Code Signing Guide

Developer

Contents

About Code Signing 4
At a Glance 4
Prerequisites 5

See Also 5

Code Signing Overview 6

The Benefits Of Signing Code 6
Digital Signatures and Signed Code 8
Code Requirements 8

The Role of Trust in Code Signing 9

Code Signing Tasks 11
Obtaining a Signing Identity 11
Adding an Info.plist to Single-File Tools 15
Signing Your Code 17

What to Sign 17

When to Sign 17

Using the codesign Command 18
Shipping and Updating Your Product 20

Code Signing Requirement Language 22
Language Syntax 22
Evaluation of Requirements 23
Constants 23
String Constants 23
Integer Constants 24
Hash Constants 24
Variables 24
Logical Operators 24
Comparison Operations 25
Equality 25
Inequality 26
Existence 26
Constraints 26

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

2

Contents

Identifier 26

Info 27

Certificate 27

Trusted 29

Entitlement 30

Code Directory Hash 30
Requirement Sets 31

Document Revision History 33

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

3

About Code Signing

Code signing is a Mac OS X security technology that allows you to certify that an app was created by you. Once
an app is signed, the system can detect any change to the app—whether the change is introduced accidentally
or by malicious code.

Users appreciate code signing. After installing a new version of a code-signed app, a user is not bothered with
alerts asking for permission to access the keychain or similar resources. As long as the new version uses the
same signature, Mac OS X can treat it exactly as it treated the previous version.

Other Mac OS X security features, such as App Sandbox and parental controls, also depend on code signing.

In most cases, you can rely on Xcode’s automatic code signing, which requires only that you specify a code
signing identity in the build settings for your project. This document is for readers who must go beyond
automatic code signing—perhaps to troubleshoot an unusual problem, or to incorporate the codesign tool
into a build system.

At a Glance

The elements of code signing include code signatures, code signing identities, code signing certificates, and
security trust policies. Be sure to understand these concepts if you need to perform code signing outside of
Xcode.

Relevant chapter “Code Signing Overview” (page 6)

Before you can sign code, you must obtain or create a code signing identity. You then sign your code and
prepare it for distribution.

Relevant chapter “Code Signing Tasks” (page 11)

To specify recommended criteria for verifiers to use when evaluating your app’s code signature, you use a
requirements language specific to the codesign and csreqcommands. You then save your criteria to a binary
file as part of your Xcode project.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

4

About Code Signing
Prerequisites

Relevant chapter “Code Signing Requirement Language” (page 22)

Prerequisites

Read Security Overview to understand the place of code signing in the Mac OS X security picture.

See Also

For descriptions of the command-line tools for performing code signing, see the codesign and csreq man

pages.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

5

Code Signing Overview

Code signing is a technique that can be used to ensure the integrity of code, allow the system to unambiguously
determine the source (developer) of the code, and allow any application to determine the purposes for which
the developer intended the code to be used. The code signing solution in Mac OS X is intended to be completely
managed by the developer. This means that it is up to you to create or purchase and maintain signing certificates,
sign your code, specify the meaning of the signature, and distribute the signed code in a way that that is
convenient for users. Although the code signing system will carry out policy checks based on a code signature,
it is up to the caller to make policy decisions based on the results of those checks. When it is the operating
system that makes the policy checks, whether your code will be allowed to run in a given situation depends
on whether you signed the code and on the requirements you included in the signature.

This chapter describes the benefits of signing code and introduces some of the basic concepts you need to
understand in order to carry out the code signing process.

The Benefits Of Signing Code

When code is signed, it is possible to determine reliably whether that code has been modified by someone
other than the signer, no matter whether the modification was intentional (by a hacker, for example) or
accidental (as when a file gets corrupted). In addition, by adding a code signature, a developer can ensure that
updates to a program are valid and can be treated by the system as the same program as the previous version.

For example, suppose the user gives the SurfWriter application permission to access a keychain item. Each
time SurfWriter attempts to access the keychain, the keychain must determine whether this is the same
application as the one to which the user gave permission. If the application is signed, the keychain (in Mac OS
X v10.5 and later) can determine this with certainty. If the developer of SurfWriter updates the program and
signs the new version of SurfWriter with the same unique identifier as the old version, keychain will recognize
the update as the same application and will give it access without requesting verification from the user. On
the other hand, if SurfWriter is corrupted or hacked, keychain will detect the change and will refuse access.

Similarly, if you use Parental Controls (in Mac OS X v10.5 or later) to prevent your child from running a specific
game, and that game has been signed by its manufacturer, your child cannot circumvent the control by
renaming or moving files on the disk. Parental Controls can use the signature to unambiguously identify the
game regardless of its name, location, or version number.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

6

Code Signing Overview
The Benefits Of Signing Code

All sorts of code can be signed, including tools, applications, scripts, libraries, plug-ins, and other “code-like”
data.
Code signing can be seen as having three distinct purposes. It can be used to:

= ensure the integrity of the code; that is, that it has not been altered

- identify the code as coming from a specific source (the developer or signer)

+ determine whether the code is trustworthy for a specific purpose (for example, to access a keychain item).

To enable signed code to fulfill all of these purposes, a code signature consists of three parts:

= A unique identifier, which can be used to identify the code or to determine to which groups or categories
the code belongs. This identifier can be derived from the contents of the Info.plist for the program,
or can be provided explicitly by the signer.

