TUG

RICHARD KOCH

1. INTRODUCTION

This is the root document for a series of related documents which explain how to construct
MacTeX.

This document is provided inside a build tree for MacTeX. Do not rearrange folders in this
tree. As MacTeX is constructed, these folders will gradually be filled with bits and pieces
of the package, until finally the complete package is inside one of the folders.

The MacTeX install package contains a series of subpackages which install the various pieces
of MacTeX. A user can choose which packages to install by clicking the “Custom” button
during installation. Each subpackage is built in a folder of the build system, and each
such folder contains a subfolder named “TUG” with the documentation needed to build
that portion of MacTeX. The subpackages are Convert-IM, Ghostscript, GUI-Applications,
Latin-Modern-Fonts, TeX-Gyre-Fonts, and TeXLive.

2. BUILDING BINARIES

To create a new TeX Live and MacTeX release, it is first necessary to compile the TeX Live
binaries. This step is entirely covered by the material in the Binary folder of this Build
tree.

One document in this folder is so important that it is duplicated at the top level of the
Build tree as the file BuildStatus-2013. This is a plain text document. The document
explains everything needed to obtain the source code and compile it. The end result of
that operation will be a folder containing the 32 bit Intel binaries, a folder containing the 32
bit PowerPC binaries, and a folder containing 64 bit Intel binaries. To compile, just copy
Terminal commands from this document, paste them into Terminal, and execute.

Asymptote is a special case. Its source is contained in the TeX Live source, but it is built
separately. A folder in Build called AsymptoteBuild contains all material needed to do that.
To build, copy this folder to each building platform: Leopard Intel, Leopard PPC, and Snow
Leopard Intel. Then follow the instructions in the document AsymptoteBuildStatus-2013
inside the AsymptoteBuild folder.

Date: April 18, 2013.

TUG 2

After these binaries are obtained, they are copied to Binary/RawCodeFromCompile. Two
shell scripts in the Binary directory combine these binaries and create tar.xz files to be
sent to Karl Berry.

The documents BuildStatus-2013 and AsymptoteBuildStatus-2013 are plain text files so
they can be easily edited. New flags or compile steps may be required in a subsequent
year. They should immediately be added to these documents during compiling so there is
an accurate record for the future.

3. ABOUT APPLE’S PACKAGEMAKER

Before 2012, MacTeX was built using Apple’s original PackageMaker application, version
2. This was replaced in Leopard with a new PackageMaker, version 3, but we continued to
use the original version until 2012.

Install packages created by the original PackageMaker were actually folders; the Finder
disguised these folders to look like flat files to the user. The packages had extension “.pkg”
if they installed a single package, and “.mpkg” if they contained several pieces which the
user could selectively install. The “.mpkg” folders contained the individual “.pkg” folders
inside an encompassing folder.

Apple introduced a new operating system, Mountain Lion, in late summer of 2012. Install
packages for this system must be signed. Install packages created by PageMaker 2 cannot
be signed, so we had to switch to PackageMaker 3. This software has a “legacy” mode
which creates the original packages we had been using, but these legacy packages cannot
be signed. Thus it is necessary to switch to version 3 of PackageMaker, and use it to create
modern install packages which install on Leopard and higher systems.

MacTeX can be constructed on any system which runs the modern PackageMaker and
the separate signing software. Currently it is constructed on Lion. The modern package-
maker runs only on the system it was designed for, so switching operating systems requires
obtaining a new program. But the packages install on Leopard and higher.

As of April, 2013, PackageMaker is available to Apple Developers in the downloads section
of the developer website as “Auxiliary Tools for Xcode Developer Preview.” The Lion
version of PackageMaker is in this documentation. It must be part of the MacTeX build
system rather than elsewhere in the file system.

The new PackageMaker creates flat files rather than folders. This has a great advantage:
it is no longer necessary to zip these packages before placing them on the internet. Before
2012, users often downloaded with a different browser than Safari, and unzipped with a
third party application rather than Apple’s default utility. Unhappily, some third party
unzipping applications don’t preserve Unix line feeds, so the resulting packages contain
postinstall scripts which won’t run.

