/***** * runarray.in * * Runtime functions for array operations. * *****/ pair => primPair() triple => primTriple() boolarray* => booleanArray() Intarray* => IntArray() Intarray2* => IntArray2() realarray* => realArray() realarray2* => realArray2() pairarray* => pairArray() pairarray2* => pairArray2() triplearray2* => tripleArray2() callableReal* => realRealFunction() #include "array.h" #include "arrayop.h" #include "triple.h" #include "path3.h" #include "Delaunay.h" #include "glrender.h" #ifdef HAVE_LIBFFTW3 #include "fftw++.h" #endif using namespace camp; using namespace vm; namespace run { extern pair zero; } typedef array boolarray; typedef array Intarray; typedef array Intarray2; typedef array realarray; typedef array realarray2; typedef array pairarray; typedef array pairarray2; typedef array triplearray2; using types::booleanArray; using types::IntArray; using types::IntArray2; using types::realArray; using types::realArray2; using types::pairArray; using types::pairArray2; using types::tripleArray2; typedef callable callableReal; void outOfBounds(const char *op, size_t len, Int n) { ostringstream buf; buf << op << " array of length " << len << " with out-of-bounds index " << n; error(buf); } inline item& arrayRead(array *a, Int n) { size_t len=checkArray(a); bool cyclic=a->cyclic(); if(cyclic && len > 0) n=imod(n,len); else if(n < 0 || n >= (Int) len) outOfBounds("reading",len,n); return (*a)[(unsigned) n]; } // Helper function to create deep arrays. static array* deepArray(Int depth, Int *dims) { assert(depth > 0); if (depth == 1) { return new array(dims[0]); } else { Int length = dims[0]; depth--; dims++; array *a = new array(length); for (Int index = 0; index < length; index++) { (*a)[index] = deepArray(depth, dims); } return a; } } namespace run { array *Identity(Int n) { size_t N=(size_t) n; array *c=new array(N); for(size_t i=0; i < N; ++i) { array *ci=new array(N); (*c)[i]=ci; for(size_t j=0; j < N; ++j) (*ci)[j]=0.0; (*ci)[i]=1.0; } return c; } } static const char *incommensurate="Incommensurate matrices"; static const char *singular="Singular matrix"; static const char *invalidarraylength="Invalid array length: "; static size_t *pivot,*Row,*Col; bound_double *bounddouble(int N) { if(N == 16) return bound; if(N == 10) return boundtri; ostringstream buf; buf << invalidarraylength << " " << N; error(buf); return NULL; } bound_triple *boundtriple(int N) { if(N == 16) return bound; if(N == 10) return boundtri; ostringstream buf; buf << invalidarraylength << " " << N; error(buf); return NULL; } static inline void inverseAllocate(size_t n) { pivot=new size_t[n]; Row=new size_t[n]; Col=new size_t[n]; } static inline void inverseDeallocate() { delete[] pivot; delete[] Row; delete[] Col; } namespace run { array *copyArray(array *a) { size_t size=checkArray(a); array *c=new array(size); for(size_t i=0; i < size; i++) (*c)[i]=(*a)[i]; return c; } array *copyArray2(array *a) { size_t size=checkArray(a); array *c=new array(size); for(size_t i=0; i < size; i++) { array *ai=read(a,i); size_t aisize=checkArray(ai); array *ci=new array(aisize); (*c)[i]=ci; for(size_t j=0; j < aisize; j++) (*ci)[j]=(*ai)[j]; } return c; } double *copyTripleArray2Components(array *a, size_t &N, GCPlacement placement) { size_t n=checkArray(a); N=0; for(size_t i=0; i < n; i++) N += checkArray(read(a,i)); double *A=(placement == NoGC) ? new double [3*N] : new(placement) double[3*N]; double *p=A; for(size_t i=0; i < n; i++) { array *ai=read(a,i); size_t m=checkArray(ai); for(size_t j=0; j < m; j++) { triple v=read(ai,j); *p=v.getx(); *(p+N)=v.gety(); *(p+2*N)=v.getz(); ++p; } } return A; } triple *copyTripleArray2C(array *a, size_t &N, GCPlacement placement) { size_t n=checkArray(a); N=0; for(size_t i=0; i < n; i++) N += checkArray(read(a,i)); triple *A=(placement == NoGC) ? new triple [N] : new(placement) triple[N]; triple *p=A; for(size_t i=0; i < n; i++) { array *ai=read(a,i); size_t m=checkArray(ai); for(size_t j=0; j < m; j++) *(p++)=read(ai,j); } return A; } triple operator *(const array& t, const triple& v) { size_t n=checkArray(&t); if(n != 4) error(incommensurate); array *t0=read(t,0); array *t1=read(t,1); array *t2=read(t,2); array *t3=read(t,3); if(checkArray(t0) != 4 || checkArray(t1) != 4 || checkArray(t2) != 4 || checkArray(t3) != 4) error(incommensurate); double x=v.getx(); double y=v.gety(); double z=v.getz(); double f=read(t3,0)*x+read(t3,1)*y+read(t3,2)*z+ read(t3,3); if(f == 0.0) run::dividebyzero(); f=1.0/f; return triple((read(t0,0)*x+read(t0,1)*y+read(t0,2)*z+ read(t0,3))*f, (read(t1,0)*x+read(t1,1)*y+read(t1,2)*z+ read(t1,3))*f, (read(t2,0)*x+read(t2,1)*y+read(t2,2)*z+ read(t2,3))*f); } template array *mult(array *a, array *b) { size_t n=checkArray(a); size_t nb=checkArray(b); size_t na0=n == 0 ? 