/***** * path3.cc * John Bowman * * Compute information for a three-dimensional path. *****/ #include #include "path3.h" #include "util.h" #include "camperror.h" #include "mathop.h" namespace camp { using run::operator *; using vm::array; path3 nullpath3; void checkEmpty3(Int n) { if(n == 0) reportError("nullpath3 has no points"); } triple path3::point(double t) const { checkEmpty3(n); Int i = Floor(t); Int iplus; t = fmod(t,1); if (t < 0) t += 1; if (cycles) { i = imod(i,n); iplus = imod(i+1,n); } else if (i < 0) return nodes[0].point; else if (i >= n-1) return nodes[n-1].point; else iplus = i+1; double one_t = 1.0-t; triple a = nodes[i].point, b = nodes[i].post, c = nodes[iplus].pre, d = nodes[iplus].point, ab = one_t*a + t*b, bc = one_t*b + t*c, cd = one_t*c + t*d, abc = one_t*ab + t*bc, bcd = one_t*bc + t*cd, abcd = one_t*abc + t*bcd; return abcd; } triple path3::precontrol(double t) const { checkEmpty3(n); Int i = Floor(t); Int iplus; t = fmod(t,1); if (t < 0) t += 1; if (cycles) { i = imod(i,n); iplus = imod(i+1,n); } else if (i < 0) return nodes[0].pre; else if (i >= n-1) return nodes[n-1].pre; else iplus = i+1; double one_t = 1.0-t; triple a = nodes[i].point, b = nodes[i].post, c = nodes[iplus].pre, ab = one_t*a + t*b, bc = one_t*b + t*c, abc = one_t*ab + t*bc; return (abc == a) ? nodes[i].pre : abc; } triple path3::postcontrol(double t) const { checkEmpty3(n); Int i = Floor(t); Int iplus; t = fmod(t,1); if (t < 0) t += 1; if (cycles) { i = imod(i,n); iplus = imod(i+1,n); } else if (i < 0) return nodes[0].post; else if (i >= n-1) return nodes[n-1].post; else iplus = i+1; double one_t = 1.0-t; triple b = nodes[i].post, c = nodes[iplus].pre, d = nodes[iplus].point, bc = one_t*b + t*c, cd = one_t*c + t*d, bcd = one_t*bc + t*cd; return (bcd == d) ? nodes[iplus].post : bcd; } path3 path3::reverse() const { mem::vector nodes(n); Int len=length(); for (Int i = 0, j = len; i < n; i++, j--) { nodes[i].pre = postcontrol(j); nodes[i].point = point(j); nodes[i].post = precontrol(j); nodes[i].straight = straight(j-1); } return path3(nodes, n, cycles); } path3 path3::subpath(Int a, Int b) const { if(empty()) return path3(); if (a > b) { const path3 &rp = reverse(); Int len=length(); path3 result = rp.subpath(len-a, len-b); return result; } if (!cycles) { if (a < 0) a = 0; if (b > n-1) b = n-1; } Int sn = b-a+1; mem::vector nodes(sn); for (Int i = 0, j = a; j <= b; i++, j++) { nodes[i].pre = precontrol(j); nodes[i].point = point(j); nodes[i].post = postcontrol(j); nodes[i].straight = straight(j); } nodes[0].pre = nodes[0].point; nodes[sn-1].post = nodes[sn-1].point; return path3(nodes, sn); } inline triple split(double t, const triple& x, const triple& y) { return x+(y-x)*t; } inline void splitCubic(solvedKnot3 sn[], double t, const solvedKnot3& left_, const solvedKnot3& right_) { solvedKnot3 &left=(sn[0]=left_), &mid=sn[1], &right=(sn[2]=right_); if(left.straight) { mid.point=split(t,left.point,right.point); triple deltaL=third*(mid.point-left.point); left.post=left.point+deltaL; mid.pre=mid.point-deltaL; triple deltaR=third*(right.point-mid.point); mid.post=mid.point+deltaR; right.pre=right.point-deltaR; mid.straight=true; } else { triple x=split(t,left.post,right.pre); // m1 left.post=split(t,left.point,left.post); // m0 right.pre=split(t,right.pre,right.point); // m2 