TUG 3

Switching to the modern PackageMaker has one additional consequence. With the orig-
inal PackageMaker, we created a “.pkg” install package for each component: TeXLive,
Ghostscript, Convert, GUI-Applications, etc. Then these install packages were combined
to create the final “.mpkg” MacTeX package. The new PackageMaker requires that we cre-
ate a “root” folder for each individual package containing the data to be installed, but does
not require that we finish the task and create the individual install packages. Consequently,
the various individual folders for TeXLive, Ghostscript, etc. support an optional final step
to create individual install packages, but this step can be skipped when creating MacTeX.
Creating the install package for the TeX Live piece with the modern PackageMaker is very
time consuming, so the step should certainly be avoided for that package. On the other
hand, it is useful to create separate flat packages for Ghostscript and Convert-IM so these
can be tested independently of MacTeX.

4. IMPORTANT WARNINGS

This section contains lessons learned in 2013. The material here is important for all pack-
ages made with the new PackageMaker.

Folders in which packages are built should live on the hard disk rather than an external
disk. Building constructs subfolders named “root” which contain copies of material to be
installed. This root folder and its contents are usually owned by root. But material on an
external drive is owned by the user instead, so owners will be incorrect after installing.

The final MacTeX template refers to root folders of the various sub projects. In the
template, each sub project is listed in the left column; clicking on an arrow there reveals a
panel in which the root folder is determined and configured.

This root item must be reconfigured if the contents of the corresponding root are changed.
Remove the item on the left listing the root (for example, /Applications/TeX) by selecting
it and pushing ”Delete”. Then drag a new copy of the root folder to this spot. Wait
until PackageMaker has digested the new comments by watching a spinning cursor. Then
reconfigure that root material. Each project contains ftwo copies of the template to make
this easy. Copy the configuration material from the ”copy” of the template to the ”active”
template.

Configuration of a root folder is governed by a panel with four tabs: Configuration, Con-
tents, Components, and Scripts. The material in the first and last tabs is important and
should be entered carefully. The second Contents tab allows owners, groups, and permis-
sions of individual files in the folder to be set. This task is impossible for a huge root folder
like TeXLive, but luckily Apple provides a button ” Apply Recommedations” which does it
automatically following Apple’s ”best practices policy.” Always click this button.

For binary files like texlive/2013/bin/universal-darwin, the recommendations are unex-
pected. Actual binaries have owner root and group wheel, but symbolic links have owner

TUG 4

an individual user and group wheel. Permissions are -rwxr-xr-x. Experiments and email
conversations show that these choices work well.

For the GUI-package, the third tab, ” Components”, is very important. It lists actual apps
and offers to relocate them. Turn this off. Otherwise the installer won’t upgrade programs
in /Applications/TeX, but instead will search the disk for a copy to update. Always check
that these items are off.

5. MAcCTEX ProbucTs

There are four main products: MacTeX, BasicTeX, MacTeX-DVD, and MacTeX-Additions.
The first is the main distribution for the web. The second is a much smaller TeX distri-
bution for users with limited download bandwidth; it only contains a TeX distribution,
without GUI applications, Ghostscript, etc. The third is a variant of the first for the DVD;
it installs TeX Live from a copy elsewhere on the DVD rather than from a copy inside the
package. Finally, MacTeX-Additions installs everything except TeX Live, for users who
obtained a TeX distribution some other way.

These four packages need to be built last, because they are contain Ghostscript, Convert
from Image Magick, Latin Modern Fonts, TeX Gyre Fonts, and TeXLive. The packages in
this last list can be made in any order. It is useful to create Ghostscript and ImageMagick
several months before everything else since they do not depend on TeX Live.

6. PLATFORMS TO BUILD MACTEX

We create 32 bit Intel code on an Intel Leopard machine, 32 bit PowerPC code on a
PowerPC Leopard machine, and 64 bit code on an Intel Snow Leopard machine.

The machine used to create packages is not crucial. We have been creating packages on
Lion machines.

Modern versions of PackageMaker depend on libraries in the operating system and thus
cannot be moved from one system to another. Obtain the version for the particular platform
used to create MacTeX. The actual install packages are compatible between systems.

7. PACKAGEMAKER BUGS

Unfortunately, the modern PackageMaker has significant bugs. One of these bugs caused
major problems with the DVD version of MacTeX in 2012. Consequently, in 2013 we
create the DVD version of MacTeX using the old legacy packages. We still use the modern
PackageMaker to create these legacy packages. Note that DVD install packages do not
need to be signed.