= Aseal, which is a collection of checksums or hashes of the various parts of the program, such as the
identifier, the Info.plist, the main executable, the resource files, and so on. The seal can be used to
detect alterations to the code and to the program identifier.

- Adigital signature, which signs the seal to guarantee its integrity. The signature includes information that
can be used to determine who signed the code and whether the signature is valid.

For more discussion of digital signatures, see the following section, “Digital Signatures and Signed Code.”

To learn more about how the code signature is used to determine the code’s trustworthiness for a specific
purpose, see “Code Requirements” (page 8).

Note that code signing deals primarily with running code. Although it can be used to ensure the integrity of
stored code (on disk, for example), that's a secondary use.

In order to fully appreciate the uses of code signing, it is important to be aware of some things that signing
code cannot do:

= It can't guarantee that the code is free of security vulnerabilities.

+ It can’t guarantee that a program will not load unsafe or altered code—such as untrusted plug-ins—during
execution.

= Itis not a digital rights management (DRM) or copy protection technology. Although the system could
determine that a copy of your program had not been properly signed by you, or that its copy protection
had been hacked, thus making the signature invalid, there is nothing to prevent the user from running
the program anyway.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

7

Code Signing Overview
Digital Signatures and Signed Code

Digital Signatures and Signed Code

A digital signature uses public key cryptography to ensure the integrity of data.Like traditional signatures
written with ink on paper, they can be used to identify and authenticate the signer of the data. However, digital
signatures go beyond traditional signatures in that they can also ensure that the data itself has not been altered.
This is like designing a check in such a way that if someone alters the amount of the sum written on the check,
an “Invalid” watermark becomes visible on the face of the check.

To create a digital signature, the signer generates a message digest of the data and then uses a private key
to sign the digest. The signer must have a valid digital certificate containing the public key that corresponds
to the private key. The combination of a certificate and related private key is called an identity. The signature
includes the signed digest and information about the signer’s digital certificate. The certificate includes the
public key and the algorithm needed to verify the signature.

To verify that the signed document has not been altered, the recipient uses the algorithm to create their own
message digest and applies the public key to the signed digest. If the two digests prove identical, then the
message cannot have been altered and must have been sent by the owner of the public key.

To ensure that the person who provided the signature is not only the same person who provided the data but
is also who they say they are, the certificate is also signed—in this case by the certification authority who issued
the certificate. Digital certificates are described in “Security Concepts”.

Signed code uses several digital signatures:
« If the code is universal, the object code for each architecture is signed separately

= Various components of the application bundle (such as the Info.plist file, if there is one) are also signed

Code Requirements

It is up to the system or program that is launching or loading signed code to decide whether to verify the
signature and, if it does, to determine how to evaluate the results of that verification. The criteria used to
evaluate a code signature are called code requirements. The signer can specify requirements when signing
the code; such requirements are referred to as internal requirements. A verifier can read any internal
requirements before deciding how to treat signed code. However, it is up to the verifier to decide what
requirements to use. For example, Safari could require a plug-in to be signed by Apple in order to be loaded,
regardless of whether that plug-in’s signature included internal requirements.

One major purpose of code signatures is to allow the verifier to identify the code (such as a program, plug-in,
or script) to determine whether it is the same code the verifier has seen before. The criteria used to make this
determination are referred to as the code’s designated requirement. For example, the designated requirement
for Apple Mail might be "was signed by Apple and the identifier is com.apple.Mail".

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

8

Code Signing Overview
The Role of Trust in Code Signing

To see how this works in practice, assume the user has granted permission to the Apple Mail application to
access a keychain item. The keychain uses Mail's designated requirement to identify it: the keychain records
the identifier (com.apple.Mail) and the signer of the application (Apple) to identify the program allowed
to access the keychain item. Whenever Mail attempts to access this keychain item, the keychain looks at Mail’s
signature to make sure that the program has not been corrupted, that the identifier is com.apple.Mail, and
that the program was signed by Apple. If everything checks out, the keychain gives Mail access to the keychain
item. When Apple issues a new version of Mail, the new version includes a signature, signed by Apple, that
identifies the application as com.apple.Mail. Therefore, when the user installs the new version of Mail and
it attempts to access the keychain item, the keychain recognizes the updated version as the same program
and does not prompt the user for verification.

The program identifier or the entire designated requirement can be specified by the signer, or can be inferred
by the codesign utility at the time of signing. In the absence of an explicitly specified designated requirement,
the codesign utility typically builds a designated requirement from the name of the program found in its
Info.plist file and the chain of signatures securing the code signature.

Architecturally, a code requirement is a script, written in a dedicated language, that describes conditions
(restrictions) the code must satisfy to be acceptable for some purpose. It is up to you whether to specify internal
requirements when you sign code.

Note that validation of signed code against a set of requirements is performed only when the system or some
other program needs to determine whether it’s all right to trust that code. The Finder, for example, might run
a program that has an invalid code identifier as long as there is no reason to check the identifier. Even if that

code requests access to a keychain item and the keychain checks the identifier, the only consequence of the

identifier being invalid is that the keychain will refuse access to the keychain item; the process will be permitted
to continue running.

