be required in a subsequent year. They
should immediately be added to these documents during compiling so there is an accurate
record for the future.

3. About Apple’s PackageMaker

Before 2012, MacTeX was built using Apple’s original PackageMaker application, version
2. This was replaced in Leopard with a new PackageMaker, version 3, but we continued to
use the original version until 2012.

Install packages created by the original PackageMaker were actually folders; the Finder
disguised these folders to look like flat files to the user. The packages had extension “.pkg”
if they installed a single package, and “.mpkg” if they contained several pieces which the
user could selectively install. The “.mpkg” folders contained the individual “.pkg” folders
inside an encompassing folder.

Apple introduced a new operating system, Mountain Lion, in late summer of 2012. Install
packages for this system must be signed. Install packages created by PageMaker 2 cannot
be signed, so we had to switch to PackageMaker 3. This software has a “legacy” mode

TUG 3

which creates the original packages we had been using, but these legacy packages cannot
be signed. Thus it is necessary to switch to version 3 of PackageMaker, and use it to create
modern install packages which install on Leopard and higher systems.

MacTeX can be constructed on any system which runs the modern PackageMaker and
the separate signing software. Currently it is constructed on El Capitan. The modern
packagemaker runs only on modern systems, so switching operating systems may require
obtaining a new program. But the packages install on Leopard and higher.

As of February, 2015, PackageMaker is available to Apple Developers in the downloads
section of the developer website, under the link “Additional Downloads”, as “Auxiliary
Tools for Xcode Late July 2012” with a date of August 7, 2012. This version, 3.0.6, was
released on June 15, 2012. We have not bothered in 2016 to check that these links are up
to date because we include PackageMaker in the MacTeX build folder.

This version works on Mountain Lion, Mavericks, Yosemite, and El Capitan. According to
the link https://discussions.apple.com/thread/4083583, this program is deprecated
in XCode 4.6. On the other hand, command line programs to create such packages are still
in OS X, and the software to run these packages and actually install is also present.

The link

http://stackoverflow.com/questions/11487596/making-os-x-installer-packages-

like-a-pro-xcode4-developer-id-mountain-lion-re

leads to suggested alternatives, including an open source packagemaker by Stephane Su-
dre,

http://s.sudre.free.fr/Software/Packages/about.html

Just to be safe, the modern version of PackageMaker is in the MacTeX build folder in a
subfolder named PackageMaker-ML. If Apple were to truly deprecate PackageMaker, they
would also remove the software to install these packages, and then even the open source
program would be useless and we’d have to start over in some other way.

The new PackageMaker creates flat files rather than folders. This has a great advantage:
it is no longer necessary to zip these packages before placing them on the internet. Before
2012, users often downloaded with a different browser than Safari, and unzipped with a
third party application rather than Apple’s default utility. Unhappily, some third party
unzipping applications don’t preserve Unix line feeds, so the resulting packages contain
postinstall scripts which won’t run.

Switching to the modern PackageMaker has one additional consequence. With the orig-
inal PackageMaker, we created a “.pkg” install package for each component: TeXLive,
Ghostscript, GUI-Applications, etc. Then these install packages were combined to create
the final “.mpkg” MacTeX package. The new PackageMaker requires that we create a
“root” folder for each individual package containing the data to be installed, but does not
require that we finish the task and create the individual install packages. Consequently,

TUG 4

the various individual folders for TeXLive, Ghostscript, etc. support an optional final step
to create individual install packages, but this step can be skipped when creating MacTeX.
Creating the install package for the TeX Live piece with the modern PackageMaker is
very time consuming, so the step should certainly be avoided for that package. On the
other hand, it is useful to create a separate flat package for Ghostscript so it can be tested
independently of MacTeX.

4. Details for Building the Full MacTeX Package

To show how this works in practice, we’ll outline the steps required to build the full
MacTeX.

The first step is to build the subpackages Ghostscript-9.19, TeXLive-2016, and GUI-
Applications. In the end, each of these packages will contain a “root” folder which contains
the actual software to be install, and a “postinstall” file which contains instructions to clean
up after the installation.

Then we change to the MacTeX-2016 folder for the final build. This folder contains two
files named “MacTeXMaker” and “MacTeXMaker.copy”. Each is a template file which will
open in Apple’s PackageMaker. The “copy” file is a backup used to record what is to be
done.