TUG 5

We’ll describe that particular bug. The original PackageMaker can run two scripts: a
preinstall script and a postinstall script. So can the new PackageMaker. But there is one
significant difference. In the original PackageMaker, the preinstall script can report an
error if conditions on the install machine are bad, and this error is then reported in the
GUI before installation is aborted. In the new PackageMaker, there is no way to report
preinstall errors to the user.

This difference is crucial for the DVD installer because some users move the install package
from the DVD to their install machine, eject the DVD, and then install. This fails because
TeX Live is on the DVD but not in the install package. The preinstall script can discover
this error, but cannot report it to the user.

The new PackageMaker has an alternate mechanism to report errors to the user. It can
call various built-in applescript routines to test common conditions, and report errors from
these scripts to the GUI and thus to the user. In 2012, we used this mechanism to test
whether the DVD was mounted. The test worked correctly on Leopard and Snow Leopard
machines. But unhappily, the built-in applescript always reported an unmounted DVD on
Lion and Mountain Lion, destroying the DVD installer on these machines.

8. CREATING LEGACY PACKAGES
The folder for each subpackage in MacTeX contains a folder named OldStyle. Inside is a
script called buildOldPackage.sh. To build an old style subpackage,
sudo sh buildOldPackage.sh

Building these legacy packages takes much less time than building new style packages.
Note that we only need a legacy package for TeXLive-2013-DVD, not for TeXLive-2013,
reducing the time considerably.

9. PuTrTING LEGACY PACKAGES TOGETHER TO FORM MACTEX-DVD

There is a final problem. It is necessary to combine these legacy subpackages into a final
mpkg legacy result. The documentation for PackageMaker says that it supports a command
line operation to do that, but that is a lie. The modern PackageMaker cannot make the
final package, and the old PackageMaker does not run on Lion.

Luckily, there is an out. Stephene Sudre has written an open source version of the old
PackageMaker called Iceberg. See

http://s.sudre.free.fr/Software/Iceberg.html

This software can combine the individual legacy packages and produce an mpkg output
which looks to the user exactly like our previous install Package.

TUG 6

10. How To MAKE YEARLY UPDATES IN PACKAGES

There are some universal steps required to update scripts for a new year. I'll describe the
steps here, using the Ghostscript package as an example.

Some packages retain the same name from year to year, while other package names change.
When the name changes, it typically contains a a year or version number; for example,
Ghostscript-9.02.pkg. Although it will be obvious that the name changes, the individual
package TUG document will confirm this fact.

It is important that some packages get new names for the following reason. When a user
installs a Package, their Mac stores a receipt for the package. If a new version of the package
is later installed, the installer updates files which changed in the new package, installs
additional files from the new package, and removes files that used to be in the package, but
now aren’t. Ghostscript 9.02 installs support files in /usr/local/share/ghostscript/9.02,
which depend on a version number. If the name of the package didn’t change, the old
support files would be removed, but we want to preserve them in case the user retreats to
the older version. Renaming is particularly important for TeX Live itself, since we certainly
don’t want the installer to remove the old copy of TeX Live.

To switch to the new name:

e Edit the “buildPackage.sh” script, which may contain references which differ from
year to year.

e Fdit the files to be shown to the user during installation: License.rtf, ReadMe.rtf,
and Welcome.rtf. Edit these files to reflect the new package name and release date.
Make other changes as appropriate.

e Edit the GUI project files used by PackageMaker to make the new packages, as
explained in individual package documentation.

11. MAKING INSTALL PACKAGES USING THE PACKAGEMAKER GUI

Details of using this GUI for individual packages are given in the TUG documentation
for these packages. But there are issues which affect all packages, so they are discussed
here.

One GUI item to be set for packages is titled “Requirements”. This item can be used to
ensure that the disk has adequate space, that the operating system is sufficient to support
the package, etc. Currently, our packages require at least Leopard, OS X 10.5. However, it
is not necessary to set this requirement, because our install packages automatically require
Leopard. If the user attempts to install, say, TeX-Gyre-Fonts.pkg, on Tiger, a dialog will
appear with the text “Couldn’t open ‘TeX-Gyre-Fonts.pkg’. This package type requires
Mac OS X 10.5.” The dialog only contains one button: OK.