The Role of Trust in Code Signing

Trust is determined by policy. A security trust policy determines whether a particular code identity (assuming
it is valid) should be accepted for allowing something, such as access to a resource or service. Each Mac OS X
component has its own policy, and makes this determination separately. Thus it makes no sense to ask whether
the code signing system trusts a particular signature. Instead, it is more meaningful to ask whether a specific
subsystem of Mac OS X trusts the signature. Therefore, in general, in order for an application that is signed to
be trusted for a particular purpose it must have been signed either by an identity whose root certificate is
already trusted by default on Mac OS X or by one that has previously been designated by the caller as being
trusted.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

9

Code Signing Overview
The Role of Trust in Code Signing

Note that many parts of Mac OS X do not care about the identity of the signer—they care only whether the
signer has changed since the last time the signature was checked. They use the code signature’s designated
requirement for this purpose. The keychain system and parental controls are examples of this use of signatures.
Self-signed identities and home-made certificate authorities (CAs) work for this purpose as well as commercial
signing certificates.

Other parts of Mac OS X constrain acceptable signatures to only those drawn from certificate authorities (root
certificates) that are trusted anchors on the system performing the validation. For those checks, the nature of
the identity used matters. The Application Firewall is one example of this type of policy. Self-signed identities
and self-created CAs do not work for this unless the validating system has been told to trust them for code
signing purposes.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

10

Code Signing Tasks

This chapter gives procedures and examples for the code signing process. It covers what you need to do before
you begin to sign code, how to sign code, and how to ship the code you signed.

Obtaining a Signing Identity

To sign code, you need a code signing digital identity, which is a private cryptographic key plus a digital
certificate. The digital certificate must have a usage extension that enables it to be used for signing and it must
contain the public key that corresponds to the private key. You can use more than one signing identity, each
for its own purpose, such as one to be used for beta seeds and one for final, released products. However, most
organizations use only one identity.

You can obtain a signing identity from a certificate authority such as VeriSign, RSA, or Thawte. If your company
already has a signing identity that you use to sign code on other systems, you can use it with the Mac OS X
codesign command as well. Apple uses the industry-standard form and format of code signing digital
certificates. Some companies are certificate issuing authorities; in this case, you need to contact your IT
department to find out how to get a signing certificate issued by your company.

To import a signing identity with Keychain Access . ..

1. In Keychain Access (available in /Applications/Utilities), choose File > Import Items.
2. Choose a destination keychain for the identity.

3. Choose the certificate file.

4. Click Open.

However, if the only reason you need a certificate is for a signing identity to use with Mac OS X, you can create
your own identity by using the Certificate Assistant, which is provided as part of the Keychain Access application.
Before you obtain a code signing identity and sign your code, consider the following points:

= Aself-signed certificate created with the Certificate Assistant is not recognized by users’ operating systems
as a valid certificate for any purpose other than validating the designated requirement of your signed
code. Because a self-signed certificate has not been signed by a recognized root certificate authority, the

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

1

Code Signing Tasks
Obtaining a Signing Identity

user can only verify that two versions of your application came from the same source; they cannot verify
that your company is the true source of the code. For more information about root authorities, see “Security

Concepts”.

Depending on your company'’s internal policies, you might have to involve your company’s Build and
Integration, Legal, and Marketing departments in decisions about what sort of signing identity to use and
how to obtain it. You should start this process well in advance of the time you need to actually sign the
code for distribution to customers.

Any signed version of your code that gets into the hands of users will appear to have been endorsed by
your company for use. Therefore, you might not want to use your “final” signing identity to sign code that
is still in development.

A signing identity, no matter how obtained, is completely compromised if it is ever out of the physical
control of whoever is authorized to sign the code. That means that the signing identity’s private key must
never, under any circumstances, be given to end users, and should be restricted to one or a small number
of trusted persons within your company. Before obtaining a signing identity and proceeding to sign code,
you must determine who within your company will possess the identity, who can use it, and how it will
be kept safe. For example, if the identity must be used by more than one person, you can keep it in the
keychain of a secure computer and give the password of the keychain only to authorized users, or you
can put the identity on a smart card to which only authorized users have the PIN.

A self-signed certificate created by the Certificate Assistant is adequate for internal testing and development,
regardless of what procedures you put in place to sign released products.

To use the Certificate Assistant to create a signing identity . . .

1.

Open Applications > Utilities > Keychain Access.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

12

Code Signing Tasks
Obtaining a Signing Identity

2. From the Keychain Access menu, choose Certificate Assistant > Create a Certificate.

Create Your Certificate

Please specify a name for your certificate:

You are about to create a secure e-mail (S/MIME) certificate. The
key pair created will be 2048-bit RSA. If you want to change these
defaults, click "Let me override defaults.”

Name: My Code Signing Certificate
Type: [Self Signed Root H

E Let me override defaults
(i.e. specify extensions, destination keychain, etc.)

[Go Back :] (Continue)

3. Fillin a name for the certificate. This name appears in the Keychain Access utility as the name of the
certificate.

4. Choose Self Signed Root from the Type popup menu.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

13

Code Signing Tasks
Obtaining a Signing Identity

5. Checkthe Let me override defaults checkbox. Click Continue.

Certificate Information

Please specify some certificate information below:

Serial Number: 1

Validity Period (days): 365
Valid From: Today, 2:36 PM
Valid Te: 5/10/08 2:36 PM

Certificate Type: [Code Signing H

(Go Back) (Continue)

6. Specify a serial number for the certificate. Any number will do as long as you have no other certificate
with the same name and serial number.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

14

Code Signing Tasks
Adding an Info.plist to Single-File Tools

7. Choose Code Signing from the Certificate Type popup menu. Click Continue.

Certificate Information

Please specify some personal information below to be used
in the certificate:

Email Address: | myaddress@apple.com 5

Name (Common Name): My Name

Organization: Apple, Inc.