mid.pre=split(t,left.post,x); // m3 mid.post=split(t,x,right.pre); // m4 mid.point=split(t,mid.pre,mid.post); // m5 } } path3 path3::subpath(double a, double b) const { if(empty()) return path3(); if (a > b) { const path3 &rp = reverse(); Int len=length(); return rp.subpath(len-a, len-b); } solvedKnot3 aL, aR, bL, bR; if (!cycles) { if (a < 0) { a = 0; if (b < 0) b = 0; } if (b > n-1) { b = n-1; if (a > n-1) a = n-1; } aL = nodes[(Int)floor(a)]; aR = nodes[(Int)ceil(a)]; bL = nodes[(Int)floor(b)]; bR = nodes[(Int)ceil(b)]; } else { if(run::validInt(a) && run::validInt(b)) { aL = nodes[imod((Int) floor(a),n)]; aR = nodes[imod((Int) ceil(a),n)]; bL = nodes[imod((Int) floor(b),n)]; bR = nodes[imod((Int) ceil(b),n)]; } else reportError("invalid path3 index"); } if (a == b) return path3(point(a)); solvedKnot3 sn[3]; path3 p = subpath(Ceil(a), Floor(b)); if (a > floor(a)) { if (b < ceil(a)) { splitCubic(sn,a-floor(a),aL,aR); splitCubic(sn,(b-a)/(ceil(b)-a),sn[1],sn[2]); return path3(sn[0],sn[1]); } splitCubic(sn,a-floor(a),aL,aR); p=concat(path3(sn[1],sn[2]),p); } if (ceil(b) > b) { splitCubic(sn,b-floor(b),bL,bR); p=concat(p,path3(sn[0],sn[1])); } return p; } // Special case of subpath for paths of length 1 used by intersect. void path3::halve(path3 &first, path3 &second) const { solvedKnot3 sn[3]; splitCubic(sn,0.5,nodes[0],nodes[1]); first=path3(sn[0],sn[1]); second=path3(sn[1],sn[2]); } // Calculate the coefficients of a Bezier derivative divided by 3. static inline void derivative(triple& a, triple& b, triple& c, const triple& z0, const triple& c0, const triple& c1, const triple& z1) { a=z1-z0+3.0*(c0-c1); b=2.0*(z0+c1)-4.0*c0; c=c0-z0; } bbox3 path3::bounds() const { if(!box.empty) return box; if (empty()) { // No bounds return bbox3(); } Int len=length(); box.add(point(len)); times=bbox3(len,len,len,len,len,len); for (Int i = 0; i < len; i++) { addpoint(box,i); if(straight(i)) continue; triple a,b,c; derivative(a,b,c,point(i),postcontrol(i),precontrol(i+1),point(i+1)); // Check x coordinate quadraticroots x(a.getx(),b.getx(),c.getx()); if(x.distinct != quadraticroots::NONE && goodroot(x.t1)) addpoint(box,i+x.t1); if(x.distinct == quadraticroots::TWO && goodroot(x.t2)) addpoint(box,i+x.t2); // Check y coordinate quadraticroots y(a.gety(),b.gety(),c.gety()); if(y.distinct != quadraticroots::NONE && goodroot(y.t1)) addpoint(box,i+y.t1); if(y.distinct == quadraticroots::TWO && goodroot(y.t2)) addpoint(box,i+y.t2); // Check z coordinate quadraticroots z(a.getz(),b.getz(),c.getz()); if(z.distinct != quadraticroots::NONE && goodroot(z.t1)) addpoint(box,i+z.t1); if(z.distinct == quadraticroots::TWO && goodroot(z.t2)) addpoint(box,i+z.t2); } return box; } // Return f evaluated at controlling vertex of bounding box of convex hull for // similiar-triangle transform x'=x/z, y'=y/z, where z < 0. double ratiobound(triple z0, triple c0, triple c1, triple z1, double (*m)(double, double), double (*f)(const triple&)) { double MX=m(m(m(-z0.getx(),-c0.getx()),-c1.getx()),-z1.getx()); double MY=m(m(m(-z0.gety(),-c0.gety()),-c1.gety()),-z1.gety()); double Z=m(m(m(z0.getz(),c0.getz()),c1.getz()),z1.getz()); double MZ=m(m(m(-z0.getz(),-c0.getz()),-c1.getz()),-z1.getz()); return m(f(triple(-MX,-MY,Z)),f(triple(-MX,-MY,-MZ))); } double bound(triple z0, triple c0, triple c1, triple z1, double (*m)(double, double), double (*f)(const triple&), double b, double fuzz, int depth) { b=m(b,m(f(z0),f(z1))); if(m(-1.0,1.0)*(b-ratiobound(z0,c0,c1,z1,m,f)) >= -fuzz || depth == 0) return b; --depth; triple m0=0.5*(z0+c0); triple m1=0.5*(c0+c1); triple m2=0.5*(c1+z1); triple m3=0.5*(m0+m1); triple m4=0.5*(m1+m2); triple m5=0.5*(m3+m4); // Check both Bezier subpaths. b=bound(z0,m0,m3,m5,m,f,b,fuzz,depth); return bound(m5,m4,m2,z1,m,f,b,fuzz,depth); } pair path3::ratio(double (*m)(double, double)) const { checkEmpty3(n); triple v=point((Int) 0); pair B=pair(xratio(v),yratio(v)); Int n=length(); for(Int i=0; i <= n; ++i) { if(straight(i)) { triple v=point(i); B=pair(m(B.getx(),xratio(v)),m(B.gety(),yratio(v))); } else { triple z0=point(i); triple c0=postcontrol(i); triple c1=precontrol(i+1); triple z1=point(i+1); double fuzz=sqrtFuzz*camp::max(camp::max(camp::max(z0.length(), c0.length()), c1.length()),z1.length()); B=pair(bound(z0,c0,c1,z1,m,xratio,B.getx(),fuzz), bound(z0,c0,c1,z1,m,yratio,B.gety(),fuzz)); } } return B; } // {{{ Arclength Calculations static triple a,b,c; static double ds(double t) { double dx=quadratic(a.getx(),b.getx(),c.getx(),t); double dy=quadratic(a.gety(),b.gety(),c.gety(),t); double dz=quadratic(a.getz(),b.getz(),c.getz(),t); return sqrt(dx*dx+dy*dy+dz*dz); } // Calculates arclength of a cubic using adaptive simpson integration. double path3::cubiclength(Int i, double goal) const { const triple& z0=point(i); const triple& z1=point(i+1); double L; if(straight(i)) { L=(z1-z0).length(); return (goal < 0 || goal >= L) ? L : -goal/L; } const triple& c0=postcontrol(i); const triple& c1=precontrol(i+1); double integral; derivative(a,b,c,z0,c0,c1,z1); if(!simpson(integral,ds,0.0,1.0,DBL_EPSILON,1.0)) reportError("nesting capacity exceeded in computing arclength"); L=3.0*integral; if(goal < 0 || goal >= L) return L; double t=goal/L; goal *= third; static double dxmin=sqrt(DBL_EPSILON); if(!unsimpson(goal,ds,0.0,t,100.0*DBL_EPSILON,integral,1.0,dxmin)) reportError("nesting capacity exceeded in computing arctime"); return -t; } double path3::arclength() const { if (cached_length != -1) return cached_length; double L=0.0; for (Int i = 0; i < n-1; i++) { L += cubiclength(i); } if(cycles) L += cubiclength(n-1); cached_length = L; return cached_length; } double path3::arctime(double goal) const { if (cycles) { if (goal == 0 || cached_length == 0) return 0; if (goal < 0) { const path3 &rp = this->reverse(); double result = -rp.arctime(-goal); return result; } if (cached_length > 0 && goal >= cached_length) { Int loops = (Int)(goal / cached_length); goal -= loops*cached_length; return loops*n+arctime(goal); } } else { if (goal <= 0) return 0; if (cached_length > 0 && goal >= cached_length) return n-1; } double l,L=0; for (Int i = 0; i < n-1; i++) { l = cubiclength(i,goal); if (l < 0) return (-l+i); else { L += l; goal -= l; if (goal <= 0) return i+1; } } if (cycles) { l = cubiclength(n-1,goal); if (l < 0) return -l+n-1; if (cached_length > 0 && cached_length != L+l) { reportError("arclength != length.\n" "path3::arclength(double) must have broken semantics.