0 : checkArray(read(a,0)); if(na0 != nb) error(incommensurate); size_t nb0=nb == 0 ? 0 : checkArray(read(b,0)); array *c=new array(n); T *A,*B; copyArray2C(A,a,false); copyArray2C(B,b,false); for(size_t i=0; i < n; ++i) { T *Ai=A+i*nb; array *ci=new array(nb0); (*c)[i]=ci; for(size_t j=0; j < nb0; ++j) { T sum=T(); size_t kj=j; for(size_t k=0; k < nb; ++k, kj += nb0) sum += Ai[k]*B[kj]; (*ci)[j]=sum; } } delete[] B; delete[] A; return c; } // Compute transpose(A)*A where A is an n x m matrix. template array *AtA(array *a) { size_t n=checkArray(a); size_t m=n == 0 ? 0 : checkArray(read(a,0)); array *c=new array(m); T *A; copyArray2C(A,a,false); for(size_t i=0; i < m; ++i) { array *ci=new array(m); (*c)[i]=ci; for(size_t j=0; j < m; ++j) { T sum=T(); size_t kj=j; size_t ki=i; for(size_t k=0; k < n; ++k, kj += m, ki += m) sum += A[ki]*A[kj]; (*ci)[j]=sum; } } delete[] A; return c; } double norm(double *a, size_t n) { if(n == 0) return 0.0; double M=fabs(a[0]); for(size_t i=1; i < n; ++i) M=::max(M,fabs(a[i])); return M; } double norm(triple *a, size_t n) { if(n == 0) return 0.0; double M=a[0].abs2(); for(size_t i=1; i < n; ++i) M=::max(M,a[i].abs2()); return sqrt(M); } // Transpose an n x n matrix in place. void transpose(double *a, size_t n) { for(size_t i=1; i < n; i++) { for(size_t j=0; j < i; j++) { size_t ij=n*i+j; size_t ji=n*j+i; double temp=a[ij]; a[ij]=a[ji]; a[ji]=temp; } } } // Invert an n x n array in place. void inverse(double *a, size_t n) { inverseAllocate(n); for(size_t i=0; i < n; i++) pivot[i]=0; size_t col=0, row=0; // This is the main loop over the columns to be reduced. for(size_t i=0; i < n; i++) { real big=0.0; // This is the outer loop of the search for a pivot element. for(size_t j=0; j < n; j++) { double *aj=a+n*j; if(pivot[j] != 1) { for(size_t k=0; k < n; k++) { if(pivot[k] == 0) { real temp=fabs(aj[k]); if(temp >= big) { big=temp; row=j; col=k; } } else if(pivot[k] > 1) { inverseDeallocate(); error(singular); } } } } ++(pivot[col]); // Interchange rows, if needed, to put the pivot element on the diagonal. double *acol=a+n*col; if(row != col) { double *arow=a+n*row; for(size_t k=0; k < n; k++) { real temp=arow[k]; arow[k]=acol[k]; acol[k]=temp; } } Row[i]=row; Col[i]=col; // Divide the pivot row by the pivot element. real denom=acol[col]; if(denom == 0.0) { inverseDeallocate(); error(singular); } real pivinv=1.0/denom; acol[col]=1.0; for(size_t k=0; k < n; k++) acol[k]=acol[k]*pivinv; // Reduce all rows except for the pivoted one. for(size_t k=0; k < n; k++) { if(k != col) { double *ak=a+n*k; real akcol=ak[col]; ak[col]=0.0; for(size_t j=0; j < n; j++) ak[j] -= acol[j]*akcol; } } } // Unscramble the inverse matrix in view of the column interchanges. for(size_t k=n; k > 0;) { k--; size_t r=Row[k]; size_t c=Col[k]; if(r != c) { for(size_t j=0; j < n; j++) { double *aj=a+n*j; real temp=aj[r]; aj[r]=aj[c]; aj[c]=temp; } } } inverseDeallocate(); } } callable *Func; stack *FuncStack; double wrapFunction(double x) { FuncStack->push(x); Func->call(FuncStack); return pop(FuncStack); } callable *compareFunc; bool compareFunction(const vm::item& i, const vm::item& j) { FuncStack->push(i); FuncStack->push(j); compareFunc->call(FuncStack); return pop(FuncStack); } // Crout's algorithm for computing the LU decomposition of a square matrix. // cf. routine ludcmp (Press et al., Numerical Recipes, 1991). Int LUdecompose(double *a, size_t n, size_t* index, bool warn=true) { double *vv=new double[n]; Int swap=1; for(size_t i=0; i < n; ++i) { double big=0.0; double *ai=a+i*n; for(size_t j=0; j < n; ++j) { double temp=fabs(ai[j]); if(temp > big) big=temp; } if(big == 0.0) { delete[] vv; if(warn) error(singular); else return 0; } vv[i]=1.0/big; } for(size_t j=0; j < n; ++j) { for(size_t i=0; i < j; ++i) { double *ai=a+i*n; double sum=ai[j]; for(size_t k=0; k < i; ++k) { sum -= ai[k]*a[k*n+j]; } ai[j]=sum; } double big=0.0; size_t imax=j; for(size_t i=j; i < n; ++i) { double *ai=a+i*n; double sum=ai[j]; for(size_t k=0; k < j; ++k) sum -= ai[k]*a[k*n+j]; ai[j]=sum; double temp=vv[i]*fabs(sum); if(temp >= big) { big=temp; imax=i; } } double *aj=a+j*n; double *aimax=a+imax*n; if(j != imax) { for(size_t k=0; k < n; ++k) { double temp=aimax[k]; aimax[k]=aj[k]; aj[k]=temp; } swap *= -1; vv[imax]=vv[j]; } if(index) index[j]=imax; if(j != n) { double denom=aj[j]; if(denom == 0.0) { delete[] vv; if(warn) error(singular); else return 0; } for(size_t i=j+1; i < n; ++i) a[i*n+j] /= denom; } } delete[] vv; return swap; } namespace run { void dividebyzero(size_t i) { ostringstream buf; if(i > 0) buf << "array element " << i << ": "; buf << "Divide by zero"; error(buf); } void integeroverflow(size_t i) { ostringstream buf; if(i > 0) buf << "array element " << i << ": "; buf << "Integer overflow"; error(buf); } } // Autogenerated routines: // Create an empty