Organizational Unit: Security

City {Locality): Cupertino

State/Province: California

Country: | us B

(Go Back) (Continue)

8. Fill in the information for the certificate. Click Continue.

9. Accept the defaults for the rest of the dialogs.

Adding an Info.plist to Single-File Tools

As discussed in “Code Requirements” (page 8), the system often uses the Info.plist file of an application
bundle to determine the code’s designated requirement. Although single-file tools don’t normally have an
Info.plist, you can add one. To do so, use the following procedure:

1. Add an Info.plist file to your project (including adding it to your source control).

2. Make sure the Info.plist file has the following keys:
- CFBundleldentifier

< CFBundleName

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

15

Code Signing Tasks
Adding an Info.plist to Single-File Tools

3. Thevaluefor CFBundleIdentifier isused as the default unique name of your program for Code Signing
purposes. Because the CFBundleIdentifier valueis also used when your application accesses resources
in the application bundle, it may sometimes be necessary to use a non-unique CFBundleIdentifier
value for a helper. If you do this, you must provide a different, unique identifier for code signing purposes
by passing the —i or ——identifier flag to the codesign command.

The identifier used for signing must be globally unique. To ensure uniqueness, you should include your
company’s name in the value. The usual form for this identifier is a hierarchical name in reverse DNS
notation, starting with the top level domain, followed by the company name, followed by the organization
within the company, and ending with the product name. For example, the CFBundleIdentifier value
for the codesign command is com.apple.security.codesign.

4. The value for CFBundleName shows up in system dialogs as the name of your program, so it should match
your marketing name for the product.

5. Add the following arguments to your linker flags:
-sectcreate _ TEXT __info_plist Info.plist_path
where Info.plist_path is the complete path of the Info.plist file in your project.

In Xcode, for example, you would add these linker flags to the 0THER_LDFLAGS build variable (Other
Linker Flags in the target’s build rules).

For example, here are the contents of the Info.plist file for the codesign command:

<plist version="1.0">

<dict>
<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<key>CFBundlelIdentifier</key>
<string>com.apple.security.codesign</string>
<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>
<key>CFBundleName</key>
<string>codesign</string>
<key>CFBundleVersion</key>
<string>0.3</string>

</dict>

</plist>

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

16

Code Signing Tasks
Signing Your Code

Signing Your Code

You use the codesign command to sign your code. This section discusses what to sign and gives some
examples of the use of codesign. See the codesign(1) manual page for a complete description of its use.

What to Sign

You should sign every executable in your product, including applications, tools, hidden helper tools, utilities
and so forth. Signing an application bundle covers its resources, but not its subcomponents such as tools and
sub-bundles. Each of these must be signed independently.

If your application consists of a big Ul part with one or more little helper tools that try to present a single face
to the user, you can make them indistinguishable to code signing by giving them all the exact same code
signing identifier. (You can do that by making sure that they all have the same CFBundleIdentifier value
in their Info.plist, or by using the —i option in the codesign command, to assign the same identifier.) In
that case, all your program components have access to the same keychain items and validate as the same
program. Do this only if the programs involved are truly meant to form a single entity, with no distinctions
made.

A universal binary (bundle or tool) automatically has individual signatures applied to each architecture
component. These are independent, and usually only the native architecture on the end user's system is verified.

In the case of installer packages (.pkg and .mpkg bundles), everything is implicitly signed: The CPIO archive
containing the payload, the CPIO archive containing install scripts, and the bill of materials (BOM) each have
a hash recorded in the XAR header, and that header in turn is signed. Therefore, if you modify an install script
(for example) after the package has been signed, the signature will be invalid.

You may also want to sign your plug-ins and libraries. Although this is not currently required, it will be in the
future, and there is no disadvantage to having signatures on these components.

Depending on the situation, codesign may add to your Mach-O executable file, add extended attributes to
it, or create new files in your bundle's Contents directory. None of your other files is modified.

When to Sign

You can run codesign at any time on any system running Mac OS X v10.5 or later, provided you have access
to the signing identity. You can run it from a shell script phase in Xcode if you like, or as a step in your Makefile
scripts, or anywhere else you find suitable. Signing is typically done as part of the product mastering process,
after quality assurance work has been done. Avoid signing pre-final copies of your product so that no one can
mistake a leaked or accidentally released incomplete version of your product for the real thing.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

17

Code Signing Tasks
Signing Your Code

Your final signing must be done after you are done building your product, including any post-processing and
assembly of bundle resources. Code signing detects any change to your program after signing, so if you make
any changes at all after signing, your code will be rejected when an attempt is made to verify it. Sign your code
before you package the product for delivery.

Because each architecture component is signed independently, it is all right to perform universal-binary
operations (such as running the 1ipo command) on signed programs. The result will still be validly signed as
long as you make no other changes.

Using the codesign Command

The codesign command is fully described in the codesign(1) manual page. This section provides some
examples of common uses of the command. Note that your signing identity must be in a keychain for these
commands to work.

Signing Code

To sign the code located at <code—path>, using the signing identity <identity>, use the following command:

codesign -s <identity> <code-path> ..

The <code-path> value may be a bundle folder or a specific code binary. See “What to Sign” (page 17) for
more details.

