/***** Autogenerated from runmath.in; changes will be overwritten *****/ #line 1 "runtimebase.in" /***** * runtimebase.in * Andy Hammerlindl 2009/07/28 * * Common declarations needed for all code-generating .in files. * *****/ #line 1 "runmath.in" /***** * runmath.in * * Runtime functions for math operations. * *****/ #line 1 "runtimebase.in" #include "stack.h" #include "types.h" #include "builtin.h" #include "entry.h" #include "errormsg.h" #include "array.h" #include "triple.h" #include "callable.h" #include "opsymbols.h" using vm::stack; using vm::error; using vm::array; using vm::read; using vm::callable; using types::formal; using types::function; using camp::triple; #define PRIMITIVE(name,Name,asyName) using types::prim##Name; #include #undef PRIMITIVE typedef double real; void unused(void *); namespace run { array *copyArray(array *a); array *copyArray2(array *a); array *copyArray3(array *a); double *copyTripleArray2Components(array *a, size_t &N, GCPlacement placement=NoGC); triple *copyTripleArray2C(array *a, size_t &N, GCPlacement placement=NoGC); } function *realRealFunction(); #define CURRENTPEN processData().currentpen #line 12 "runmath.in" #include #include "mathop.h" #include "path.h" using namespace camp; typedef array realarray; typedef array pairarray; using types::realArray; using types::pairArray; using run::integeroverflow; using vm::frame; const char *invalidargument="invalid argument"; extern uint32_t CLZ(uint32_t a); // Return the factorial of a non-negative integer using a lookup table. Int factorial(Int n) { static Int *table; static Int size=0; if(size == 0) { Int f=1; size=2; while(f <= Int_MAX/size) f *= (size++); table=new Int[size]; table[0]=f=1; for(Int i=1; i < size; ++i) { f *= i; table[i]=f; } } if(n >= size) integeroverflow(0); return table[n]; } static inline Int Round(double x) { return Int(x+((x >= 0) ? 0.5 : -0.5)); } inline Int sgn(double x) { return (x > 0.0 ? 1 : (x < 0.0 ? -1 : 0)); } static bool initializeRandom=true; void Srand(Int seed) { initializeRandom=false; const int n=256; static char state[n]; initstate(intcast(seed),state,n); } // Autogenerated routines: #ifndef NOSYM #include "runmath.symbols.h" #endif namespace run { #line 75 "runmath.in" // real ^(real x, Int y); void gen_runmath0(stack *Stack) { Int y=vm::pop(Stack); real x=vm::pop(Stack); #line 76 "runmath.in" {Stack->push(pow(x,y)); return;} } #line 80 "runmath.in" // pair ^(pair z, Int y); void gen_runmath1(stack *Stack) { Int y=vm::pop(Stack); pair z=vm::pop(Stack); #line 81 "runmath.in" {Stack->push(pow(z,y)); return;} } #line 85 "runmath.in" // Int quotient(Int x, Int y); void gen_runmath2(stack *Stack) { Int y=vm::pop(Stack); Int x=vm::pop(Stack); #line 86 "runmath.in" if(y == 0) dividebyzero(); if(y == -1) {Stack->push(Negate(x)); return;} // Implementation-independent definition of integer division: round down {Stack->push((x-portableMod(x,y))/y); return;} } #line 93 "runmath.in" // Int abs(Int x); void gen_runmath3(stack *Stack) { Int x=vm::pop(Stack); #line 94 "runmath.in" {Stack->push(Abs(x)); return;} } #line 98 "runmath.in" // Int sgn(real x); void gen_runmath4(stack *Stack) { real x=vm::pop(Stack); #line 