array. array* :emptyArray() { return new array(0); } // Create a new array (technically a vector). // This array will be multidimensional. First the number of dimensions // is popped off the stack, followed by each dimension in reverse order. // The array itself is technically a one dimensional array of one // dimension arrays and so on. array* :newDeepArray(Int depth) { assert(depth > 0); Int *dims = new Int[depth]; for (Int index = depth-1; index >= 0; index--) { Int i=pop(Stack); if(i < 0) error("cannot create a negative length array"); dims[index]=i; } array *a=deepArray(depth, dims); delete[] dims; return a; } // Creates an array with elements already specified. First, the number // of elements is popped off the stack, followed by each element in // reverse order. array* :newInitializedArray(Int n) { assert(n >= 0); array *a = new array(n); for (Int index = n-1; index >= 0; index--) (*a)[index] = pop(Stack); return a; } // Similar to newInitializedArray, but after the n elements, append another // array to it. array* :newAppendedArray(array* tail, Int n) { assert(n >= 0); array *a = new array(n); for (Int index = n-1; index >= 0; index--) (*a)[index] = pop(Stack); copy(tail->begin(), tail->end(), back_inserter(*a)); return a; } // Produce an array of n deep copies of value. // typeDepth is the true depth of the array determined at compile-time when the // operations for the array type are added. This typeDepth argument is // automatically pushed on the stack and is not visible to the user. array* :copyArrayValue(Int n, item value, Int depth=Int_MAX, Int typeDepth) { if(n < 0) error("cannot create a negative length array"); if(depth < 0) error("cannot copy to a negative depth"); if(depth > typeDepth) depth=typeDepth; return new array((size_t) n, value, depth); } // Deep copy of array. // typeDepth is the true depth of the array determined at compile-time when the // operations for the array type are added. This typeDepth argument is // automatically pushed on the stack and is not visible to the user. array* :copyArray(array *a, Int depth=Int_MAX, Int typeDepth) { if(depth < 0) error("cannot copy to a negative depth"); if(depth > typeDepth) depth=typeDepth; return a->copyToDepth(depth); } // Read an element from an array. Checks for initialization & bounds. item :arrayRead(array *a, Int n) { item& i=arrayRead(a,n); if (i.empty()) { ostringstream buf; buf << "read uninitialized value from array at index " << n; error(buf); } return i; } // Slice a substring from an array. item :arraySliceRead(array *a, Int left, Int right) { checkArray(a); return a->slice(left, right); } // Slice a substring from an array. This implements the cases a[i:] and a[:] // where the endpoint is not given, and assumed to be the length of the array. item :arraySliceReadToEnd(array *a, Int left) { size_t len=checkArray(a); return a->slice(left, (Int)len); } // Read an element from an array of arrays. Check bounds and initialize // as necessary. item :arrayArrayRead(array *a, Int n) { item& i=arrayRead(a,n); if (i.empty()) i=new array(0); return i; } // Write an element to an array. Increase size if necessary. // TODO: Add arrayWriteAndPop item :arrayWrite(array *a, Int n, item value) { size_t len=checkArray(a); bool cyclic=a->cyclic(); if(cyclic && len > 0) n=imod(n,len); else { if(cyclic) outOfBounds("writing cyclic",len,n); if(n < 0) outOfBounds("writing",len,n); if(len <= (size_t) n) a->resize(n+1); } (*a)[n] = value; return value; } array * :arraySliceWrite(array *dest, Int left, Int right, array *src) { checkArray(src); checkArray(dest); dest->setSlice(left, right, src); return src; } array * :arraySliceWriteToEnd(array *dest, Int left, array *src) { checkArray(src); size_t len=checkArray(dest); dest->setSlice(left, (Int) len, src); return src; } // Returns the length of an array. Int :arrayLength(array *a) { return (Int) checkArray(a); } // Returns an array of integers representing the keys of the array. array * :arrayKeys(array *a) { size_t size=checkArray(a); array *keys=new array(); for (size_t i=0; ipush((Int)i); } return keys; } // Return the cyclic flag for an array. bool :arrayCyclicFlag(array *a) { checkArray(a); return a->cyclic(); } bool :arraySetCyclicFlag(bool b, array *a) { checkArray(a); a->cyclic(b); return b; } // Check to see if an array element is initialized. bool :arrayInitializedHelper(Int n, array *a) { size_t len=checkArray(a); bool cyclic=a->cyclic(); if(cyclic && len > 0) n=imod(n,len); else if(n < 0 || n >= (Int) len) return false; item&i=(*a)[(unsigned) n]; return !i.empty(); } // Returns the initialize method for an array. callable* :arrayInitialized(array *a) { return new thunk(new bfunc(arrayInitializedHelper),a); } // The helper function for the cyclic method that sets the cyclic flag. void :arrayCyclicHelper(bool