/* Fast Fourier transform C++ header class for the FFTW3 Library Copyright (C) 2004-10 John C. Bowman, University of Alberta This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifndef __fftwpp_h__ #define __fftwpp_h__ 1 #define __FFTWPP_H_VERSION__ 1.08svn #include #include #include #include #include #ifndef __Complex_h__ #include typedef std::complex Complex; #endif #ifndef HAVE_POSIX_MEMALIGN #ifdef __GLIBC_PREREQ #if __GLIBC_PREREQ(2,3) #define HAVE_POSIX_MEMALIGN #endif #else #ifdef _POSIX_SOURCE #define HAVE_POSIX_MEMALIGN #endif #endif #endif #ifdef __Array_h__ namespace Array { static const array1 NULL1; static const array2 NULL2; static const array3 NULL3; } #else #ifdef HAVE_POSIX_MEMALIGN #ifdef _AIX extern "C" int posix_memalign(void **memptr, size_t alignment, size_t size); #endif #else namespace Array { // Adapted from FFTW aligned malloc/free. Assumes that malloc is at least // sizeof(void*)-aligned. Allocated memory must be freed with free0. inline int posix_memalign0(void **memptr, size_t alignment, size_t size) { if(alignment % sizeof (void *) != 0 || (alignment & (alignment - 1)) != 0) return EINVAL; void *p0=malloc(size+alignment); if(!p0) return ENOMEM; void *p=(void *)(((size_t) p0+alignment)&~(alignment-1)); *((void **) p-1)=p0; *memptr=p; return 0; } inline void free0(void *p) { if(p) free(*((void **) p-1)); } } #endif namespace Array { template inline void newAlign(T *&v, size_t len, size_t align) { void *mem=NULL; const char *invalid="Invalid alignment requested"; const char *nomem="Memory limits exceeded"; #ifdef HAVE_POSIX_MEMALIGN int rc=posix_memalign(&mem,align,len*sizeof(T)); #else int rc=posix_memalign0(&mem,align,len*sizeof(T)); #endif if(rc == EINVAL) std::cerr << invalid << std::endl; if(rc == ENOMEM) std::cerr << nomem << std::endl; v=(T *) mem; for(size_t i=0; i < len; i++) new(v+i) T; } template inline void deleteAlign(T *v, size_t len) { for(size_t i=len-1; i > 0; i--) v[i].~T(); v[0].~T(); #ifdef HAVE_POSIX_MEMALIGN free(v); #else free0(v); #endif } } #endif namespace fftwpp { inline Complex *ComplexAlign(size_t size) { Complex *v; Array::newAlign(v,size,sizeof(Complex)); return v; } inline double *doubleAlign(size_t size) { double *v; Array::newAlign(v,size,sizeof(Complex)); return v; } template inline void deleteAlign(T *p) { #ifdef HAVE_POSIX_MEMALIGN free(p); #else Array::free0(p); #endif } // Obsolete names: #define FFTWComplex ComplexAlign #define FFTWdouble doubleAlign #define FFTWdelete deleteAlign inline void fftwpp_export_wisdom(void (*emitter)(char c, std::ofstream& s), std::ofstream& s) { fftw_export_wisdom((void (*) (char, void *)) emitter,(void *) &s); } inline int fftwpp_import_wisdom(int (*g)(std::ifstream& s), std::ifstream &s) { return fftw_import_wisdom((int (*) (void *)) g,(void *) &s); } inline void PutWisdom(char c, std::ofstream& s) {s.put(c);} inline int GetWisdom(std::ifstream& s) {return s.get();} // Base clase for fft routines // class fftw { protected: unsigned int doubles; // number of double words in dataset int sign; double norm; fftw_plan plan; bool inplace; unsigned int Dist(unsigned int n, unsigned int stride, unsigned int dist) { return dist ? dist : ((stride == 1) ? n : 1); } unsigned int realsize(unsigned int n, Complex *in, Complex *out=NULL) { return (!out || in == out) ? 2*(n/2+1) : n; } unsigned int realsize(unsigned int n, Complex *in, double *out) { return realsize(n,in,(Complex *) out); } unsigned int realsize(unsigned int n, double *in, Complex *out) { return realsize(n,(Complex *) in,out); } static std::ifstream ifWisdom; static std::ofstream ofWisdom; static bool Wise; static const double twopi; public: // Shift the Fourier origin to (nx/2,0). static void Shift(Complex *data, unsigned int nx, unsigned int ny, int sign=0) { const unsigned int nyp=ny/2+1; Complex *pstop=data+nx*nyp; if(nx % 2 == 0) { int pinc=2*nyp; for(Complex *p=data+nyp; p < pstop; p += pinc) { for(unsigned int j=0; j < nyp; j++) p[j]=-p[j]; } } else { if(sign) { unsigned int c=nx/2; double arg=twopi*c/nx; for(unsigned int i=0; i < nx; i++) { double iarg=i*arg; Complex zeta(cos(iarg),sign*sin(iarg)); Complex *datai=data+i*nyp; for(unsigned int j=0; j < nyp; j++) datai[j] *= zeta; } } else { std::cerr << "Shift for odd nx must be signed and interleaved" << std::endl; exit(1); } } } // Shift the Fourier origin to (nx/2,ny/2,0). static void Shift(Complex *data, unsigned int nx, unsigned int ny, unsigned