99 "runmath.in" {Stack->push(sgn(x)); return;} } #line 103 "runmath.in" // Int rand(); void gen_runmath5(stack *Stack) { #line 104 "runmath.in" if(initializeRandom) Srand(1); {Stack->push(random()); return;} } #line 110 "runmath.in" // void srand(Int seed); void gen_runmath6(stack *Stack) { Int seed=vm::pop(Stack); #line 111 "runmath.in" Srand(seed); } // a random number uniformly distributed in the interval [0,1] #line 116 "runmath.in" // real unitrand(); void gen_runmath7(stack *Stack) { #line 117 "runmath.in" {Stack->push(((real) random())/RANDOM_MAX); return;} } #line 121 "runmath.in" // Int ceil(real x); void gen_runmath8(stack *Stack) { real x=vm::pop(Stack); #line 122 "runmath.in" {Stack->push(Intcast(ceil(x))); return;} } #line 126 "runmath.in" // Int floor(real x); void gen_runmath9(stack *Stack) { real x=vm::pop(Stack); #line 127 "runmath.in" {Stack->push(Intcast(floor(x))); return;} } #line 131 "runmath.in" // Int round(real x); void gen_runmath10(stack *Stack) { real x=vm::pop(Stack); #line 132 "runmath.in" if(validInt(x)) {Stack->push(Round(x)); return;} integeroverflow(0); } #line 137 "runmath.in" // Int Ceil(real x); void gen_runmath11(stack *Stack) { real x=vm::pop(Stack); #line 138 "runmath.in" {Stack->push(Ceil(x)); return;} } #line 142 "runmath.in" // Int Floor(real x); void gen_runmath12(stack *Stack) { real x=vm::pop(Stack); #line 143 "runmath.in" {Stack->push(Floor(x)); return;} } #line 147 "runmath.in" // Int Round(real x); void gen_runmath13(stack *Stack) { real x=vm::pop(Stack); #line 148 "runmath.in" {Stack->push(Round(Intcap(x))); return;} } #line 152 "runmath.in" // real fmod(real x, real y); void gen_runmath14(stack *Stack) { real y=vm::pop(Stack); real x=vm::pop(Stack); #line 153 "runmath.in" if (y == 0.0) dividebyzero(); {Stack->push(fmod(x,y)); return;} } #line 158 "runmath.in" // real atan2(real y, real x); void gen_runmath15(stack *Stack) { real x=vm::pop(Stack); real y=vm::pop(Stack); #line 159 "runmath.in" {Stack->push(atan2(y,x)); return;} } #line 163 "runmath.in" // real hypot(real x, real y); void gen_runmath16(stack *Stack) { real y=vm::pop(Stack); real x=vm::pop(Stack); #line 164 "runmath.in" {Stack->push(hypot(x,y)); return;} } #line 168 "runmath.in" // real remainder(real x, real y); void gen_runmath17(stack *Stack) { real y=vm::pop(Stack); real x=vm::pop(Stack); #line 169 "runmath.in" {Stack->push(remainder(x,y)); return;} } #line 173 "runmath.in" // real Jn(Int n, real x); void gen_runmath18(stack *Stack) { real x=vm::pop(Stack); Int n=vm::pop(Stack); #line 174 "runmath.in" {Stack->push(jn(n,x)); return;} } #line 178 "runmath.in" // real Yn(Int n, real x); void gen_runmath19(stack *Stack) { real x=vm::pop(Stack); Int n=vm::pop(Stack); #line 179 "runmath.in" {Stack->push(yn(n,x)); return;} } #line 183 "runmath.in" // real erf(real x); void gen_runmath20(stack *Stack) { real x=vm::pop(Stack); #line 184 "runmath.in" {Stack->push(erf(x)); return;} } #line 188 "runmath.in" // real erfc(real x); void gen_runmath21(stack *Stack) { real x=vm::pop(Stack); #line 189 "runmath.in" {Stack->push(erfc(x)); return;} } #line 193 "runmath.in" // Int factorial(Int n); void gen_runmath22(stack *Stack) { Int