TUG-GHOSTSCRIPT

RICHARD KOCH

1. GHOSTSCRIPT

This is the portion of the TUG documentation which deals with making the Ghostscript
package.

2. IMPORTANT WARNINGS

This section contains lessons learned in 2013. The material here is important for all pack-
ages made with the new PackageMaker.

Folders in which packages are built should live on the hard disk rather than an external
disk. Building constructs subfolders named “root” which contain copies of material to be
installed. This root folder and its contents are usually owned by root. But material on an
external drive is owned by the user instead, so owners will be incorrect after installing.

The final MacTeX template refers to root folders of the various sub projects. In the
template, each sub project is listed in the left column; clicking on an arrow there reveals a
panel in which the root folder is determined and configured.

This root item must be reconfigured if the contents of the corresponding root are changed.
Remove the item on the left listing the root (for example, /Applications/TeX) by selecting
it and pushing ”Delete”. Then drag a new copy of the root folder to this spot. Wait
until PackageMaker has digested the new comments by watching a spinning cursor. Then
reconfigure that root material. Each project contains two copies of the template to make
this easy. Copy the configuration material from the ”copy” of the template to the ”active”
template.

Configuration of a root folder is governed by a panel with four tabs: Configuration, Con-
tents, Components, and Scripts. The material in the first and last tabs is important and
should be entered carefully. The second Contents tab allows owners, groups, and permis-
sions of individual files in the folder to be set. This task is impossible for a huge root folder
like TeXLive, but luckily Apple provides a button ” Apply Recommedations” which does it
automatically following Apple’s ”best practices policy.” Always click this button.

Date: April 18, 2013.



TUG-GHOSTSCRIPT 2

For binary files like texlive/2013/bin/universal-darwin, the recommendations are unex-
pected. Actual binaries have owner root and group wheel, but symbolic links have owner
an individual user and group wheel. Permissions are -rwxr-xr-x. Experiments and email
conversations show that these choices work well.

For the GUI-package, the third tab, ” Components”, is very important. It lists actual apps
and offers to relocate them. Turn this off. Otherwise the installer won’t upgrade programs
in /Applications/TeX, but instead will search the disk for a copy to update. Always check
that these items are off.

3. CONTENTS

A clean package file will contain

e “About” folder with public documentation explaining how the package was con-
structed

e “Binaries” folder with empty subfolders “10.5”, “10.6” and the file “liposcript”
e Files “buildPackage.sh” and “buildTeXfonts.sh”

e Files “background.jpg”, “License.rtf”, “ReadMe.rtf”, and “Welcome.rtf”

¢

e “scripts” folder containing files “postinstall” and “setloginpath”

e “source” folder containing “ghostscript-fonts-std-8.11.tar” and a folder of fonts
named “fonts”. The tar folder contains a packed version of these fonts. (This
folder is not needed in the current package because Ghostscript now contains the
35 standard fonts. It will eventually be removed.) The “source” folder also con-
tains a folder named “TeXfonts” which in turn contains files named “Fontmap” and
“Fontmap.cmr” and a folder named “Bruno-Arnold”. This “BA” folder contains
correspondence about a problem in earlier distributions of the Ghostscript package
which is fixed in this version. For details, see later sections of this document.

e “TUG” folder with this document
e OldStyle folder with necessary files to make a legacy form of the package
e Empty “Raw Binaries” folder

To construct the package, download the latest Ghostscript tar file from http://www.
ghostscript.com/ and put the file in the “source” folder. Then unzip this file; the result-
ing folder is the source code for Ghostscript.



TUG-GHOSTSCRIPT 3

4. OVERVIEW

This folder contains an “About” folder giving an overview of the construction of the
Ghostscript package. You may want to read that document, because otherwise the compi-
lation steps below will seem unnecessarily baroque.