b, array *a) { checkArray(a); a->cyclic(b); } // Set the cyclic flag for an array. callable* :arrayCyclic(array *a) { return new thunk(new bfunc(arrayCyclicHelper),a); } // The helper function for the push method that does the actual operation. item :arrayPushHelper(item x, array *a) { checkArray(a); a->push(x); return x; } // Returns the push method for an array. callable* :arrayPush(array *a) { return new thunk(new bfunc(arrayPushHelper),a); } // The helper function for the append method that appends b to a. void :arrayAppendHelper(array *b, array *a) { checkArray(a); size_t size=checkArray(b); for(size_t i=0; i < size; i++) a->push((*b)[i]); } // Returns the append method for an array. callable* :arrayAppend(array *a) { return new thunk(new bfunc(arrayAppendHelper),a); } // The helper function for the pop method. item :arrayPopHelper(array *a) { size_t asize=checkArray(a); if(asize == 0) error("cannot pop element from empty array"); return a->pop(); } // Returns the pop method for an array. callable* :arrayPop(array *a) { return new thunk(new bfunc(arrayPopHelper),a); } // The helper function for the insert method. item :arrayInsertHelper(Int i, array *x, array *a) { size_t asize=checkArray(a); checkArray(x); if(a->cyclic() && asize > 0) i=imod(i,asize); if(i < 0 || i > (Int) asize) outOfBounds("inserting",asize,i); (*a).insert((*a).begin()+i,(*x).begin(),(*x).end()); } // Returns the insert method for an array. callable* :arrayInsert(array *a) { return new thunk(new bfunc(arrayInsertHelper),a); } // Returns the delete method for an array. callable* :arrayDelete(array *a) { return new thunk(new bfunc(arrayDeleteHelper),a); } bool :arrayAlias(array *a, array *b) { return a==b; } // Return array formed by indexing array a with elements of integer array b array* :arrayIntArray(array *a, array *b) { size_t asize=checkArray(a); size_t bsize=checkArray(b); array *r=new array(bsize); bool cyclic=a->cyclic(); for(size_t i=0; i < bsize; i++) { Int index=read(b,i); if(cyclic && asize > 0) index=imod(index,asize); else if(index < 0 || index >= (Int) asize) outOfBounds("reading",asize,index); (*r)[i]=(*a)[index]; } return r; } // returns the complement of the integer array a in {0,2,...,n-1}, // so that b[complement(a,b.length)] yields the complement of b[a]. Intarray* complement(Intarray *a, Int n) { size_t asize=checkArray(a); array *r=new array(0); bool *keep=new bool[n]; for(Int i=0; i < n; ++i) keep[i]=true; for(size_t i=0; i < asize; ++i) { Int j=read(a,i); if(j >= 0 && j < n) keep[j]=false; } for(Int i=0; i < n; i++) if(keep[i]) r->push(i); delete[] keep; return r; } // Generate the sequence {f(i) : i=0,1,...n-1} given a function f and integer n Intarray* :arraySequence(callable *f, Int n) { if(n < 0) n=0; array *a=new array(n); for(Int i=0; i < n; ++i) { Stack->push(i); f->call(Stack); (*a)[i]=pop(Stack); } return a; } // Return the array {0,1,...n-1} Intarray *sequence(Int n) { if(n < 0) n=0; array *a=new array(n); for(Int i=0; i < n; ++i) { (*a)[i]=i; } return a; } // Apply a function to each element of an array array* :arrayFunction(callable *f, array *a) { size_t size=checkArray(a); array *b=new array(size); for(size_t i=0; i < size; ++i) { Stack->push((*a)[i]); f->call(Stack); (*b)[i]=pop(Stack); } return b; } array* :arraySort(array *a, callable *less) { array *c=copyArray(a); compareFunc=less; FuncStack=Stack; stable_sort(c->begin(),c->end(),compareFunction); return c; } Int :arraySearch(array *a, item key, callable *less) { size_t size=a->size(); compareFunc=less; FuncStack=Stack; if(size == 0 || compareFunction(key,(*a)[0])) return -1; size_t u=size-1; if(!compareFunction(key,(*a)[u])) return Intcast(u); size_t l=0; while (l < u) { size_t i=(l+u)/2; if(compareFunction(key,(*a)[i])) u=i; else if(compareFunction(key,(*a)[i+1])) return Intcast(i); else l=i+1; } return 0; } bool all(boolarray *a) { size_t size=checkArray(a); bool c=true; for(size_t i=0; i < size; i++) if(!get((*a)[i])) {c=false; break;} return c; } boolarray* !(boolarray* a) { size_t size=checkArray(a); array *c=new array(size); for(size_t i=0; i < size; i++) (*c)[i]=!read(a,i); return c; } Int sum(boolarray *a) { size_t size=checkArray(a); Int sum=0; for(size_t i=0; i < size; i++) sum += read(a,i) ? 