n=vm::pop(Stack); #line 194 "runmath.in" if(n < 0) error(invalidargument); {Stack->push(factorial(n)); return;} } #line 198 "runmath.in" // Int choose(Int n, Int k); void gen_runmath23(stack *Stack) { Int k=vm::pop(Stack); Int n=vm::pop(Stack); #line 199 "runmath.in" if(n < 0 || k < 0 || k > n) error(invalidargument); Int f=1; Int r=n-k; for(Int i=n; i > r; --i) { if(f > Int_MAX/i) integeroverflow(0); f=(f*i)/(n-i+1); } {Stack->push(f); return;} } #line 209 "runmath.in" // real gamma(real x); void gen_runmath24(stack *Stack) { real x=vm::pop(Stack); #line 210 "runmath.in" #ifdef HAVE_TGAMMA {Stack->push(tgamma(x)); return;} #else real lg = lgamma(x); {Stack->push(signgam*exp(lg)); return;} #endif } #line 219 "runmath.in" // realarray* quadraticroots(real a, real b, real c); void gen_runmath25(stack *Stack) { real c=vm::pop(Stack); real b=vm::pop(Stack); real a=vm::pop(Stack); #line 220 "runmath.in" quadraticroots q(a,b,c); array *roots=new array(q.roots); if(q.roots >= 1) (*roots)[0]=q.t1; if(q.roots == 2) (*roots)[1]=q.t2; {Stack->push(roots); return;} } #line 228 "runmath.in" // pairarray* quadraticroots(explicit pair a, explicit pair b, explicit pair c); void gen_runmath26(stack *Stack) { pair c=vm::pop(Stack); pair b=vm::pop(Stack); pair a=vm::pop(Stack); #line 229 "runmath.in" Quadraticroots q(a,b,c); array *roots=new array(q.roots); if(q.roots >= 1) (*roots)[0]=q.z1; if(q.roots == 2) (*roots)[1]=q.z2; {Stack->push(roots); return;} } #line 237 "runmath.in" // realarray* cubicroots(real a, real b, real c, real d); void gen_runmath27(stack *Stack) { real d=vm::pop(Stack); real c=vm::pop(Stack); real b=vm::pop(Stack); real a=vm::pop(Stack); #line 238 "runmath.in" cubicroots q(a,b,c,d); array *roots=new array(q.roots); if(q.roots >= 1) (*roots)[0]=q.t1; if(q.roots >= 2) (*roots)[1]=q.t2; if(q.roots == 3) (*roots)[2]=q.t3; {Stack->push(roots); return;} } // Logical operations #line 249 "runmath.in" // bool !(bool b); void gen_runmath28(stack *Stack) { bool b=vm::pop(Stack); #line 250 "runmath.in" {Stack->push(!b); return;} } #line 255 "runmath.in" void boolMemEq(stack *Stack) { frame * b=vm::pop(Stack); frame * a=vm::pop(Stack); #line 256 "runmath.in" {Stack->push(a == b); return;} } #line 260 "runmath.in" void boolMemNeq(stack *Stack) { frame * b=vm::pop(Stack); frame * a=vm::pop(Stack); #line 261 "runmath.in" {Stack->push(a != b); return;} } #line 265 "runmath.in" void boolFuncEq(stack *Stack) { callable * b=vm::pop(Stack); callable * a=vm::pop(Stack); #line 266 "runmath.in" {Stack->push(a->compare(b)); return;} } #line 270 "runmath.in" void boolFuncNeq(stack *Stack) { callable * b=vm::pop(Stack); callable * a=vm::pop(Stack); #line 271 "runmath.in" {Stack->push(!