\n" "Please report this error."); } cached_length = L += l; goal -= l; return arctime(goal)+n; } else { cached_length = L; return length(); } } // }}} // {{{ Path3 Intersection Calculations // Return all intersection times of path3 g with the triple v. void intersections(std::vector& T, const path3& g, const triple& v, double fuzz) { double fuzz2=fuzz*fuzz; Int n=g.length(); bool cycles=g.cyclic(); for(Int i=0; i < n; ++i) { // Check all directions to circumvent degeneracy. std::vector r; roots(r,g.point(i).getx(),g.postcontrol(i).getx(), g.precontrol(i+1).getx(),g.point(i+1).getx(),v.getx()); roots(r,g.point(i).gety(),g.postcontrol(i).gety(), g.precontrol(i+1).gety(),g.point(i+1).gety(),v.gety()); roots(r,g.point(i).getz(),g.postcontrol(i).getz(), g.precontrol(i+1).getz(),g.point(i+1).getz(),v.getz()); size_t m=r.size(); for(size_t j=0 ; j < m; ++j) { double t=r[j]; if(t >= -Fuzz && t <= 1.0+Fuzz) { double s=i+t; if((g.point(s)-v).abs2() <= fuzz2) { if(cycles && s >= n-Fuzz) s=0; T.push_back(s); } } } } } // An optimized implementation of intersections(g,p--q); // if there are an infinite number of intersection points, the returned list is // only guaranteed to include the endpoint times of the intersection. void intersections(std::vector& S, std::vector& T, const path3& g, const triple& p, double fuzz) { std::vector S1; intersections(S1,g,p,fuzz); size_t n=S1.size(); for(size_t i=0; i < n; ++i) { S.push_back(S1[i]); T.push_back(0.0); } } void add(std::vector& S, std::vector& T, double s, double t, const path3& p, const path3& q, double fuzz2) { triple P=p.point(s); for(size_t i=0; i < S.size(); ++i) if((p.point(S[i])-P).abs2() <= fuzz2) return; S.push_back(s); T.push_back(t); } void add(double& s, double& t, std::vector& S, std::vector& T, std::vector& S1, std::vector& T1, double pscale, double qscale, double poffset, double qoffset, const path3& p, const path3& q, double fuzz2, bool single) { if(single) { s=s*pscale+poffset; t=t*qscale+qoffset; } else { size_t n=S1.size(); for(size_t i=0; i < n; ++i) add(S,T,pscale*S1[i]+poffset,qscale*T1[i]+qoffset,p,q,fuzz2); } } void add(double& s, double& t, std::vector& S, std::vector& T, std::vector& S1, std::vector& T1, const path3& p, const path3& q, double fuzz2, bool single) { size_t n=S1.size(); if(single) { if(n > 0) { s=S1[0]; t=T1[0]; } } else { for(size_t i=0; i < n; ++i) add(S,T,S1[i],T1[i],p,q,fuzz2); } } bool intersections(double &s, double &t, std::vector& S, std::vector& T, path3& p, path3& q, double fuzz, bool single, bool exact, unsigned depth) { if(errorstream::interrupt) throw interrupted(); double fuzz2=max(fuzzFactor*fuzz,Fuzz); fuzz2=fuzz2*fuzz2; Int lp=p.length(); if(lp == 0 && exact) { std::vector T1,S1; intersections(T1,S1,q,p.point(lp),fuzz); add(s,t,S,T,S1,T1,p,q,fuzz2,single); return S1.size() > 0; } Int lq=q.length(); if(lq == 0 && exact) { std::vector S1,T1; intersections(S1,T1,p,q.point(lq),fuzz); add(s,t,S,T,S1,T1,p,q,fuzz2,single); return S1.size() > 0; } triple maxp=p.max(); triple minp=p.min(); triple maxq=q.max(); triple minq=q.min(); if(maxp.getx()+fuzz >= minq.getx() && maxp.gety()+fuzz >= minq.gety() && maxp.getz()+fuzz >= minq.getz() && maxq.getx()+fuzz >= minp.getx() && maxq.gety()+fuzz >= minp.gety() && maxq.getz()+fuzz >= minp.getz()) { // Overlapping bounding boxes --depth; if((maxp-minp).length()+(maxq-minq).length() <= fuzz || depth == 0) { if(single) { s=0.5; t=0.5; } else { S.push_back(0.5); T.push_back(0.5); } return true; } path3 p1,p2; double pscale,poffset; std::vector