Some exploring shows the meaning of the various pieces. There are three tricky points:

(1) Disclosure arrows will eventually reveal the “root” items for the various subpack-
ages. Each time a new version is created, these items must be deleted and then
recreated by dragging the root folder icon and dropping it to the appropriate spot
in the template. After this happens, the template will show a progress bar as this
new root is read. While the progress bar is active, do not switch to the backup
copy of the template, because this will crash PackageMaker. The progress bar is
only active a very short time except when reading the full TeX Live, which can
take a couple of minutes.

(2) After a new root folder is added, the various items describing it in the template
will need to be re-edited, using the backup copy to determine the correct values.
The final tab edited in this way shows the location of the postinstall scripts in the
MacTeX-2016 folder. These scripts should be copied there from the corresponding
scripts in the subfolders used to construct the various pieces.

(3) In all packages, the next to last tab described GUI applications that are part of
the package. Only one of our subpackages has such applications, namely GUI-
Applications. Each application will be listed under this tab, followed by a checked
box. It is extremely important to uncheck these boxes, since otherwise the installer
will search the entire disk and update a random copy of the application.

TUG 5

5. Random Musings for the Record

This section should probably be skipped, and is left in case information in it becomes
important.

Take Ghostscript-9.19 for example. We compile Ghostscript on PowerPC, Intel-32, and
Intel-64, once with support for X11 and once without this support. These binaries are in a
subfolder of the Ghostscript folder named RawBinaries-2016. After that, a script combines
these binaries into binaries in the “Binaries” subfolder of the Ghostscript folder.

Next we install Ghostscript on the machine used to build the final install packages. Then
we run the script buildPackage.sh in the Ghostscript folder. It copies the installation in
/usr/local to the root folder in the Ghostscript folder, and adds additional binaries from
the Binaries folder as appropriate. Some of these binaries will be kept and some thrown
away in the final postinstall script for the Ghostscript package, depending on properties of
the machine where it installs Ghostscript. Since /usr is not writeable on El Capitan, the
precise details are in the documentation for the Ghostscript package.

Making the TeX-Live root folder is easier. We sent the Mac binaries to Karl Berry at TUG
after compiling them, and he inserted them in the TeX Live pretest package. We install the
TeX Live pretest using the TeX Live install script. Then we run buildPackage.sh, which
copies this installation to the root folder, making a few minor changes. Precise details are
in the TeX-Live folder of this build system.

The GUI-Applications root folder is constructed in a slightly different way. We put the
pieces of this installation in a subfolder named “apps” in the GUI-Applications folder. This
folder contains several copies of each GUI program for various operating systems. Again we
run buildPackage.sh, which copies these pieces into a root folder. During installation, the
postintall script will choose the correct version of each of these GUI programs, renaming
it appropriately.

In the end, we have root folders in each of Ghostscript, GUI-Applications, and TeX
Live.

Now turn to the MacTeX-2016 folder. It contains two copies of the graphic template used
to make MacTeX, called “MacTeXMaker” and “MacTeXMaker.copy”. The reason for the
copy will become clear in a moment.

Double click MacTeXMaker to open it in PackageMaker. This template contains five major
sections. The first is activated by clicking ”Edit Interface” at the top right. PackageMaker
then shows the full installation as a user would see it, and allows you to edit the various
things seen by this user. Making changes here is only necessary once a year. Indeed,
the actual interface just shows the files background.jpg, License.rtf, ReadMe.rtf, and Wel-
come.rtf, and editing the interface is just a matter of editing these four files.

TUG 6

Four sections remain, the MacTeX-2016 Distribution piece at top left, and the TeXLive-
2016, GUI-Applications, and Ghostscript-9.19 pieces at bottom left. These last three pieces
correspond to the three choices available for a custom install.

Clicking on any of the four sections reveals settable items at the right. These items need
editing only once a year as new packages are created, and the changes required are imme-
diately obvious.

So the sections seen so far only change once a year, and need not be checked during the
creation of a new beta of MacTeX. But notice that each of the three sections on bottom left
have a “disclosure arrow.” Turning these arrows reveals three additional sections. These
three pieces correspond to the three root files which will be used to make MacTeX.

During the beta test period, the contents of these root folders will change. When we
converted to the new Packagemaker, some tests convinced us that Packagemaker would
become confused by new contents in the root folders, and not actually install changed
versions. So the method we have adopted is to always recreate the three pieces of MacTeX
which depend on the three root files.