(a->compare(b))); return;} } // Bit operations #line 277 "runmath.in" // Int AND(Int a, Int b); void gen_runmath33(stack *Stack) { Int b=vm::pop(Stack); Int a=vm::pop(Stack); #line 278 "runmath.in" {Stack->push(a & b); return;} } #line 283 "runmath.in" // Int OR(Int a, Int b); void gen_runmath34(stack *Stack) { Int b=vm::pop(Stack); Int a=vm::pop(Stack); #line 284 "runmath.in" {Stack->push(a | b); return;} } #line 288 "runmath.in" // Int XOR(Int a, Int b); void gen_runmath35(stack *Stack) { Int b=vm::pop(Stack); Int a=vm::pop(Stack); #line 289 "runmath.in" {Stack->push(a ^ b); return;} } #line 293 "runmath.in" // Int NOT(Int a); void gen_runmath36(stack *Stack) { Int a=vm::pop(Stack); #line 294 "runmath.in" {Stack->push(~a); return;} } #line 298 "runmath.in" // Int CLZ(Int a); void gen_runmath37(stack *Stack) { Int a=vm::pop(Stack); #line 299 "runmath.in" if((uint32_t) a > 0xFFFFFFFF) {Stack->push(-1); return;} {Stack->push(CLZ((uint32_t) a)); return;} } #line 304 "runmath.in" // Int CTZ(Int a); void gen_runmath38(stack *Stack) { Int a=vm::pop(Stack); #line 305 "runmath.in" if((uint32_t) a > 0xFFFFFFFF) {Stack->push(-1); return;} #if __GNUC__ {Stack->push(__builtin_ctz(a)); return;} #else // find the number of trailing zeros in a 32-bit number static const int MultiplyDeBruijnBitPosition[32] = { 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 }; {Stack->push(MultiplyDeBruijnBitPosition[((uint32_t)((a & -a) * 0x077CB531U)) >> 27]); return;} #endif } } // namespace run namespace trans { void gen_runmath_venv(venv &ve) { #line 75 "runmath.in" addFunc(ve, run::gen_runmath0, primReal(), SYM_CARET, formal(primReal(), SYM(x), false, false), formal(primInt(), SYM(y), false, false)); #line 80 "runmath.in" addFunc(ve, run::gen_runmath1, primPair(), SYM_CARET, formal(primPair(), SYM(z), false, false), formal(primInt(), SYM(y), false, false)); #line 85 "runmath.in" addFunc(ve, run::gen_runmath2, primInt(), SYM(quotient), formal(primInt(), SYM(x), false, false), formal(primInt(), SYM(y), false, false)); #line 93 "runmath.in" addFunc(ve, run::gen_runmath3, primInt(), SYM(abs), formal(primInt(), SYM(x), false, false)); #line 98 "runmath.in" addFunc(ve, run::gen_runmath4, primInt(), SYM(sgn), formal(primReal(), SYM(x), false, false)); #line 103 "runmath.in" addFunc(ve, run::gen_runmath5, primInt(), SYM(rand)); #line 110 "runmath.in" addFunc(ve, run::gen_runmath6, primVoid(), SYM(srand), formal(primInt(), SYM(seed), false, false)); #line 115 "runmath.in" addFunc(ve, run::gen_runmath7, primReal(), SYM(unitrand)); #line 121 "runmath.in" addFunc(ve, run::gen_runmath8, primInt(), SYM(ceil), formal(primReal(), SYM(x), false, false)); #line 126 "runmath.in" addFunc(ve, run::gen_runmath9, primInt(), SYM(floor), formal(primReal(), SYM(x), false, false)); #line 131 "runmath.in" addFunc(ve, run::gen_runmath10, primInt(), SYM(round), formal(primReal(), SYM(x), false, false)); #line 137 "runmath.in" addFunc(ve, run::gen_runmath11, primInt(), SYM(Ceil), formal(primReal(), SYM(x), false, false)); #line 142 "runmath.in" addFunc(ve, run::gen_runmath12, primInt(), SYM(Floor), formal(primReal(), SYM(x), false, false)); #line 147 "runmath.in" addFunc(ve, run::gen_runmath13, primInt(), SYM(Round), formal(primReal(), SYM(x), false, false)); #line 152 "runmath.in" addFunc(ve, run::gen_runmath14, primReal(), SYM(fmod), formal(primReal(), SYM(x), false, false), formal(primReal(), SYM(y), false, false)); #line 158 "runmath.in" addFunc(ve, run::gen_runmath15, primReal(), SYM(atan2), formal(primReal(), SYM(y), false, false), formal(primReal(), SYM(x), false, false)); #line 163 "runmath.in" addFunc(ve, run::gen_runmath16, primReal(), SYM(hypot), formal(primReal(), SYM(x), false, false), formal(primReal(), SYM(y), false, false)); #line 168 "runmath.in" addFunc(ve, run::gen_runmath17, primReal(), SYM(remainder), formal(primReal(), SYM(x), false, false), formal(primReal(), SYM(y), false, false)); #line 173 "runmath.in" addFunc(ve, run::gen_runmath18, primReal(), SYM(Jn), formal(primInt(), SYM(n), false, false), formal(primReal(), SYM(x), false, false)); #line 178 "runmath.in" addFunc(ve, run::gen_runmath19, primReal(), SYM(Yn), formal(primInt(), SYM(n), false, false), formal(primReal(), SYM(x), false, false)); #line 183 "runmath.in" addFunc(ve, run::gen_runmath20, primReal(), SYM(erf), formal(primReal(), SYM(x), false, false)); #line 188 "runmath.in" addFunc(ve, run::gen_runmath21, primReal(), SYM(erfc), formal(primReal(), SYM(x), false, false)); #line 193 "runmath.in" addFunc(ve, run::gen_runmath22, primInt(), SYM(factorial), formal(primInt(), SYM(n), false, false)); #line 198 "runmath.in" addFunc(ve, run::gen_runmath23, primInt(), SYM(choose), formal(primInt(), SYM(n), false, false), formal(primInt(), SYM(k), false, false)); #line 209 "runmath.in" addFunc(ve, run::gen_runmath24, primReal(), SYM(gamma), formal(primReal(), SYM(x), false, false)); #line 219 "runmath.in" addFunc(ve, run::gen_runmath25, realArray(), SYM(quadraticroots), formal(primReal(), SYM(a), false, false), formal(primReal(), SYM(b), false, false), formal(primReal(), SYM(c), false, false)); #line 228 "runmath.in" addFunc(ve, run::gen_runmath26, pairArray(), SYM(quadraticroots), formal(primPair(), SYM(a), false, true), formal(primPair(), SYM(b), false, true), formal(primPair(), SYM(c), false, true)); #line 237 "runmath.in" addFunc(ve, run::gen_runmath27, realArray(), SYM(cubicroots), formal(primReal(), SYM(a), false, false), formal(primReal(), SYM(b), false, false), formal(primReal(), SYM(c), false, false), formal(primReal(), SYM(d), false, false)); #line 247 "runmath.in" addFunc(ve, run::gen_runmath28, primBoolean(), SYM_LOGNOT, formal(primBoolean(), SYM(b), false, false)); #line 255 "runmath.in" REGISTER_BLTIN(run::boolMemEq,"boolMemEq"); #line 260 "runmath.in" REGISTER_BLTIN(run::boolMemNeq,"boolMemNeq"); #line 265 "runmath.in" REGISTER_BLTIN(run::boolFuncEq,"boolFuncEq"); #line 270 "runmath.in" REGISTER_BLTIN(run::boolFuncNeq,"boolFuncNeq"); #line 275 "runmath.in" addFunc(ve, run::gen_runmath33, primInt(), SYM(AND), formal(primInt(), SYM(a), false, false), formal(primInt(), SYM(b), false, false)); #line 283 "runmath.in" addFunc(ve, run::gen_runmath34, primInt(), SYM(OR), formal(primInt(), SYM(a), false, false), formal(primInt(), SYM(b), false, false)); #line 288 "runmath.in" addFunc(ve, run::gen_runmath35, primInt(), SYM(XOR), formal(primInt(), SYM(a), false, false), formal(primInt(), SYM(b), false, false)); #line 293 "runmath.in" addFunc(ve, run::gen_runmath36, primInt(), SYM(NOT), formal(primInt(), SYM(a), false, false)); #line 298 "runmath.in" addFunc(ve, run::gen_runmath37, primInt(), SYM(CLZ), formal(primInt(), SYM(a), false, false)); #line 304 "runmath.in" addFunc(ve, run::gen_runmath38, primInt(), SYM(CTZ), formal(primInt(), SYM(a), false, false)); } } // namespace trans