S1,T1; if(lp <= 1) { if(lp == 1) p.halve(p1,p2); if(lp == 0 || p1 == p || p2 == p) { intersections(T1,S1,q,p.point((Int) 0),fuzz); add(s,t,S,T,S1,T1,p,q,fuzz2,single); return S1.size() > 0; } pscale=poffset=0.5; } else { Int tp=lp/2; p1=p.subpath(0,tp); p2=p.subpath(tp,lp); poffset=tp; pscale=1.0; } path3 q1,q2; double qscale,qoffset; if(lq <= 1) { if(lq == 1) q.halve(q1,q2); if(lq == 0 || q1 == q || q2 == q) { intersections(S1,T1,p,q.point((Int) 0),fuzz); add(s,t,S,T,S1,T1,p,q,fuzz2,single); return S1.size() > 0; } qscale=qoffset=0.5; } else { Int tq=lq/2; q1=q.subpath(0,tq); q2=q.subpath(tq,lq); qoffset=tq; qscale=1.0; } bool Short=lp == 1 && lq == 1; static size_t maxcount=9; size_t count=0; if(intersections(s,t,S1,T1,p1,q1,fuzz,single,exact,depth)) { add(s,t,S,T,S1,T1,pscale,qscale,0.0,0.0,p,q,fuzz2,single); if(single || depth <= mindepth) return true; count += S1.size(); if(Short && count > maxcount) return true; } S1.clear(); T1.clear(); if(intersections(s,t,S1,T1,p1,q2,fuzz,single,exact,depth)) { add(s,t,S,T,S1,T1,pscale,qscale,0.0,qoffset,p,q,fuzz2,single); if(single || depth <= mindepth) return true; count += S1.size(); if(Short && count > maxcount) return true; } S1.clear(); T1.clear(); if(intersections(s,t,S1,T1,p2,q1,fuzz,single,exact,depth)) { add(s,t,S,T,S1,T1,pscale,qscale,poffset,0.0,p,q,fuzz2,single); if(single || depth <= mindepth) return true; count += S1.size(); if(Short && count > maxcount) return true; } S1.clear(); T1.clear(); if(intersections(s,t,S1,T1,p2,q2,fuzz,single,exact,depth)) { add(s,t,S,T,S1,T1,pscale,qscale,poffset,qoffset,p,q,fuzz2,single); if(single || depth <= mindepth) return true; count += S1.size(); if(Short && count > maxcount) return true; } return S.size() > 0; } return false; } // }}} path3 concat(const path3& p1, const path3& p2) { Int n1 = p1.length(), n2 = p2.length(); if (n1 == -1) return p2; if (n2 == -1) return p1; triple a=p1.point(n1); triple b=p2.point((Int) 0); mem::vector nodes(n1+n2+1); Int i = 0; nodes[0].pre = p1.point((Int) 0); for (Int j = 0; j < n1; j++) { nodes[i].point = p1.point(j); nodes[i].straight = p1.straight(j); nodes[i].post = p1.postcontrol(j); nodes[i+1].pre = p1.precontrol(j+1); i++; } for (Int j = 0; j < n2; j++) { nodes[i].point = p2.point(j); nodes[i].straight = p2.straight(j); nodes[i].post = p2.postcontrol(j); nodes[i+1].pre = p2.precontrol(j+1); i++; } nodes[i].point = nodes[i].post = p2.point(n2); return path3(nodes, i+1); } path3 transformed(const array& t, const path3& p) { Int n = p.size(); mem::vector nodes(n); for (Int i = 0; i < n; ++i) { nodes[i].pre = t * p.precontrol(i); nodes[i].point = t * p.point(i); nodes[i].post = t * p.postcontrol(i); nodes[i].straight = p.straight(i); } return path3(nodes, n, p.cyclic()); } double xratio(const triple& v) { return v.getx()/v.getz(); } double yratio(const triple& v) { return v.gety()/v.getz(); } template struct Split { T m0,m1,m2,m3,m4,m5; Split(T z0, T c0, T c1, T z1) { m0=0.5*(z0+c0); m1=0.5*(c0+c1); m2=0.5*(c1+z1); m3=0.5*(m0+m1); m4=0.5*(m1+m2); m5=0.5*(m3+m4); } }; double cornerbound(double *P, double (*m)(double, double)) { double b=m(P[0],P[3]); b=m(b,P[12]); return m(b,P[15]); } double controlbound(double *P, double (*m)(double, double)) { double b=m(P[1],P[2]); b=m(b,P[4]); b=m(b,P[5]); b=m(b,P[6]); b=m(b,P[7]); b=m(b,P[8]); b=m(b,P[9]); b=m(b,P[10]); b=m(b,P[11]); b=m(b,P[13]); return