1 : 0; return sum; } array* :arrayConcat(array *a) { // a is an array of arrays to be concatenated together. // The signature is // T[] concat(... T[][] a); size_t numArgs=checkArray(a); size_t resultSize=0; for (size_t i=0; i < numArgs; ++i) { resultSize += checkArray(a->read(i)); } array *result=new array(resultSize); size_t ri=0; for (size_t i=0; i < numArgs; ++i) { array *arg=a->read(i); size_t size=checkArray(arg); for (size_t j=0; j < size; ++j) { (*result)[ri]=(*arg)[j]; ++ri; } } return result; } array* :array2Transpose(array *a) { size_t asize=checkArray(a); array *c=new array(0); for(size_t i=0; i < asize; i++) { size_t ip=i+1; array *ai=read(a,i); size_t aisize=checkArray(ai); size_t csize=checkArray(c); if(csize < aisize) { c->resize(aisize); for(size_t j=csize; j < aisize; j++) { (*c)[j]=new array(ip); } } for(size_t j=0; j < aisize; j++) { array *cj=read(c,j); if(checkArray(cj) < ip) cj->resize(ip); (*cj)[i]=(*ai)[j]; } } return c; } // a is a rectangular 3D array; perm is an Int array indicating the type of // permutation (021 or 120, etc; original is 012). // Transpose by sending respective members to the permutated locations: // return the array obtained by putting a[i][j][k] into position perm{ijk}. array* :array3Transpose(array *a, array *perm) { const size_t DIM=3; if(checkArray(perm) != DIM) { ostringstream buf; buf << "permutation array must have length " << DIM; error(buf); } size_t* size=new size_t[DIM]; for(size_t i=0; i < DIM; ++i) size[i]=DIM; for(size_t i=0; i < DIM; ++i) { Int p=read(perm,i); size_t P=(size_t) p; if(p < 0 || P >= DIM) { ostringstream buf; buf << "permutation index out of range: " << p; error(buf); } size[P]=P; } for(size_t i=0; i < DIM; ++i) if(size[i] == DIM) error("permutation indices must be distinct"); static const char *rectangular= "3D transpose implemented for rectangular matrices only"; size_t isize=size[0]=checkArray(a); array *a0=read(a,0); size[1]=checkArray(a0); array *a00=read(a0,0); size[2]=checkArray(a00); for(size_t i=0; i < isize; i++) { array *ai=read(a,i); size_t jsize=checkArray(ai); if(jsize != size[1]) error(rectangular); for(size_t j=0; j < jsize; j++) { array *aij=read(ai,j); if(checkArray(aij) != size[2]) error(rectangular); } } size_t perm0=(size_t) read(perm,0); size_t perm1=(size_t) read(perm,1); size_t perm2=(size_t) read(perm,2); size_t sizep0=size[perm0]; size_t sizep1=size[perm1]; size_t sizep2=size[perm2]; array *c=new array(sizep0); for(size_t i=0; i < sizep0; ++i) { array *ci=new array(sizep1); (*c)[i]=ci; for(size_t j=0; j < sizep1; ++j) { array *cij=new array(sizep2); (*ci)[j]=cij; } } size_t* i=new size_t[DIM]; for(i[0]=0; i[0] < size[0]; ++i[0]) { array *a0=read(a,i[0]); for(i[1]=0; i[1] < size[1]; ++i[1]) { array *a1=read(a0,i[1]); for(i[2]=0; i[2] < size[2]; ++i[2]) { array *c0=read(c,i[perm0]); array *c1=read(c0,i[perm1]); (*c1)[i[perm2]]=read(a1,i[2]); } } } delete[] i; delete[] size; return c; } // In a boolean array, find the index of the nth true value or -1 if not found // If n is negative, search backwards. Int find(boolarray *a, Int n=1) { size_t size=checkArray(a); Int j=-1; if(n > 0) for(size_t i=0; i < size; i++) if(read(a,i)) { n--; if(n == 0) {j=(Int) i; break;} } if(n < 0) for(size_t i=size; i > 0;) if(read(a,--i)) { n++; if(n == 0) {j=(Int) i; break;} } return j; } // construct vector obtained by replacing those elements of b for which the // corresponding elements of a are false by the corresponding element of c. array* :arrayConditional(array *a, array *b, array *c) { size_t size=checkArray(a); array *r=new array(size); if(b && c) { checkArrays(a,b); checkArrays(b,c); for(size_t i=0; i < size; i++) (*r)[i]=read(a,i) ? (*b)[i] : (*c)[i]; } else { r->clear(); if(b) { checkArrays(a,b); for(size_t i=0; i < size; i++) if(read(a,i)) r->push((*b)[i]); } else if(c) { checkArrays(a,c); for(size_t i=0; i < size; i++) if(!read(a,i)) r->push((*c)[i]); } } return r; } // Return an n x n identity matrix. realarray2 *identity(Int n) { return Identity(n); } // Return the inverse of an n x n matrix a using Gauss-Jordan elimination. realarray2 *inverse(realarray2 *a) { size_t n=checkArray(a); double *A; copyArray2C(A,a,true,0,NoGC); inverse(A,n); a=copyCArray2(n,n,A); delete[] A; return a; } // Solve the linear equation ax=b by LU decomposition, returning the // solution x, where a is an n x n matrix and b is an array of length n. // If no solution exists, return an empty array. realarray *solve(realarray2 *a, realarray *b, bool warn=true) { size_t n=checkArray(a); if(n == 0) return new array(0); size_t m=checkArray(b); if(m != n) error(incommensurate); real *A; copyArray2C(A,a); size_t *index=new size_t[n]; if(LUdecompose(A,n,index,warn) == 0) return new array(0); array *x=new array(n); real *B; copyArrayC(B,b); for(size_t i=0; i < n; ++i) { size_t ip=index[i]; real sum=B[ip]; B[ip]=B[i]; real *Ai=A+i*n; for(size_t j=0; j < i; ++j) sum -= Ai[j]*B[j]; B[i]=sum; } for(size_t i=n; i > 0;) { --i; real sum=B[i]; real *Ai=A+i*n; for(size_t j=i+1; j < n; ++j) sum -= Ai[j]*B[j]; B[i]=sum/Ai[i]; } for(size_t i=0; i < n; ++i) (*x)[i]=B[i]; delete[] index; delete[] B; delete[] A; return x; } // Solve the linear equation ax=b by LU decomposition, returning the // solution x, where a is an n x n matrix and b is an n x m matrix. // If no solution exists, return an empty array. realarray2 *solve(realarray2 *a, realarray2 *b, bool warn=true) { size_t n=checkArray(a); if(n == 0) return new array(0); if(checkArray(b) != n) error(incommensurate); size_t m=checkArray(read(b,0)); real *A,*B; copyArray2C(A,a); copyArray2C(B,b,false); size_t *index=new size_t[n]; if(LUdecompose(A,n,index,warn) == 0) return new array(0); array *x=new array(n); for(size_t i=0; i < n; ++i) { real *Ai=A+i*n; real *Bi=B+i*m; real *Bip=B+index[i]*m; for(size_t k=0; k < m; ++k) { real sum=Bip[k]; Bip[k]=Bi[k]; size_t jk=k; for(size_t j=0; j < i; ++j, jk += m) sum -= Ai[j]*B[jk]; Bi[k]=sum; } } for(size_t i=n; i > 0;) { --i; real *Ai=A+i*n; real *Bi=B+i*m; for(size_t k=0; k < m; ++k) { real sum=Bi[k]; size_t jk=(i+1)*m+k; for(size_t j=i+1; j < n; ++j, jk += m) sum -= Ai[j]*B[jk]; Bi[k]=sum/Ai[i]; } } for(size_t i=0; i < n; ++i) { real *Bi=B+i*m; array *xi=new array(m); (*x)[i]=xi; for(size_t j=0; j < m; ++j) (*xi)[j]=Bi[j]; } delete[] index; delete[] B; delete[] A; return x; } // Compute the determinant of an n x n matrix. real determinant(realarray2 *a) { real *A; copyArray2C(A,a); size_t n=checkArray(a); real det=LUdecompose(A,n,NULL,false); size_t n1=n+1; for(size_t i=0; i < n; ++i) det *= A[i*n1]; delete[] A; return det; } realarray *Operator *(realarray2 *a, realarray *b) { size_t n=checkArray(a); size_t m=checkArray(b); array *c=new array(n); real *B; copyArrayC(B,b); for(size_t i=0; i < n; ++i) { array *ai=read(a,i); if(checkArray(ai) != m) error(incommensurate); real sum=0.0; for(size_t j=0; j < m; ++j) sum += read(ai,j)*B[j]; (*c)[i]=sum; } delete[] B; return c; } realarray *Operator *(realarray *a, realarray2 *b) { size_t n=checkArray(a); if(n != checkArray(b)) error(incommensurate); real *A; copyArrayC(A,a); array **B=new array*[n]; array *bk=read(b,0); B[0]=bk; size_t m=bk->size(); for(size_t k=1; k < n; k++) { array *bk=read(b,k); if(bk->size() != m) error(incommensurate); B[k]=bk; } array *c=new array(m); for(size_t i=0; i < m; ++i) { real sum=0.0; for(size_t k=0; k < n; ++k) sum += A[k]*read(B[k],i); (*c)[i]=sum; } delete[] B; delete[] A; return c; } Intarray2 *Operator *(Intarray2 *a, Intarray2 *b) { return mult(a,b); } realarray2 *Operator *(realarray2 *a, realarray2 *b) { return mult(a,b); } pairarray2 *Operator *(pairarray2 *a, pairarray2 *b) { return mult(a,b); } triple Operator *(realarray2 *t, triple v) { return *t*v; } realarray2 *AtA(realarray2 *a) { return AtA(a); } pair project(triple v, realarray2 *t) { size_t n=checkArray(t); if(n != 4) error(incommensurate); array *t0=read(t,0); array *t1=read(t,1); array *t3=read(t,3); if(checkArray(t0) != 4 || checkArray(t1) != 4 || checkArray(t3) != 4) error(incommensurate); real x=v.getx(); real y=v.gety(); real z=v.getz(); real f=read(t3,0)*x+read(t3,1)*y+read(t3,2)*z+ read(t3,3); if(f == 0.0) dividebyzero(); f=1.0/f; return pair((read(t0,0)*x+read(t0,1)*y+read(t0,2)*z+ read(t0,3))*f, (read(t1,0)*x+read(t1,1)*y+read(t1,2)*z+ read(t1,3))*f); } // Compute the dot product of vectors a and b. real dot(realarray *a, realarray *b) { size_t n=checkArrays(a,b); real sum=0.0; for(size_t i=0; i < n; ++i) sum += read(a,i)*read(b,i); return sum; } // Compute the complex dot product of vectors a and b. pair dot(pairarray *a, pairarray *b) { size_t n=checkArrays(a,b); pair sum=zero; for(size_t i=0; i < n; ++i) sum += read(a,i)*conj(read(b,i)); return sum; } // Solve the problem L\inv f, where f is an n vector and L is the n x n matrix // // [ b[0] c[0] a[0] ] // [ a[1] b[1] c[1] ] // [ a[2] b[2] c[2] ] // [ ... ] // [ c[n-1] a[n-1] b[n-1] ] realarray *tridiagonal(realarray *a, realarray *b, realarray *c, realarray *f) { size_t n=checkArrays(a,b); checkEqual(n,checkArray(c)); checkEqual(n,checkArray(f)); array *up=new array(n); array& u=*up; if(n == 0) return up; // Special case: zero Dirichlet boundary conditions if(read(a,0) == 0.0 && read(c,n-1) == 0.0) { real temp=read(b,0); if(temp == 0.0) dividebyzero(); temp=1.0/temp; real *work=new real[n]; u[0]=read(f,0)*temp; work[0]=-read(c,0)*temp; for(size_t i=1; i < n; i++) { real temp=(read(b,i)+read(a,i)*work[i-1]); if(temp == 0.0) {delete[] work; dividebyzero();} temp=1.0/temp; u[i]=(read(f,i)-read(a,i)*read(u,i-1))*temp; work[i]=-read(c,i)*temp; } for(size_t i=n-1; i >= 1; i--) u[i-1]=read(u,i-1)+work[i-1]*read(u,i); delete[] work; return up; } real binv=read(b,0); if(binv == 0.0) dividebyzero(); binv=1.0/binv; if(n == 1) {u[0]=read(f,0)*binv; return up;} if(n == 2) { real factor=(read(b,0)*read(b,1)- read(a,0)*read(c,1)); if(factor== 0.0) dividebyzero(); factor=1.0/factor; real temp=(read(b,0)*read(f,1)- read(c,1)*read(f,0))*factor; u[0]=(read(b,1)*read(f,0)- read(a,0)*read(f,1))*factor; u[1]=temp; return up; } real *gamma=new real[n-2]; real *delta=new real[n-2]; gamma[0]=read(c,0)*binv; delta[0]=read(a,0)*binv; u[0]=read(f,0)*binv; real beta=read(c,n-1); real