The identity can be named with any (case sensitive) substring of the certificate's common name attribute, as
long as the substring is unique throughout your keychains. (Signing identities are discussed in “Obtaining a
Signing Identity” (page 11).)

As is typical of Unix-style commands, this command gives no confirmation of success. To get some feedback,
include the —v option:

codesign -s <identity> -v <code-path> ..

Use the —r option to specify an internal requirement. With this option you can specify a text file containing

the requirements, a precompiled requirements binary, or the actual requirement text prefixed with an equal
sign (=). For example, to add an internal requirement that all libraries be signed by Apple, you could use the
following option:

-r="1library => anchor apple"

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

18

Code Signing Tasks
Signing Your Code

The code requirement language is described in “Code Signing Requirement Language” (page 22).

If you have built your own certificate hierarchy (perhaps using Certificate Assistant—see “Obtaining a Signing
Identity” (page 11)), and want to use your certificate’s anchor to form a designated requirement for your
program, you could use the following command:

codesign -s signing-identity -r="designated => anchor /my/anchor/cert and identifier
com.mycorp.myprog"

Note that the requirement source language accepts either an SHA1 hash of a certificate (for example
H"abcd....") or a path to the DER encoded certificate in a file. It does not currently accept a reference to
the certificate in a keychain, so you have to export the certificate before executing this command.

You can also use the csreq command to write the requirements out to a file, and then use the path to that
file as the input value for the —r option in the codesign command. See the manual page for csreq(1) for
more information on that command.
Here are some other samples of requirements:

= anchor apple -the code is signed by Apple

« anchor trusted -the anchor is trusted (for code signing) by the system

- certificate leaf = /path/to/certificate -the leaf (signing) certificate is the one specified

- certificate leaf

/path/to/certificate and identifier "com.mycorp.myprog" -the
leaf certificate and program identifier are as specified

- info[mykey] = myvalue -the Info.plist key mykey exists and has the value myvalue

Except for the explicit anchor trusted requirement, the system does not consult its trust settings database
when verifying a code requirement. Therefore, as long as you don't add this designated requirement to your
code signature, the anchor certificate you use for signing your code does not have to be introduced to the
user’s system for validation to succeed.

Verifying Code

To verify the signature on a signed binary, use the —v option with no other options:

codesign -v <code-path> ..

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

19

Code Signing Tasks
Shipping and Updating Your Product

This checks that the code binaries at <code—path> are actually signed, that the signature is valid, that all the
sealed components are unaltered, and that the whole thing passes some basic consistency checks. It does not
by default check that the code satisfies any requirements except its own designated requirement. To check a
particular requirement, use the —R option. For example, to check that the Apple Mail application is identified
as Mail, signed by Apple, and secured with Apple’s root signing certificate, you could use the following command:

codesign —v —R="identifier com.apple.mail and anchor apple" /Applications/Mail.app

Note that, unlike the —r option, the —R option takes only a single requirement rather than a requirements
collection (no => tags). Add one or more additional —v options to get details on the validation process.

If you pass a number rather than a path to the verify option, codesign takes the number to be the process
ID (pid) of a running process, and performs dynamic validation instead.

Getting Information About Code Signatures

To get information about a code signature, use the —d option. For example, to output the code signature’s
internal requirements to standard out, use the following command:

codesign -d -r code-path

Note that this option does not verify the signature.

Shipping and Updating Your Product

The only thing that matters to the code signing system is that the signed code installed on the user’s system
identical to the code that you signed. It does not matter how you package, deliver, or install your product as
long as you don't introduce any changes into the product. Compression, encoding, encrypting, and even binary
patching the code are all right as long as you end up with exactly what you started with. You can use any
installer you like, as long as it doesn't write anything into the product as it installs it. Drag-installs are fine as
well.

When you have qualified a new version of your product, sign it just as you signed the previous version, with
the same identifier and the same designated requirement. The user’s system will consider the new version of
your product to be the same program as the previous version. In particular, the keychain will not distinguish
older and newer versions of your program as long as both were signed and the unique Identifier hasn't changed.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

20

Code Signing Tasks
Shipping and Updating Your Product

You can take a partial-update approach to revising your code on the user’s system. To do so, sign the new
version as usual, then calculate the differences between the new and the old signed versions, and transmit
the differences. Because the differences include the new signature data, the result of installing the changes
on the end-user's system will be the newly signed version. You cannot patch a signed application in the field.
If you do so, the system will notice that the application has changed and will invalidate the signature, and
there is no way to re-validate or resign the application in the field.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

21

Code Signing Requirement Language

When you use the codesign command to sign a block of code, you can specify internal requirements; that
is, the criteria that you recommend should be used to evaluate the code signature. It is up to the verifier to
decide whether to apply the internal requirements or some other set of requirements when deciding how to
treat the signed code. You use the code requirement language described in this chapter when specifying
requirements to the codesign or csreq command (see the manual pages for codesign(1) and csreq(1)).

This chapter describes the requirement language source code. You can compile a set of requirements and save
them in binary form using the csreq command. You can provide requirements to the codesign command
either as source code or as a binary file. Both the codesign and csreq commands can convert a binary
requirement set to text. Although there is some flexibility in the source code syntax (for example, quotes can
always be used around string constants but are not always required), conversion from binary to text always
uses the same form:

= Parentheses are placed (usually only) where required to clarify operator precedence.
= String constants are quoted (usually only) where needed.

= Whether originally specified as constants or through file paths, certificate hashes are always returned as
hash constants.

