/***** * runmath.in * * Runtime functions for math operations. * *****/ pair => primPair() realarray* => realArray() pairarray* => pairArray() #include #include "mathop.h" #include "path.h" using namespace camp; typedef array realarray; typedef array pairarray; using types::realArray; using types::pairArray; using run::integeroverflow; using vm::frame; const char *invalidargument="invalid argument"; extern uint32_t CLZ(uint32_t a); // Return the factorial of a non-negative integer using a lookup table. Int factorial(Int n) { static Int *table; static Int size=0; if(size == 0) { Int f=1; size=2; while(f <= Int_MAX/size) f *= (size++); table=new Int[size]; table[0]=f=1; for(Int i=1; i < size; ++i) { f *= i; table[i]=f; } } if(n >= size) integeroverflow(0); return table[n]; } static inline Int Round(double x) { return Int(x+((x >= 0) ? 0.5 : -0.5)); } inline Int sgn(double x) { return (x > 0.0 ? 1 : (x < 0.0 ? -1 : 0)); } static bool initializeRandom=true; void Srand(Int seed) { initializeRandom=false; const int n=256; static char state[n]; initstate(intcast(seed),state,n); } // Autogenerated routines: real ^(real x, Int y) { return pow(x,y); } pair ^(pair z, Int y) { return pow(z,y); } Int quotient(Int x, Int y) { if(y == 0) dividebyzero(); if(y == -1) return Negate(x); // Implementation-independent definition of integer division: round down return (x-portableMod(x,y))/y; } Int abs(Int x) { return Abs(x); } Int sgn(real x) { return sgn(x); } Int rand() { if(initializeRandom) Srand(1); return random(); } void srand(Int seed) { Srand(seed); } // a random number uniformly distributed in the interval [0,1] real unitrand() { return ((real) random())/RAND_MAX; } Int ceil(real x) { return Intcast(ceil(x)); } Int floor(real x) { return Intcast(floor(x)); } Int round(real x) { if(validInt(x)) return Round(x); integeroverflow(0); } Int Ceil(real x) { return Ceil(x); } Int Floor(real x) { return Floor(x); } Int Round(real x) { return Round(Intcap(x)); } real fmod(real x, real y) { if (y == 0.0) dividebyzero(); return fmod(x,y); } real atan2(real y, real x) { return atan2(y,x); } real hypot(real x, real y) { return hypot(x,y); } real remainder(real x, real y) { return remainder(x,y); } real Jn(Int n, real x) { return jn(n,x); } real Yn(Int n, real x) { return yn(n,x); } real erf(real x) { return erf(x); } real erfc(real x) { return erfc(x); } Int factorial(Int n) { if(n < 0) error(invalidargument); return factorial(n); } Int choose(Int n, Int k) { if(n < 0 || k < 0 || k > n) error(invalidargument); Int f=1; Int r=n-k; for(Int i=n; i > r; --i) { if(f > Int_MAX/i) integeroverflow(0); f=(f*i)/(n-i+1); } return f; } real gamma(real x) { #ifdef HAVE_TGAMMA return tgamma(x); #else real lg = lgamma(x); return signgam*exp(lg); #endif } realarray *quadraticroots(real a, real b, real c) { quadraticroots q(a,b,c); array *roots=new array(q.roots); if(q.roots >= 1) (*roots)[0]=q.t1; if(q.roots == 2) (*roots)[1]=q.t2; return roots; } pairarray *quadraticroots(explicit pair a, explicit pair b, explicit pair c) { Quadraticroots q(a,b,c); array *roots=new array(q.roots); if(q.roots >= 1) (*roots)[0]=q.z1; if(q.roots == 2) (*roots)[1]=q.z2; return roots; } realarray *cubicroots(real a, real b, real c, real d) { cubicroots q(a,b,c,d); array *roots=new array(q.roots); if(q.roots >= 1) (*roots)[0]=q.t1; if(q.roots >= 2) (*roots)[1]=q.t2; if(q.roots == 3) (*roots)[2]=q.t3; return roots; } // Logical operations bool !(bool b) { return !b; } bool :boolMemEq(frame *a, frame *b) { return a == b; } bool :boolMemNeq(frame *a, frame *b) { return a != b; } bool :boolFuncEq(callable *a, callable *b) { return a->compare(b); } bool :boolFuncNeq(callable *a, callable *b) { return !(a->compare(b)); } // Bit operations Int AND(Int a, Int b) { return a & b; } Int OR(Int a, Int b) { return a | b; } Int XOR(Int a, Int b) { return a ^ b; } Int NOT(Int a) { return ~a; } Int CLZ(Int a) { if((unsignedInt) a > 0xFFFFFFFF) return -1; return CLZ((uint32_t) a); } Int CTZ(Int a) { if((unsignedInt) a > 0xFFFFFFFF) return -1; #ifdef __GNUC__ return __builtin_ctz(a); #else // find the number of trailing zeros in a 32-bit number static const int MultiplyDeBruijnBitPosition[32] = { 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 }; return MultiplyDeBruijnBitPosition[((unsignedInt)((a & -a) * 0x077CB531U)) >> 27]; #endif }