To do this, open both “MacTeXMaker” and “MacTeXMaker copy”. Place them side by
side, keeping track of which is not a copy. Open the disclosure arrow on the copy for
Ghostscript-9.19. For a very brief moment, a ”busy rotor” will appear as Packagemaker
reads in the Ghostscript data. It is very important to wait until this rotor is gone, since
two rotors running at the same time can crash Packagemaker.

Now open the disclosure arrow on the active MacTeXMaker for Ghostscript-9.19 and wait
until its rotor is gone. On this active copy, drag the ”root” icon on the left to the trash.
The item will vanish, together with its configuration data to the right. Reach into the
Ghostscript-9.19 folder, find the “root” subfolder Drag this “root” to the active MacTeX-
Maker, dropping it on the Ghostscript-9.19 item. This will create a new “local” piece. A
rotor will appear as PackageMaker reads the new data. Wait until it disappears.

Next we recreate the configuration data to the right. Use the copy of MacTeXMaker to
find the correct data (that’s why it is there). Under the first “Configuration” tab, only
the ”Install:”, ”Destination:”, and ”Package Identifier:” items need to be changed. The
“Install” item only needs to be changed to show a relative path. Under the “Contents” tab
find the button named “Apply Recommendations” and push it. This gives each installed
file the permissions recommended by Apple. Under the “Components” tab there will be
nothing showing. Finally under the “Scripts” tab, change the “Scripts directory:” and
“PostInstall:” entries.

Repeat these tasks for the TeXLive and GUI-Applications pieces. The TeXLive case will
work exactly like the Ghostscript case except that it takes Packagemaker a long time to
read the root data, so the rotor will turn and turn. Have patience.

In the GUI case, there will be entries under the “Components” tab near the very end of
the process. These contents will show all of the GUI applications to be installed, with

TUG 7

a checked box to indicate that the installer permits relocation. These boxes are very
dangerous because they allow MacTeX to search the entire disk and update any copy of
the GUI apps it happens to find So it is is very, very important to uncheck the checked
entries in this panel. Complete the final “Scripts” tab items as usual.

Finally click the “Build” button at the top of the template and a MacTeX install package
will be created. A save dialog allows you to change where it is saved. Be sure to save inside
the “MacTeX-2016” folder containing these pieces.

The only remaining problem is that the package isn’t yet signed. Issue the command “sh
signPackage.sh” while inside the MacTeX-2016 folder to sign the package. As explained
later in the document, this requires that the developer be a registered Apple developer.
The short ”signPackage” script must be edited slightly to provide credentials for the new
developer.

6. Important Warnings

This section contains lessons learned in 2013. The material here is important for all pack-
ages made with the new PackageMaker.

Folders in which packages are built should live on the hard disk rather than an external
disk. Building constructs subfolders named “root” which contain copies of material to be
installed. This root folder and its contents are usually owned by root. But material on an
external drive is owned by the user instead, so owners will be incorrect after installing.

The final MacTeX template refers to root folders of the various sub projects. In the
template, each sub project is listed in the left column; clicking on an arrow there reveals a
panel in which the root folder is determined and configured.

As explained earlier, we accept Apple’s recommendation for permissions on installed files.
For binary files like texlive/2016/bin/universal-darwin, the recommendations are unex-
pected. Actual binaries have owner root and group wheel, but symbolic links have owner
an individual user and group wheel. Permissions are -rwxr-xr-x. Experiments and email
conversations show that these choices work well.

For the GUI-package, the third tab, ”Components”, is very important. It lists actual apps
and offers to relocate them. Turn this off. Otherwise the installer won’t upgrade programs
in /Applications/TeX, but instead will search the disk for a copy to update. Always check
that these items are off.

7. MacTeX Products

There are three main products: MacTeX, BasicTeX, and MacTeX Install Step 2. The
first is the main distribution for the web. The second is a much smaller TeX distribution
for users with limited download bandwidth; it only contains a TeX distribution, without

TUG 8

GUI applications, Ghostscript, etc. The third is a variant of the first for the DVD; TeX
Live is installed from a copy elsewhere on the DVD, but configured by a piece of this
package.

These three packages need to be built last, because they are contain Ghostscript and
TeXLive. The packages in this last list can be made in any order. It is useful to cre-
ate Ghostscript several months before everything else since it does not depend on TeX
Live.