TUG 7

Our packages need to test that there is adequate free space on the disk for their contents.
This appears to be an easy matter. Selecting the main install package at top left of the
GUI leads to a right side panel containing tabs “Configuration”, “Requirements”, and
“Actions”. The Requirements tab leads to a blank list, with plus and minus buttons at
the bottom to add and subtract items. If the plus is pressed, a drop down menu presents
several items that can be selected, including

e Megabytes Available on Target

e Maximum CPU Frequency

Memory Available (Bytes)

Result of Script

Result of Script for Target

Result of Javascript
e Result of Javascript for Target

and many more items. However, most of these present a multitude of problems. The items
“Result of Script” and “Result of Javascript” lead to the problem of embedding those
scripts in the Install package, which isn’t done automatically by Packagemaker. Then it
turns out that the scripts are called incorrectly by install packages made by Packagemaker.
Notes on the internet explain how to get around this problem, but these notes don’t work
in Lion and Mountain Lion.

The correct approach is to use “Metabytes Available on Target” or “Memory Available
(Bytes)”. But the first of these works only if the user is allowed to select a target disk
for the installation. If we insist on installing in the System Disk (as is appropriate for
MacTeX), this command is ignored. So the appropriate command is “Memory Available
(Bytes)”.

However, trial and error reveals that this command can only test for sizes smaller than 4
gigs (i.e., 4294967295 bytes or less). Larger numbers lead to javascript errors. Luckily, this
number is (just barely) large enough to handle MacTeX.

In the end, I decided not to set this check on packages except for one, MacTeX-2013-DVD.
The other packages list the amount of space required just before allowing the user to click
“Install.” Then a package has a custom install option, the amount of required memory
changes with the options selected. So I believe these packages will complain if there is not
enough free space. MacTeX-2013-DVD is a special case. Consult the documentation for
that package to see how the memory requirement is set.

TUG 8

12. SIGNING PACKAGES

Starting with Mac OS 10.8, Mountain Lion, install packages must be signed. Signing
requires a “Signing Certificate” from Apple, which is kept in the developer’s keychain and
maintained by the program /Applications/Utilities/Keychain Access. The signature is not
kept in this MacTeX Developer package — when install packages are signed, the software
looks up the developer’s signature in their keychain.

The PackageMaker GUI interface contains an entry which tells the software the name of the
appropriate signature. So you’d think that setting the signature would be a simple matter
of filling in this entry. If the entry is filled in, a signature is certainly added, because a
dialog appears at the end of building asking for permission to access that signature. But
experiments show that packages created in this way are not properly signed and wlll be
rejected in Mountain Lion. Ignore this GUI setting.

Instead, packages must be signed after they are constructed using the command line pro-
gram “productsign”. Details are in the individual build packages. “Productsign” accepts
an input package and outputs a corresponding signed package, so after building, individual
portions of this developer package will contain two install packages.

Obtaining a certificate requires a developer account at https://developer.apple.com/.
I believe accounts are free, but they might require a fee; full access costs $100 a year for
Mac development and an additional $100 a year for iOS development. Only Mac access is
needed. As soon as you log in, you'll see an entry “Developer Certificate Utility” with lots
of information about certificates.

You will ultimately be given two certificates, one for signing install packages and another
for signing applications. For instance, my certificates are called “Developer ID Installer:
Richard Koch” and “Developer ID Application: Richard Koch”. The system will reject the
“Application” certificate when signing packages, so use the “Installer” certificate.

Obtaining certificates can be tricky. A description of the process, using XCode, can be
found in the “developer_id_tutorial.pdf” file included in the “Signing” section of this pack-
age. Read the section titled Obtaining Developer ID Certificates. This seems to describe
the latest process, but you will find other Apple documentation which describes contradic-
tory and more complicated methods. I already had certifices, so my process didn’t exactly
follow the scheme in this document. Good luck.

Apple delivers the certificates in just a few minutes, but the exact name of the certificate
is important. I spent several days debugging because I neglected the space between “In-
staller:” and “Richard Koch”. If you are like me, you’ll have lots of certificates managed
by Keychain Access, some obsolete, and it can be difficult to keep straight the active ones.
Follow the instructions from Apple carefully, since the process isn’t quite as straightforward
as it first seems.

TUG 9

Testing signed packages is itself tricky. First, the “Security and Privacy” preference pane
must be set to allow applications downloaded from “Mac App Store and identified develop-
ers.” After that, if an unsigned package is moved to a Mountain Lion system via wireless
or a USB Flash Drive, it will install fine. To test, an install package must be placed on a
server and then downloaded with Safari or another browser. Then an incorrectly signed
package will refuse to install.