= Comments in the original source are not preserved in the reconstructed text.

Language Syntax
Some basic features of the language syntax are:

= Expressions use conventional infix notation (that is, the operator is placed between the two entities being
acted on; for example quantity < constant).

« Keywords are reserved, but can be quoted to be included as part of ordinary strings.
- Comments are allowed in C, Objective C, and C++.
= Unquoted whitespace is allowed between tokens, but strings containing whitespace must be quoted.

= Line endings have no special meaning and are treated as whitespace.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

22

Code Signing Requirement Language
Evaluation of Requirements

Evaluation of Requirements

A requirement constitutes an expression without side effects. Each requirement can have any number of
subexpressions, each of which is evaluated with a Boolean (succeed-fail) result. There is no defined order of
evaluation. The subexpressions are combined using logical operators in the expression to yield an overall
Boolean result for the expression. Depending on the operators used, an expression can succeed even if some
subexpressions fail. For example, the expression

anchor apple or anchor = "/var/db/yourcorporateanchor.cert"

succeeds if either subexpression succeeds—that is, if the code was signed either by Apple or by your
company—even though one of the subexpressions is sure to fail.

If an error occurs during evaluation, on the other hand, evaluation stops immediately and the codesign or
csreq command returns with a result code indicating the reason for failure.

Constants

This section describes the use of string, integer, hash-value, and binary constants in the code signing requirement
language.

String Constants

String constants must be enclosed by double quotes (" ') unless the string contains only letters, digits, and
periods (.), in which case the quotes are optional. Absolute file paths, which start with a slash, do not require
quotes unless they contain spaces. For example:

com.apple.mail //no quotes are required

"com.apple.mail" //quotes are optional

"My Company's signing identity" //requires quotes for spaces and apostrophe
/Volumes/myCA/root.crt //no quotes are required

"/Volumes/my CA/root.crt" //space requires quotes
"/Volumes/my_CA/root.crt" //underscore requires quotes

It's never incorrect to enclose the string in quotes—if in doubt, use quotes.

Use a backslash to “escape” any character. For example:

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

23

Code Signing Requirement Language

Variables
"one \" embedded quote" //one " embedded quote
"one \\ embedded backslash" //one \ embedded backslash

There is nothing special about the single quote character (').

Integer Constants

Integer constants are written as decimal constants are in C. The language does not allow radix prefixes (such
as 0x) or leading plus or minus (+ or —) signs.

Hash Constants

Hash values are written either as a hexadecimal number in quotes preceded by an H, or as a path to a file
containing a binary certificate. If you use the first form, the number must include the exact number of digits
in the hash value. A SHA-1 hash (the only kind currently supported) requires exactly 40 digits; for example:

H"0123456789ABCDEFFEDCBA98765432100A2BC5DA"

You can use either uppercase or lowercase letters (A. . F or a. .) in the hexadecimal numbers.

If you specify a file path, the compiler reads the binary certificate and calculates the hash for you. The compiled
version of the requirement code includes only the hash; the certificate file and the path are not retained. If you
convert the requirement back to text, you get the hexadecimal hash constant. The file path must point to a
file containing an X.509 DER encoded certificate. No container forms (PKCS7, PKCS12) are allowed, nor is the
OpenSSL "PEM" form supported.

Variables

There are currently no variables in the requirement language.

Logical Operators

The requirement language includes the following logical operators, in order of decreasing precedence:
= ! (negation)

- and (logical AND)

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

24

Code Signing Requirement Language
Comparison Operations

» or (logical OR)

These operators can be used to combine subexpressions into more complex expressions. The negation operator
(1) is a unary prefix operator. The others are infix operators. Parentheses can be used to override the precedence
of the operators.

Because the language is free of side effects, evaluation order of subexpressions is unspecified.

Comparison Operations
The requirement language includes the following comparison operators:
= =(equals)
» < (less than)
= > (greater than)
» <= (less than or equal to)
= >=(greater than or equal to)

- exists (value is present)

The value-present (exists) operator is a unary suffix operator. The others are infix operators.

There are no operators for non-matches (not equal to, not greater than, and so on). Use the negation operator
(1) together with the comparison operators to make non-match comparisons.

Equality
All equality operations compare some value to a constant. The value and constant must be of the same type:
a string matches a string constant, a data value matches a hexadecimal constant. The equality operation

evaluates to true if the value exists and is equal to the constant. String matching uses the same matching
rules as CFString (see CFString Reference).

In match expressions (see “Info” (page 27), “Part of a Certificate” (page 29), and “Entitlement” (page 30)),
substrings of string constants can be matched by using the * wildcard character:

+ value = xconstantxis true if the value exists and any substring of the value matches the constant;
for example:

- thunderbolt

kxunders
< thunderbolt = xthunderx

< thunderbolt xboltx

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

25

Code Signing Requirement Language
Constraints

- value = constantxis true if the value exists and begins with the constant; for example:

< thunderbolt = thunderx
- thunderbolt

thunx

- value = xconstant is true if the value exists and ends with the constant; for example:

< thunderbolt = xbolt

< thunderbolt = xunderbolt

If the constant is written with quotation marks, the asterisks must be outside the quotes. An asterisk inside the
guotation marks is taken literally. For example:

< '"ten thunderbolts" = "ten thunder"xis true

- '"ten thunderxbolts" = "ten thunderx"xis true
- '"ten thunderbolts" = "ten thunderx"is false
Inequality

Inequality operations compare some value to a constant. The value and constant must be of the same type: a
string matches a string constant, a data value matches a hexadecimal constant. String comparisons use the
same matching rules as CFString with the kCFCompareNumerically option flag; for example, "'17.4" is
greater than "7.4".