5. LEOPARD BINARIES

Warning: There is a bug in Ghostscript 9.07 which breaks Leopard PPC binaries. They
compile fine, but do not run. This bug was patched by Chris Liddell on the web; I don’t
know if the patch is now in Ghostscript. The patched file is included in this directory
as 0sz-r86-x86_64-gcc.h. It is only necessary to use the patched file when compiling on
Leopard PPC. Go to the directory “arch” in the Ghostscript source. This folder has three
files. Replace the file named osz-x86-186_64-gcc.h with the patched file.

Build Ghostscript on Leopard Intel and Leopard PPC. On each of these operating systems,
built a Ghostscript binary with X11 support, and a binary without X11 support. Before
building, make sure that Apple’s X11 package is installed on both systems.

We’'ll use Intel as an example. Move a copy of the Ghostscript source code to the Intel
Leopard system. Using Terminal, switch directories to /usr and rename local to local-temp.
Then in the Ghostscript source code type

make clean

LDFLAGS="-L/usr/1lib" ./configure
make

sudo make install

Use the Finder’s “Go” menu to go to /usr/local/bin and copy gs to the desktop. Rename
it gs-X11-Intel. Next go to /usr and

sudo rm -R local
sudo mv X11R6 X11R6-temp

If there is a folder named X11, rename it as well. Then rebuild Ghostscript as above, move
gs in /usr/local/bin to the desktop, and name it gs-noX11-Intel.

Finally, clean up /usr by moving /usr/local-temp back to /usr/local, moving X11R6-temp
to X11R6, and similarly for X11 if it existed.

Repeat this entire process on PowerPC Leopard, calling the resulting binaries gs-X11-PPC
and gs-noX11-PPC.

Finally, move the four resulting binaries to the Binaries/10.5 directory of this MacTeX
Ghostscript build tree.



TUG-GHOSTSCRIPT 4

6. SNOW LEOPARD BINARY

Build two binaries on Snow Leopard (Intel only, of course), one with X11 support and one
without. Note that X11 is installed by default on Snow Leopard and Lion, but not on
Mountain Lion, so the 64 bit binary without X11 support is needed.

Repeat the steps in the Leopard build described earlier. In the actual compile step on Snow
Leopard, the LDFLAGS flag is not needed, so the compile instructions become

make clean
./configure

make

sudo make install

Call the resulting binaries gs-X11-64 and gs-noX11-64. Move the resulting binaries to the
Binaries/10.6 directory of this MacTeX Ghostscript build tree.

7. PurTiNG IT ALL TOGETHER

On whatever platform you use to build install packages, switch to the MacTeX build tree’s
Ghostscript folder; change to the Binaries directory, and type

sh liposcript

This will lipo the various binaries together. The script will automatically throw away old
copies and then create new copies of gs-noX11, gs-X11, gs-X11-64Bit and gs-noX11-64Bit.
Leave them in the directories where the liposcript put them. The first two binaries are
universal with 32 bit code for PPC and Intel. The last two binaries are universal with Intel
32 bit and 64 bit code. The 32 bit code is required because Snow Leopard runs on early
Intel machines without 64 bit processors.

Next edit the file “buildPackage.sh” to reflect the current version of Ghostscript. Currently
this file contains “9.06”, referring to folders installed by Ghostscript. Change this number
appropriately.

Next make sure the latest TeX Live is installed on this machine and type
sh buildTeXfonts.sh

This step will create a folder named “fonts” in “source/TeXfonts/ containing symbolic
links to the pfb font files in this latest TeX Live distribution.

Next change directory to /usr and rename /usr/local to /usr/local-temp. Copy the Ghostscript
source folder to your machine and install Ghostscript using

make clean
./configure
make



TUG-GHOSTSCRIPT 5

sudo make install

In this step we are not interested in the binaries, but instead in the support files for
Ghostscript.

Then change to the main Ghostscript directory of the MacTeX build system and type
sudo sh buildPackage.sh

This step will copy Ghostscript support files from /usr/local to the root directory of Mac-
TeX’s Ghostscript build folder. It will add the binaries constructed earlier, add “Fontmap”
and “Fontmap.cmr” to root/usr/local/share/ghostscript/9.06 /Resource/Init and add the
symbolic links to .pfb fonts to root/usr/local/share/ghostscript/9.06 /Resource/Font. Fi-
nally, it will build the final root folder containing software to be installed, and make sure
permissions are correct in this folder.