m(b,P[14]); } double bound(double *P, double (*m)(double, double), double b, double fuzz, int depth) { b=m(b,cornerbound(P,m)); if(m(-1.0,1.0)*(b-controlbound(P,m)) >= -fuzz || depth == 0) return b; --depth; Split c0(P[0],P[1],P[2],P[3]); Split c1(P[4],P[5],P[6],P[7]); Split c2(P[8],P[9],P[10],P[11]); Split c3(P[12],P[13],P[14],P[15]); Split c4(P[12],P[8],P[4],P[0]); Split c5(c3.m0,c2.m0,c1.m0,c0.m0); Split c6(c3.m3,c2.m3,c1.m3,c0.m3); Split c7(c3.m5,c2.m5,c1.m5,c0.m5); Split c8(c3.m4,c2.m4,c1.m4,c0.m4); Split c9(c3.m2,c2.m2,c1.m2,c0.m2); Split c10(P[15],P[11],P[7],P[3]); // Check all 4 Bezier subpatches. double s0[]={c4.m5,c5.m5,c6.m5,c7.m5,c4.m3,c5.m3,c6.m3,c7.m3, c4.m0,c5.m0,c6.m0,c7.m0,P[12],c3.m0,c3.m3,c3.m5}; b=bound(s0,m,b,fuzz,depth); double s1[]={P[0],c0.m0,c0.m3,c0.m5,c4.m2,c5.m2,c6.m2,c7.m2, c4.m4,c5.m4,c6.m4,c7.m4,c4.m5,c5.m5,c6.m5,c7.m5}; b=bound(s1,m,b,fuzz,depth); double s2[]={c0.m5,c0.m4,c0.m2,P[3],c7.m2,c8.m2,c9.m2,c10.m2, c7.m4,c8.m4,c9.m4,c10.m4,c7.m5,c8.m5,c9.m5,c10.m5}; b=bound(s2,m,b,fuzz,depth); double s3[]={c7.m5,c8.m5,c9.m5,c10.m5,c7.m3,c8.m3,c9.m3,c10.m3, c7.m0,c8.m0,c9.m0,c10.m0,c3.m5,c3.m4,c3.m2,P[15]}; return bound(s3,m,b,fuzz,depth); } double cornerbound(triple *P, double (*m)(double, double), double (*f)(const triple&)) { double b=m(f(P[0]),f(P[3])); b=m(b,f(P[12])); return m(b,f(P[15])); } // Return f evaluated at controlling vertex of bounding box of convex hull for // similiar-triangle transform x'=x/z, y'=y/z, where z < 0. double ratiobound(triple *P, double (*m)(double, double), double (*f)(const triple&)) { double MX=-P[0].getx(); double MY=-P[0].gety(); double Z=P[0].getz(); double MZ=-P[0].getz(); for(int i=1; i < 16; ++i) { triple v=P[i]; MX=m(MX,-v.getx()); MY=m(MY,-v.gety()); Z=m(Z,v.getz()); MZ=m(MZ,-v.getz()); } return m(f(triple(-MX,-MY,Z)),f(triple(-MX,-MY,-MZ))); } double controlbound(triple *P, double (*m)(double, double), double (*f)(const triple&)) { double b=m(f(P[1]),f(P[2])); b=m(b,f(P[4])); b=m(b,f(P[5])); b=m(b,f(P[6])); b=m(b,f(P[7])); b=m(b,f(P[8])); b=m(b,f(P[9])); b=m(b,f(P[10])); b=m(b,f(P[11])); b=m(b,f(P[13])); return m(b,f(P[14])); } double bound(triple *P, double (*m)(double, double), double (*f)(const triple&), double b, double fuzz, int depth) { b=m(b,cornerbound(P,m,f)); if(m(-1.0,1.0)*(b-ratiobound(P,m,f)) >= -fuzz || depth == 0) return b; --depth; Split c0(P[0],P[1],P[2],P[3]); Split c1(P[4],P[5],P[6],P[7]); Split c2(P[8],P[9],P[10],P[11]); Split c3(P[12],P[13],P[14],P[15]); Split c4(P[12],P[8],P[4],P[0]); Split c5(c3.m0,c2.m0,c1.m0,c0.m0); Split c6(c3.m3,c2.m3,c1.m3,c0.m3); Split c7(c3.m5,c2.m5,c1.m5,c0.m5); Split c8(c3.m4,c2.m4,c1.m4,c0.m4); Split c9(c3.m2,c2.m2,c1.m2,c0.m2); Split c10(P[15],P[11],P[7],P[3]); // Check all 4 Bezier subpatches. triple s0[]={c4.m5,c5.m5,c6.m5,c7.m5,c4.m3,c5.m3,c6.m3,c7.m3, c4.m0,c5.m0,c6.m0,c7.m0,P[12],c3.m0,c3.m3,c3.m5}; b=bound(s0,m,f,b,fuzz,depth); triple s1[]={P[0],c0.m0,c0.m3,c0.m5,c4.m2,c5.m2,c6.m2,c7.m2, c4.m4,c5.m4,c6.m4,c7.m4,c4.m5,c5.m5,c6.m5,c7.m5}; b=bound(s1,m,f,b,fuzz,depth); triple s2[]={c0.m5,c0.m4,c0.m2,P[3],c7.m2,c8.m2,c9.m2,c10.m2, c7.m4,c8.m4,c9.m4,c10.m4,c7.m5,c8.m5,c9.m5,c10.m5}; b=bound(s2,m,f,b,fuzz,depth); triple s3[]={c7.m5,c8.m5,c9.m5,c10.m5,c7.m3,c8.m3,c9.m3,c10.m3, c7.m0,c8.m0,c9.m0,c10.m0,c3.m5,c3.m4,c3.m2,P[15]}; return