Existence

The existence operator tests whether the value exists. It evaluates to false only if the value does not exist at
all or is exactly the Boolean value false. An empty string and the number 0 are considered to exist.

Constraints

Several keywords in the requirement language are used to require that specific certificates be present or other
conditions be met.

|dentifier

The expression

identifier = constant

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

26

Code Signing Requirement Language
Constraints

succeeds if the unique identifier string embedded in the code signature is exactly equal to constant. The equal
sign is optional in identifier expressions. Signing identifiers can be tested only for exact equality; the wildcard
character () can not be used with the identifier constraint, nor can identifiers be tested for inequality.

Info

The expression
info [key]1match expression

succeeds if the value associated with the top-level key in the code’s info. plist file matches match expression,
where match expression can include any of the operators listed in “Logical Operators” (page 24) and
“Comparison Operations” (page 25). For example:

info [CFBundleShortVersionString] < "17.4"

or

info [MySpecialMarker] exists

You must specify key as a string constant.

If the value of the specified key is a string, the match is applied to it directly. If the value is an array, it must be
an array of strings and the match is made to each in turn, succeeding if any of them matches. Substrings of
string constants can be matched by using any match expression (see “Comparison Operations” (page 25)).

If the code has no info.plist file, or the info.plist does not contain the specified key, this expression
evaluates to false without returning an error.

Certificate

Certificate constraints refer to certificates in the certificate chain used to validate the signature. Most uses of
the certificate keyword accept an integer that indicates the position of the certificate in the chain: positive
integers count from the anchor (0) toward the leaf. Negative integers count backward from the signing certificate
(-1). For example, certificate 1 indicates the certificate that was directly signed by the anchor, and
certificate -2 istheintermediate certificate that was used to sign the leaf (that is, the signing certificate).
Note that this convention is the same as that used for array indexing in the Perl and Ruby programming
languages:

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

27

Code Signing Requirement Language
Constraints

Anchor First intermediate Second intermediate Leaf
certificate 0 certificate 1 certificate 2 certificate 3
certificate -4 certificate -3 certificate -2 certificate -1

Other keywords include:
- certificate root—the anchor certificate; same as certificate O
e anchor—sameas certificate root

- certificate leaf—the signing certificate; same as certificate -1

Note The short form cert is allowed for the keyword certificate.

If there is no certificate at the specified position, the constraint evaluates to false without returning an error.

If the code was signed using an ad-hoc signature, there are no certificates at all and all certificate constraints
evaluate to false. (An ad-hoc signature is created by signing with the pseudo-identity — (a dash). An ad-hoc
signature does not use or record a cryptographic identity, and thus identifies exactly and only the one program
being signed.)

If the code was signed by a self-signed certificate, then the leaf and root refer to the same single certificate.

Whole Certificate

To require a particular certificate to be present in the certificate chain, use the form
certificate position = hash

or one of the equivalent forms discussed above, such as anchor = hash. Hash constants are described in
“Hash Constants” (page 24).

For Apple’s own code, signed by Apple, you can use the short form
anchor apple

For code signed by Apple, including code signed using a signing certificate issued by Apple to other developers,
use the form

anchor apple generic

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

28

Code Signing Requirement Language
Constraints

Part of a Certificate

To match a well-defined element of a certificate, use the form
certificate position [element 1 match expression
where match expression can include the * wildcard character and any of the operators listed in “Logical

Operators” (page 24) and “Comparison Operations” (page 25). The currently supported elements are as follows:

Note Case is significant in element names.

Element name Meaning Comments

subject.CN Subject common name Shown in Keychain Access utility
subject.C Subject country name

subject.D Subject description

subject.L Subject locality

subject.0 Subject organization Usually company or organization
subject.OU Subject organizational unit

subject.STREET Subject street address

Certificate field by OID
To check for the existence of any certificate field identified by its X.509 object identifier (OID), use the form

certificate position [field.OID] exists

The object identifier must be written in numeric form (x .y .z...) and can be the OID of a certificate extension
or of a conventional element of a certificate as defined by the CSSM standard (see Chapter 31 in Common
Security: CDSA and CSSM, version 2 (with corrigenda) by the Open Group (http://www.opengroup.org/securi-
ty/cdsa.htm)).

Trusted

The expression

certificate position trusted

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

29

http://www.opengroup.org/security/cdsa.htm
http://www.opengroup.org/security/cdsa.htm

Code Signing Requirement Language
Constraints

succeeds if the certificate specified by position is marked trusted for the code signing certificate policy in the
system’s Trust Settings database. The position argument is an integer or keyword that indicates the position
of the certificate in the chain; see the discussion under “Certificate” (page 27).

The expression
anchor trusted

succeeds if any certificate in the signature’s certificate chain is marked trusted for the code signing certificate
policy in the system’s Trust Settings database, provided that no certificate closer to the leaf certificate is explicitly
untrusted.

Thus, using the trusted keyword with a certificate position checks only the specified certificate, while using
it with the anchor keyword checks all the certificates, giving precedence to the trust setting found closest to
the leaf.

Important The syntaxanchor trustedisnot asynonymforcertificate anchor trusted.Whereas
the former checks all certificates in the signature, the latter checks only the anchor certificate.