To finish, remove /usr/local and move /usr/local-temp back to /usr/local.

8. ADJUSTING FILES IN THE GHOSTSCRIPT INSTALL PACKAGE

This package contains some files which are shown to the user during installation. One of
these files is a brief Welcome document, a second is a longer ReadMe file, and a third
shows the License for the code. After the Ghostscript install package is constructed, you
may need to revise these documents. For example, the Welcome document contains the
release date. Usually TeX Live authors are overly ambitious and predict a release several
months earlier than it actually occurs, and you’ll need to change the release date from time
to time.

None of these files appear in MacTeX, but they appear if you make an optional Ghostscript
Install Package.

9. MAKING A STANDALONE INSTALL PACKAGE
This step is optional. If you want an install package containing only Ghostscript, construct
it as follows.

This section of the MacTeX package contains a Packagemaker project file named “Ghostscript-
Build”. Edit this project file using the GUI interface of PackageBuilder as follows:

(1) Click the top item on the left. The right side will change to a view with three tabs.
First select the Configuration tab. Edit so

(a) Title: “Ghostscript-9.06’
(b) User Sees: Easy Install Only

(c) Install Destination: System volume



TUG-GHOSTSCRIPT 6

(d) Certificate: Leave this blank. You might think that putting a certificate name
here would correctly sign the package, but experiments show that it does not.
The package needs to be signed after it is constructed.

(e) Description: Empty
(2) The Requirements and Actions tab entries for the top item can be left blank

(3) Click the entry in the Contents section on the left. The right side will change to a
view with two tabs. Select the Configuration tab. Edit so

(a) Choice Name: Ghostscript-9.06
(b) Identifier: choicel

c) Initial State: Selected and Enabled

(
(d) Destiination: Leave Blank

)
)
)
(e) Tooltip: Leave Blank

(f) Description: Leave Blank
(4) The Requirements tab entries for this contents item can be left blank

(5) Open the Ghostscript-9.06 entry in the bottom left column. This item should show
a “local” directory, obtained by dragging root/user/local to the left column. The
right side will change to a view with four tabs. The item under the Components
tab can be left blank. It is not necessary to edit the items under the Contents tab.
The items under the Configuration tab should be edited as follows:

(a) Imstall: root/usr/local (The item on the right should have selected “Relative
To Project”)

(b) Destination: /usr/local (The item on the right should have selected “Relative
To Project”)

(¢) Do not check “Allow custom location”

(d) Patch: No patch root selected

f) Package Version: 1.0

)
)
(e) Package Identifier: org.tug.mactex.ghostscript9.06
(f)
) Restart Action: None

)

(s
(h) Check “Require admin authentication”

(i) PackageLocation: Self-Contained
The items under the Scripts tab should be edited to read



TUG-GHOSTSCRIPT 7

(a) Scripts directory: scripts (The item on the right should have selected “Relative
To Project”)

(b) Preinstall: Leave Blank

(c) Postinstall: scripts/postinstall (The item on the right should have selected
“Relative To Project”)

After verifying all these items, build the install package by clicking the “Build” icon. When
asked to select a name, choose “Ghostscript-9.06-Temp”. After the package has been made,
sign it by executing the following line in Terminal:

sh signPackage.sh
This script simply calls

productsign --sign "Developer ID Installer: Richard Koch" old-name new-name
where “old-name” is Ghostscript-9.06-Temp.pkg and “new-name” is Ghostscript-9.06.pkg

Packagemaker will show a panel with a large number of warnings while building Ghostscript.
Inspection of these warnings will confirm that all complain of permission errors in the root
folder, and all complaints involve permissions assigned to symbolic links. I believe the
current permissions are correct; they are certainly the same as permissions set by TeX Live
when its binaries are created. So I ignore the warnings.