8. Platforms to Build MacTeX

We create 32 bit PowerPC code on an IPowerPC Leopard machine, 32 bit Intel code on
an Intel Leopard machine, and 64 bit code on an Intel Snow Leopard machine.

The machine used to create packages is not crucial. We create the latest packages on El
Capitan.

9. How To Make Yearly Updates in Packages

There are some universal steps required to update scripts for a new year. I’ll describe the
steps here, using the Ghostscript package as an example.

Some packages retain the same name from year to year, while other package names change.
When the name changes, it typically contains a a year or version number; for example,
Ghostscript-9.19.pkg. Although it will be obvious that the name changes, the individual
package TUG document will confirm this fact.

It is important that some packages get new names for the following reason. When a user
installs a Package, their Mac stores a receipt for the package. If a new version of the package
is later installed, the installer updates files which changed in the new package, installs
additional files from the new package, and removes files that used to be in the package, but
now aren’t. Ghostscript 9.19 installs support files in /usr/local/share/ghostscript/9.19,
which depend on a version number. If the name of the package didn’t change, the old
support files would be removed, but we want to preserve them in case the user retreats to
the older version. Renaming is particularly important for TeX Live itself, since we certainly
don’t want the installer to remove the old copy of TeX Live.

To switch to the new name:

• Edit the “buildPackage.sh” script, which may contain references which differ from
year to year.

• Edit the files to be shown to the user during installation: License.rtf, ReadMe.rtf,
and Welcome.rtf. Edit these files to reflect the new package name and release date.
Make other changes as appropriate.

TUG 9

10. Making Install Packages using the PackageMaker GUI

Details of using this GUI for individual packages are given in the TUG documentation
for these packages. One GUI item to be set for packages is titled “Requirements”. This
item can be used to ensure that the operating system is sufficient to support the package.
Currently, our packages require at least Leopard, OS X 10.5. However, it is not necessary
to set this requirement, because our install packages automatically require Leopard.

11. Signing Packages

Starting with Mac OS 10.8, Mountain Lion, install packages must be signed. Signing
requires a “Signing Certificate” from Apple, which is kept in the developer’s keychain and
maintained by the program /Applications/Utilities/Keychain Access. The signature is not
kept in this MacTeX Developer package — when install packages are signed, the software
looks up the developer’s signature in their keychain.

The PackageMaker GUI interface contains an entry which tells the software the name of
the appropriate signature. Tests show that this entry does not work. Ignore this GUI
setting.

Instead, packages must be signed after they are constructed using the command line pro-
gram “productsign”. “Productsign” accepts an input package and outputs a corresponding
signed package, so after building, individual portions of this developer package will contain
two install packages. The command to run producsign is inside a short script in each folder
named “signPackage.”

Obtaining a certificate requires a developer account at https://developer.apple.com/. I
believe accounts are free, but they might require a fee; full access costs $100 a year. As soon
as you log in, you’ll see an entry “Developer Certificate Utility” with lots of information
about certificates.

You will ultimately be given two certificates, one for signing install packages and another
for signing applications. For instance, my certificates are called “Developer ID Installer:
Richard Koch” and “Developer ID Application: Richard Koch”. The system will reject the
“Application” certificate when signing packages, so use the “Installer” certificate.

Obtaining certificates can be tricky. A description of the process, using XCode, can be
found in the “developer id tutorial.pdf” file included in the “Signing” section of this pack-
age. Read the section titled Obtaining Developer ID Certificates. This seems to describe
the latest process, but you will find other Apple documentation which describes contra-
dictory and more complicated methods. I already had certificates, so my process didn’t
exactly follow the scheme in this document. Good luck.

TUG 10

Apple delivers the certificates in just a few minutes, but the exact name of the certificate
is important. I spent several days debugging because I neglected the space between “In-
staller:” and “Richard Koch”. If you are like me, you’ll have lots of certificates managed
by Keychain Access, some obsolete, and it can be difficult to keep straight the active ones.
Follow the instructions from Apple carefully, since the process isn’t quite as straightforward
as it first seems.

Testing signed packages is itself tricky. First, the “Security and Privacy” preference pane
must be set to allow applications downloaded from “Mac App Store and identified devel-
opers” only. After that, if an unsigned package is moved to a current system via wireless
or a USB Flash Drive, it will install fine. To test, an install package must be placed on a
server and then downloaded with Safari or another browser. Then an incorrectly signed
package will refuse to install.