bound(s3,m,f,b,fuzz,depth); } inline void add(std::vector& T, std::vector& U, std::vector& V, double t, double u, double v, const path3& p, double fuzz2) { triple z=p.point(t); size_t n=T.size(); for(size_t i=0; i < n; ++i) if((p.point(T[i])-z).abs2() <= fuzz2) return; T.push_back(t); U.push_back(u); V.push_back(v); } void add(std::vector& T, std::vector& U, std::vector& V, std::vector& T1, std::vector& U1, std::vector& V1, const path3& p, double tscale, double toffset, double uoffset, double voffset, double fuzz2) { size_t n=T1.size(); for(size_t i=0; i < n; ++i) add(T,U,V,tscale*T1[i]+toffset,0.5*U1[i]+uoffset,0.5*V1[i]+voffset,p, fuzz2); } void bounds(triple& Pmin, triple& Pmax, triple *P, double fuzz) { double Px[]={P[0].getx(),P[1].getx(),P[2].getx(),P[3].getx(), P[4].getx(),P[5].getx(),P[6].getx(),P[7].getx(), P[8].getx(),P[9].getx(),P[10].getx(),P[11].getx(), P[12].getx(),P[13].getx(),P[14].getx(),P[15].getx()}; double bx=Px[0]; double xmin=bound(Px,min,bx,fuzz); double xmax=bound(Px,max,bx,fuzz); double Py[]={P[0].gety(),P[1].gety(),P[2].gety(),P[3].gety(), P[4].gety(),P[5].gety(),P[6].gety(),P[7].gety(), P[8].gety(),P[9].gety(),P[10].gety(),P[11].gety(), P[12].gety(),P[13].gety(),P[14].gety(),P[15].gety()}; double by=Py[0]; double ymin=bound(Py,min,by,fuzz); double ymax=bound(Py,max,by,fuzz); double Pz[]={P[0].getz(),P[1].getz(),P[2].getz(),P[3].getz(), P[4].getz(),P[5].getz(),P[6].getz(),P[7].getz(), P[8].getz(),P[9].getz(),P[10].getz(),P[11].getz(), P[12].getz(),P[13].getz(),P[14].getz(),P[15].getz()}; double bz=Pz[0]; double zmin=bound(Pz,min,bz,fuzz); double zmax=bound(Pz,max,bz,fuzz); Pmin=triple(xmin,ymin,zmin); Pmax=triple(xmax,ymax,zmax); } bool intersections(double& U, double& V, const triple& v, triple *P, double fuzz, unsigned depth) { if(errorstream::interrupt) throw interrupted(); triple Pmin,Pmax; bounds(Pmin,Pmax,P,fuzz); if(Pmax.getx()+fuzz >= v.getx() && Pmax.gety()+fuzz >= v.gety() && Pmax.getz()+fuzz >= v.getz() && v.getx()+fuzz >= Pmin.getx() && v.gety()+fuzz >= Pmin.gety() && v.getz()+fuzz >= Pmin.getz()) { // Overlapping bounding boxes --depth; if((Pmax-Pmin).abs2() <= fuzz*fuzz || depth == 0) { U=0.5; V=0.5; return true; } // Compute the control points of the four subpatches obtained by splitting // the patch with control points P at u=v=1/2. Split c0(P[0],P[1],P[2],P[3]); Split c1(P[4],P[5],P[6],P[7]); Split c2(P[8],P[9],P[10],P[11]); Split c3(P[12],P[13],P[14],P[15]); Split c4(P[12],P[8],P[4],P[0]); Split c5(c3.m0,c2.m0,c1.m0,c0.m0); Split c6(c3.m3,c2.m3,c1.m3,c0.m3); Split c7(c3.m5,c2.m5,c1.m5,c0.m5); Split c8(c3.m4,c2.m4,c1.m4,c0.m4); Split c9(c3.m2,c2.m2,c1.m2,c0.m2); Split c10(P[15],P[11],P[7],P[3]); // Check all 4 Bezier subpatches. double U1,V1; triple Q0[]={P[0],c0.m0,c0.m3,c0.m5,c4.m2,c5.m2,c6.m2,c7.m2, c4.m4,c5.m4,c6.m4,c7.m4,c4.m5,c5.m5,c6.m5,c7.m5}; if(intersections(U1,V1,v,Q0,fuzz,depth)) { U=0.5*U1; V=0.5*V1; return true; } triple Q1[]={c0.m5,c0.m4,c0.m2,P[3],c7.m2,c8.m2,c9.m2,c10.m2, c7.m4,c8.m4,c9.m4,c10.m4,c7.m5,c8.m5,c9.m5,c10.m5}; if(intersections(U1,V1,v,Q1,fuzz,depth)) { U=0.5*U1; V=0.5*V1+0.5; return true; } triple Q2[]={c7.m5,c8.m5,c9.m5,c10.m5,c7.m3,c8.m3,c9.m3,c10.m3, c7.m0,c8.m0,c9.m0,c10.m0,c3.m5,c3.m4,c3.m2,P[15]}; if(intersections(U1,V1,v,Q2,fuzz,depth)) { U=0.5*U1+0.5; V=0.5*V1+0.5; return