fn=read(f,n-1)-beta*read(u,0); real alpha=read(b,n-1)-beta*delta[0]; for(size_t i=1; i <= n-3; i++) { real alphainv=read(b,i)-read(a,i)*gamma[i-1]; if(alphainv == 0.0) {delete[] gamma; delete[] delta; dividebyzero();} alphainv=1.0/alphainv; beta *= -gamma[i-1]; gamma[i]=read(c,i)*alphainv; u[i]=(read(f,i)-read(a,i)*read(u,i-1))*alphainv; fn -= beta*read(u,i); delta[i]=-read(a,i)*delta[i-1]*alphainv; alpha -= beta*delta[i]; } real alphainv=read(b,n-2)-read(a,n-2)*gamma[n-3]; if(alphainv == 0.0) {delete[] gamma; delete[] delta; dividebyzero();} alphainv=1.0/alphainv; u[n-2]=(read(f,n-2)-read(a,n-2)*read(u,n-3)) *alphainv; beta=read(a,n-1)-beta*gamma[n-3]; real dnm1=(read(c,n-2)-read(a,n-2)*delta[n-3])*alphainv; real temp=alpha-beta*dnm1; if(temp == 0.0) {delete[] gamma; delete[] delta; dividebyzero();} u[n-1]=temp=(fn-beta*read(u,n-2))/temp; u[n-2]=read(u,n-2)-dnm1*temp; for(size_t i=n-2; i >= 1; i--) u[i-1]=read(u,i-1)-gamma[i-1]*read(u,i)-delta[i-1]*temp; delete[] delta; delete[] gamma; return up; } // Root solve by Newton-Raphson real newton(Int iterations=100, callableReal *f, callableReal *fprime, real x, bool verbose=false) { static const real fuzz=1000.0*DBL_EPSILON; Int i=0; size_t oldPrec=0; if(verbose) oldPrec=cout.precision(DBL_DIG); real diff=DBL_MAX; real lastdiff; do { real x0=x; Stack->push(x); fprime->call(Stack); real dfdx=pop(Stack); if(dfdx == 0.0) { x=DBL_MAX; break; } Stack->push(x); f->call(Stack); real fx=pop(Stack); x -= fx/dfdx; lastdiff=diff; if(verbose) cout << "Newton-Raphson: " << x << endl; diff=fabs(x-x0); if(++i == iterations) { x=DBL_MAX; break; } } while (diff != 0.0 && (diff < lastdiff || diff > fuzz*fabs(x))); if(verbose) cout.precision(oldPrec); return x; } // Root solve by Newton-Raphson bisection // cf. routine rtsafe (Press et al., Numerical Recipes, 1991). real newton(Int iterations=100, callableReal *f, callableReal *fprime, real x1, real x2, bool verbose=false) { static const real fuzz=1000.0*DBL_EPSILON; size_t oldPrec=0; if(verbose) oldPrec=cout.precision(DBL_DIG); Stack->push(x1); f->call(Stack); real f1=pop(Stack); if(f1 == 0.0) return x1; Stack->push(x2); f->call(Stack); real f2=pop(Stack); if(f2 == 0.0) return x2; if((f1 > 0.0 && f2 > 0.0) || (f1 < 0.0 && f2 < 0.0)) { ostringstream buf; buf << "root not bracketed, f(x1)=" << f1 << ", f(x2)=" << f2 << endl; error(buf); } real x=0.5*(x1+x2); real dxold=fabs(x2-x1); if(f1 > 0.0) { real temp=x1; x1=x2; x2=temp; } if(verbose) cout << "midpoint: " << x << endl; real dx=dxold; Stack->push(x); f->call(Stack); real y=pop(Stack); Stack->push(x); fprime->call(Stack); real dy=pop(Stack); Int j; for(j=0; j < iterations; j++) { if(((x-x2)*dy-y)*((x-x1)*dy-y) >= 0.0 || fabs(2.0*y) > fabs(dxold*dy)) { dxold=dx; dx=0.5*(x2-x1); x=x1+dx; if(verbose) cout << "bisection: " << x << endl; if(x1 == x) return x; } else { dxold=dx; dx=y/dy; real temp=x; x -= dx; if(verbose) cout << "Newton-Raphson: " << x << endl; if(temp == x) return x; } if(fabs(dx) < fuzz*fabs(x)) return x; Stack->push(x); f->call(Stack); y=pop(Stack); Stack->push(x); fprime->call(Stack); dy=pop(Stack); if(y < 0.0) x1=x; else x2=x; } if(verbose) cout.precision(oldPrec); return (j == iterations) ? DBL_MAX : x; } // Find a root for the specified continuous (but not necessarily // differentiable) function. Whatever value t is returned, it is guaranteed // that t is within [a, b] and within tolerance of a sign change. // An error is thrown if fa and fb are both positive or both negative. // // In this implementation, the binary search is interleaved // with a modified version of quadratic interpolation. // This is a C++ port of the Asymptote routine written by Charles Staats III. real _findroot(callableReal *f, real a, real b, real tolerance, real fa, real fb) { if(fa == 0.0) return a; if(fb == 0.0) return b; const char* oppsign="fa and fb must have opposite signs"; int sign; if(fa < 0.0) { if(fb < 0.0) error(oppsign); sign=1; } else { if(fb > 0.0) error(oppsign); fa=-fa; fb=-fb; sign=-1; } real t=a; real ft=fa; real twicetolerance=2.0*tolerance; while(b-a > tolerance) { t=(a+b)*0.5; Stack->push(t); f->call(Stack); ft=sign*pop(Stack); if(ft == 0.0) return t; // If halving the interval already puts us within tolerance, // don't bother with the interpolation step. if(b-a >= twicetolerance) { real factor=1.0/(b-a); real q_A=2.0*(fa-2.0*ft+fb)*factor*factor; real q_B=(fb-fa)*factor; quadraticroots Q=quadraticroots(q_A,q_B,ft); // If the interpolation somehow failed, continue on to the next binary // search step. This may or may not be possible, depending on what // theoretical guarantees are provided by the quadraticroots function. real root; bool found=Q.roots > 0; if(found) { root=t+Q.t1; if(root <= a || root >= b) { if(Q.roots == 1) found=false; else { root=t+Q.t2; if(root <= a || root >= b) found=false; } } } if(found) { if(ft > 0.0) { b=t; fb=ft; } else { a=t; fa=ft; } t=root; // If the interpolated value is close to one edge of // the interval, move it farther away from the edge in // an effort to catch the root in the middle. real margin=(b-a)*1.0e-3; if(t-a < margin) t=a+2.0*(t-a); else if(b-t < margin) t=b-2.0*(b-t); Stack->push(t); f->call(Stack); ft=sign*pop(Stack); if(ft == 0.0) return t; } } if(ft > 0.0) { b=t; fb=ft; } else if(ft < 0.0) { a=t; fa=ft; } } return a-(b-a)/(fb-fa)*fa; } real simpson(callableReal *f, real a, real b, real acc=DBL_EPSILON, real dxmax=0) { real integral; if(dxmax <= 0) dxmax=fabs(b-a); callable *oldFunc=Func; Func=f; FuncStack=Stack; if(!simpson(integral,wrapFunction,a,b,acc,dxmax)) error("nesting capacity exceeded in simpson"); Func=oldFunc; return integral; } // Compute the fast Fourier transform of a pair array pairarray* fft(pairarray *a, Int sign=1) { #ifdef HAVE_LIBFFTW3 unsigned n=(unsigned) checkArray(a); array *c=new array(n); if(n) { Complex *f=utils::ComplexAlign(n); fftwpp::fft1d Forward(n,intcast(sign),f); for(size_t i=0; i < n; i++) { pair z=read(a,i); f[i]=Complex(z.getx(),z.gety()); } Forward.fft(f); for(size_t i=0; i < n; i++) { Complex z=f[i]; (*c)[i]=pair(z.real(),z.imag()); } utils::deleteAlign(f); } #else unused(&sign); array *c=new array(0); error("Please install fftw3, run ./configure, and recompile"); #endif // HAVE_LIBFFTW3 return c; } Intarray2 *triangulate(pairarray *z) { size_t nv=checkArray(z); // Call robust version of Gilles Dumoulin's port of Paul Bourke's // triangulation code. XYZ *pxyz=new XYZ[nv+3]; ITRIANGLE *V=new ITRIANGLE[4*nv]; for(size_t i=0; i < nv; ++i) { pair w=read(z,i); pxyz[i].p[0]=w.getx(); pxyz[i].p[1]=w.gety(); pxyz[i].i=(Int) i; } Int ntri; Triangulate((Int) nv,pxyz,V,ntri,true,false); size_t nt=(size_t) ntri; array *t=new array(nt); for(size_t i=0; i < nt; ++i) { array *ti=new array(3); (*t)[i]=ti; ITRIANGLE *Vi=V+i; (*ti)[0]=pxyz[Vi->p1].i; (*ti)[1]=pxyz[Vi->p2].i; (*ti)[2]=pxyz[Vi->p3].i; } delete[] V; delete[] pxyz; return t; } real norm(realarray *a) { size_t n=checkArray(a); real M=0.0; for(size_t i=0; i < n; ++i) { real x=fabs(vm::read(a,i)); if(x > M) M=x; } return M; } real norm(realarray2 *a) { size_t n=checkArray(a); real M=0.0; for(size_t i=0; i < n; ++i) { vm::array *ai=vm::read(a,i); size_t m=checkArray(ai); for(size_t j=0; j < m; ++j) { real a=fabs(vm::read(ai,j)); if(a > M) M=a; } } return M; } real norm(triplearray2 *a) { size_t n=checkArray(a); real M=0.0; for(size_t i=0; i < n; ++i) { vm::array *ai=vm::read(a,i); size_t m=checkArray(ai); for(size_t j=0; j < m; ++j) { real a=vm::read(ai,j).abs2(); if(a > M) M=a; } } return sqrt(M); } real change2(triplearray2 *a) { size_t n=checkArray(a); if(n == 0) return 0.0; vm::array *a0=vm::read(a,0); size_t m=checkArray(a0); if(m == 0) return 0.0; triple a00=vm::read(a0,0); real M=0.0; for(size_t i=0; i < n; ++i) { vm::array *ai=vm::read(a,i); size_t m=checkArray(ai); for(size_t j=0; j < m; ++j) { real a=(vm::read(ai,j)-a00).abs2(); if(a > M) M=a; } } return M; } triple minbezier(triplearray2 *P, triple b) { size_t N; real *A=copyTripleArray2Components(P,N); bound_double *B=bounddouble(N); b=triple(B(A,::min,b.getx(),sqrtFuzz*norm(A,N),maxdepth), B(A+N,::min,b.gety(),sqrtFuzz*norm(A+N,N),maxdepth), B(A+2*N,::min,b.getz(),sqrtFuzz*norm(A+2*N,N),maxdepth)); delete[] A; return b; } triple maxbezier(triplearray2 *P, triple b) { size_t N; real *A=copyTripleArray2Components(P,N); bound_double *B=bounddouble(N); b=triple(B(A,::max,b.getx(),sqrtFuzz*norm(A,N),maxdepth), B(A+N,::max,b.gety(),sqrtFuzz*norm(A+N,N),maxdepth), B(A+2*N,::max,b.getz(),sqrtFuzz*norm(A+2*N,N),maxdepth)); delete[] A; return b; } pair minratio(triplearray2 *P, pair b) { size_t N; triple *A=copyTripleArray2C(P,N); real fuzz=sqrtFuzz*norm(A,N); bound_triple *B=boundtriple(N); b=pair(B(A,::min,xratio,b.getx(),fuzz,maxdepth), B(A,::min,yratio,b.gety(),fuzz,maxdepth)); delete[] A; return b; } pair maxratio(triplearray2 *P, pair b) { size_t N; triple *A=copyTripleArray2C(P,N); bound_triple *B=boundtriple(N); real fuzz=sqrtFuzz*norm(A,N); b=pair(B(A,::max,xratio,b.getx(),fuzz,maxdepth), B(A,::max,yratio,b.gety(),fuzz,maxdepth)); delete[] A; return b; } realarray *_projection() { #ifdef HAVE_GL array *a=new array(14); gl::projection P=gl::camera(); size_t k=0; (*a)[k++]=P.orthographic ? 1.0 : 0.0; triple camera=P.camera; (*a)[k++]=camera.getx(); (*a)[k++]=camera.gety(); (*a)[k++]=camera.getz(); triple up=P.up; (*a)[k++]=up.getx(); (*a)[k++]=up.gety(); (*a)[k++]=up.getz(); triple target=P.target; (*a)[k++]=target.getx(); (*a)[k++]=target.gety(); (*a)[k++]=target.getz(); (*a)[k++]=P.zoom; (*a)[k++]=P.angle; (*a)[k++]=P.viewportshift.getx(); (*a)[k++]=P.viewportshift.gety(); #endif return new array(0); }