Certificates can have per-user trust settings and system-wide trust settings, and trust settings apply to specific
policies. The trusted keyword in the code signing requirement language causes trust to be checked for the
specified certificate or certificates for the user performing the validation. If there are no settings for that user,
then the system settings are used. In all cases, only the trust settings for the code-signing policy are checked.
Policies and trust are discussed in Certificate, Key, and Trust Services Programming Guide .

Important If you do not include an expression using the trusted keyword in your code signing
requirement, then the verifier does not check the trust status of the certificates in the code signature at all.

Entitlement

The expression
entitlement [key] match expression

succeeds if the value associated with the specified key in the signature’s embedded entitlement dictionary
matches match expression, where match expression can include the * wildcard character and any of the
operators listed in “Logical Operators” (page 24) and “Comparison Operations” (page 25). You must specify
key as a string constant. The entitlement dictionary is included in signatures for certain platforms.

Code Directory Hash

The expression

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

30

Code Signing Requirement Language
Requirement Sets

cdhash hash-constant

computes a SHA-1 hash of the program’s CodeDirectory resource and succeeds if the value of this hash exactly
equals the specified hash constant.

The CodeDirectory resource is the master directory of the contents of the program. It consists of a versioned
header followed by an array of hashes. This array consists of a set of optional special hashes for other resources,
plus a vector of hashes for pages of the main executable. The CodeSignature and CodeDirectory resources
together make up the signature of the code.

You can use the codesign utility with (at least) three levels of verbosity to obtain the hash constant of a
program’s CodeDirectory resource:

$ codesign —-dvvv /bin/1s

CodeDirectory v=20001 size=257 flags=0x0(none) hashes=8+2 location=embedded
CDHash=4bcchbc576205de37914a3023cae7e737a0b6a802

Because the code directory changes whenever the program changes in a nontrivial way, this test can be used
to unambiguously identify one specific version of a program. When the operating system signs an otherwise
unsigned program (so that the keychain or Parental Controls can recognize the program, for example), it uses
this requirement.

Requirement Sets

A requirement set is a collection of distinct requirements, each indexed (tagged) with a type code. The expression
tag => requirement

applies requirement to the type of code indicated by tag, where possible tags are

« host—thisrequirementis applied to the direct host of this code module; each code module in the hosting
path can have its own host requirement, where the hosting path is the chain of code signing hosts starting
with the most specific code known to be running, and ending with the root of trust (the kernel)

= guest—this requirement is applied to each code module that is hosted by this code module
= library—this requirement is applied to all libraries mounted by the signed code

- designated—this is an explicitly specified designated requirement for the signed code; if there is no
explicitly specified designated requirement for the code, then there is no des ignated internal requirement

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

31

Code Signing Requirement Language
Requirement Sets

The primary use of requirement sets is to represent the internal requirements of the signed code. For example:

codesign -r='host => anchor apple and identifier com.apple.perl designated =>
anchor /my/root and identifier com.bar.foo'

sets the internal requirements of some code, having a host requirement of anchor apple and identifier
com.apple.perl(“I'ma Perl script and | want to be run by Apple's Perl interpreter”) and an explicit designated
requirementof anchor /my/root and identifier com.bar. foo.Note thatthiscommand sets no guest
or library requirements.

You can also put the requirement set in a file and point to the file:

codesign -r myrequirements.rqgset

where the file mnyrequirements. rqset might contain:

//internal requirements

host => anchor apple and identifier com.apple.perl //require Apple's Perl
interpreter

designated => anchor /my/root and identifier com.bar.foo

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

32

Document Revision History

This table describes the changes to Code Signing Guide.

Date Notes

2011-09-28 Revised document to focus exclusively on code signing.

Some of the content in this document was previously in Code Signing and
Application Sandboxing Guide .

2011-07-1 Added information about application sandboxing.

2009-10-19 Fixed typographical errors.

2009-10-13 Clarified explanation of CFBundleldentifier and uniqueness.

2008-11-19 Added a chapter describing the code signing requirement language.
2007-05-15 New document that explains why you should sign your code and provides

code signing procedures.

2011-09-28 | © 2011 Apple Inc. All Rights Reserved.

33

[

Apple Inc.

© 201 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

The Apple logo is a trademark of Apple Inc.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Finder, Keychain, Logic,
Mac, Mac OS, Safari, Sand, and Xcode are
trademarks of Apple Inc., registered in the United
States and other countries.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

	Code Signing Guide
	Contents
	Introduction
	Code Signing Overview
	The Benefits Of Signing Code
	Digital Signatures and Signed Code
	Code Requirements
	The Role of Trust in Code Signing

	Code Signing Tasks
	Obtaining a Signing Identity
	Adding an Info.plist to Single-File Tools
	Signing Your Code
	What to Sign
	When to Sign
	Using the codesign Command
	Signing Code
	Verifying Code
	Getting Information About Code Signatures

	Shipping and Updating Your Product

	Code Signing Requirement Language
	Language Syntax
	Evaluation of Requirements
	Constants
	String Constants
	Integer Constants
	Hash Constants

	Variables
	Logical Operators
	Comparison Operations
	Equality
	Inequality
	Existence

	Constraints
	Identifier
	Info
	Certificate
	Whole Certificate
	Part of a Certificate
	Certificate field by OID

	Trusted
	Entitlement
	Code Directory Hash

	Requirement Sets

	Revision History