true; } triple Q3[]={c4.m5,c5.m5,c6.m5,c7.m5,c4.m3,c5.m3,c6.m3,c7.m3, c4.m0,c5.m0,c6.m0,c7.m0,P[12],c3.m0,c3.m3,c3.m5}; if(intersections(U1,V1,v,Q3,fuzz,depth)) { U=0.5*U1+0.5; V=0.5*V1; return true; } } return false; } void intersections(std::vector& T, std::vector& U, std::vector& V, path3& p, triple *P, double fuzz, unsigned depth) { if(errorstream::interrupt) throw interrupted(); triple pmin=p.min(); triple pmax=p.max(); triple Pmin,Pmax; bounds(Pmin,Pmax,P,fuzz); if(Pmax.getx()+fuzz >= pmin.getx() && Pmax.gety()+fuzz >= pmin.gety() && Pmax.getz()+fuzz >= pmin.getz() && pmax.getx()+fuzz >= Pmin.getx() && pmax.gety()+fuzz >= Pmin.gety() && pmax.getz()+fuzz >= Pmin.getz()) { // Overlapping bounding boxes --depth; if(((pmax-pmin).length()+(Pmax-Pmin).length() <= fuzz) || depth == 0) { T.push_back(0.5); U.push_back(0.5); V.push_back(0.5); return; } Int lp=p.length(); path3 p0,p1; p.halve(p0,p1); std::vector T1,U1,V1; double tscale,toffset; double fuzz2=max(fuzzFactor*fuzz,Fuzz); fuzz2=fuzz2*fuzz2; if(lp <= 1) { if(lp == 1) p.halve(p0,p1); if(lp == 0 || p0 == p || p1 == p) { double u,v; if(intersections(u,v,p.point((Int) 0),P,fuzz,depth)) { T1.push_back(0.0); U1.push_back(u); V1.push_back(v); add(T,U,V,T1,U1,V1,p,1.0,0.0,0.0,0.0,fuzz2); } return; } tscale=toffset=0.5; } else { Int tp=lp/2; p0=p.subpath(0,tp); p1=p.subpath(tp,lp); toffset=tp; tscale=1.0; } Split c0(P[0],P[1],P[2],P[3]); Split c1(P[4],P[5],P[6],P[7]); Split c2(P[8],P[9],P[10],P[11]); Split c3(P[12],P[13],P[14],P[15]); Split c4(P[12],P[8],P[4],P[0]); Split c5(c3.m0,c2.m0,c1.m0,c0.m0); Split c6(c3.m3,c2.m3,c1.m3,c0.m3); Split c7(c3.m5,c2.m5,c1.m5,c0.m5); Split c8(c3.m4,c2.m4,c1.m4,c0.m4); Split c9(c3.m2,c2.m2,c1.m2,c0.m2); Split c10(P[15],P[11],P[7],P[3]); // Check all 4 Bezier subpatches against p0. triple Q0[]={P[0],c0.m0,c0.m3,c0.m5,c4.m2,c5.m2,c6.m2,c7.m2, c4.m4,c5.m4,c6.m4,c7.m4,c4.m5,c5.m5,c6.m5,c7.m5}; intersections(T1,U1,V1,p0,Q0,fuzz,depth); add(T,U,V,T1,U1,V1,p,tscale,0.0,0.0,0.0,fuzz2); T1.clear(); U1.clear(); V1.clear(); triple Q1[]={c0.m5,c0.m4,c0.m2,P[3],c7.m2,c8.m2,c9.m2,c10.m2, c7.m4,c8.m4,c9.m4,c10.m4,c7.m5,c8.m5,c9.m5,c10.m5}; intersections(T1,U1,V1,p0,Q1,fuzz,depth); add(T,U,V,T1,U1,V1,p,tscale,0.0,0.0,0.5,fuzz2); T1.clear(); U1.clear(); V1.clear(); triple Q2[]={c7.m5,c8.m5,c9.m5,c10.m5,c7.m3,c8.m3,c9.m3,c10.m3, c7.m0,c8.m0,c9.m0,c10.m0,c3.m5,c3.m4,c3.m2,P[15]}; intersections(T1,U1,V1,p0,Q2,fuzz,depth); add(T,U,V,T1,U1,V1,p,tscale,0.0,0.5,0.5,fuzz2); T1.clear(); U1.clear(); V1.clear(); triple Q3[]={c4.m5,c5.m5,c6.m5,c7.m5,c4.m3,c5.m3,c6.m3,c7.m3, c4.m0,c5.m0,c6.m0,c7.m0,P[12],c3.m0,c3.m3,c3.m5}; intersections(T1,U1,V1,p0,Q3,fuzz,depth); add(T,U,V,T1,U1,V1,p,tscale,0.0,0.5,0.0,fuzz2); // Check all 4 Bezier subpatches against p1. T1.clear(); U1.clear(); V1.clear(); intersections(T1,U1,V1,p1,Q0,fuzz,depth); add(T,U,V,T1,U1,V1,p,tscale,toffset,0.0,0.0,fuzz2); T1.clear(); U1.clear(); V1.clear(); intersections(T1,U1,V1,p1,Q1,fuzz,depth); add(T,U,V,T1,U1,V1,p,tscale,toffset,0.0,0.5,fuzz2); T1.clear(); U1.clear(); V1.clear(); intersections(T1,U1,V1,p1,Q2,fuzz,depth); add(T,U,V,T1,U1,V1,p,tscale,toffset,0.5,0.5,fuzz2); T1.clear(); U1.clear(); V1.clear(); intersections(T1,U1,V1,p1,Q3,fuzz,depth); add(T,U,V,T1,U1,V1,p,tscale,toffset,0.5,0.0,fuzz2); } } } //namespace camp