int nz, int sign=0) { const unsigned int nzp=nz/2+1; const unsigned int nyzp=ny*nzp; if(nx % 2 == 0 && ny % 2 == 0) { const unsigned int pinc=2*nzp; Complex *pstop=data; Complex *p=data; for(unsigned i=0; i < nx; i++) { if(i % 2) p -= nzp; else p += nzp; pstop += nyzp; for(; p < pstop; p += pinc) { for(unsigned int k=0; k < nzp; k++) p[k]=-p[k]; } } } else { if(sign) { unsigned int cx=nx/2; double argx=twopi*cx/nx; unsigned int cy=ny/2; double argy=twopi*cy/ny; for(unsigned i=0; i < nx; i++) { double iarg=i*argx; Complex zetax(cos(iarg),sign*sin(iarg)); Complex *datai=data+nyzp*i; for(unsigned j=0; j < ny; j++) { double jarg=j*argy; Complex zeta=zetax*Complex(cos(jarg),sign*sin(jarg)); Complex *dataij=datai+nzp*j; for(unsigned int k=0; k < nzp; k++) dataij[k] *= zeta; } } } else { std::cerr << "Shift for odd nx or ny must be signed and interleaved" << std::endl; exit(1); } } } static unsigned int effort; static const char *WisdomName; fftw(unsigned int doubles, int sign, unsigned int n=0) : doubles(doubles), sign(sign), norm(1.0/(n ? n : (doubles+1)/2)), plan(NULL) {} virtual ~fftw() {if(plan) fftw_destroy_plan(plan);} virtual fftw_plan Plan(Complex *in, Complex *out)=0; inline void CheckAlign(Complex *p, const char *s) { if((size_t) p % sizeof(Complex) == 0) return; std::cerr << "WARNING: " << s << " array is not " << sizeof(Complex) << "-byte aligned: address " << p << std::endl; } void Setup(Complex *in, Complex *out=NULL) { if(!Wise) LoadWisdom(); bool alloc=!in; if(alloc) in=ComplexAlign((doubles+1)/2); #ifndef NO_CHECK_ALIGN CheckAlign(in,"constructor input"); if(out) CheckAlign(out,"constructor output"); else out=in; #else if(!out) out=in; #endif inplace=(out==in); plan=Plan(in,out); if(!plan) { std::cerr << "Unable to construct FFTW plan" << std::endl; exit(1); } if(alloc) Array::deleteAlign(in,(doubles+1)/2); SaveWisdom(); } void Setup(Complex *in, double *out) {Setup(in,(Complex *) out);} void Setup(double *in, Complex *out=NULL) {Setup((Complex *) in,out);} void LoadWisdom() { ifWisdom.open(WisdomName); fftwpp_import_wisdom(GetWisdom,ifWisdom); ifWisdom.close(); Wise=true; } void SaveWisdom() { ofWisdom.open(WisdomName); fftwpp_export_wisdom(PutWisdom,ofWisdom); ofWisdom.close(); } virtual void Execute(Complex *in, Complex *out, bool=false) { fftw_execute_dft(plan,(fftw_complex *) in,(fftw_complex *) out); } Complex *Setout(Complex *in, Complex *out) { #ifndef NO_CHECK_ALIGN CheckAlign(in,"input"); if(out) CheckAlign(out,"output"); else out=in; #else if(!out) out=in; #endif if(inplace ^ (out == in)) { std::cerr << "ERROR: fft constructor and call must be both in place or both out of place" << std::endl; exit(1); } return out; } void fft(Complex *in, Complex *out=NULL) { out=Setout(in,out); Execute(in,out); } void fft(double *in, Complex *out=NULL) { fft((Complex *) in,out); } void fft(Complex *in, double *out) { fft(in,(Complex *) out); } void fft0(Complex *in, Complex *out=NULL) { out=Setout(in,out); Execute(in,out,true); } void fft0(double *in, Complex *out=NULL) { fft0((Complex *) in,out); } void fft0(Complex *in, double *out) { fft0(in,(Complex *) out); } void Normalize(Complex *out) { unsigned int stop=(doubles+1)/2; for(unsigned int i=0; i < stop; i++) out[i] *= norm; } void Normalize(double *out) { for(unsigned int i=0; i < doubles; i++) out[i] *= norm; } virtual void fftNormalized(Complex *in, Complex *out=NULL) { out=Setout(in,out); Execute(in,out); Normalize(out); } void fftNormalized(Complex *in, double *out) { out=(double *) Setout(in,(Complex *) out); Execute(in,(Complex *) out); Normalize(out); } void fftNormalized(double *in, Complex *out) { fftNormalized((Complex *) in,out); } void fft0Normalized(Complex *in, Complex *out=NULL) { out=Setout(in,out); Execute(in,out,true); Normalize(out); } void fft0Normalized(Complex *in, double *out) { out=(double *) Setout(in,(Complex *) out); Execute(in,(Complex *) out,true); Normalize(out); } void fft0Normalized(double *in, Complex *out) { fft0Normalized((Complex *) in,out); } void fftNormalized(Complex *in, Complex *out, unsigned int nx, unsigned int M, unsigned int stride, unsigned int dist) { if(stride == 1 && dist == nx) fftw::fftNormalized(in,out); else if(stride == nx && dist == 1) fftw::fftNormalized(in,out); else { out=Setout(in,out); Execute(in,out); for(unsigned int k=0; k < M; k++) { for(unsigned int j=0; j < nx; j++) { out[j*stride+k*dist] *= norm; } } } } }; // Compute the complex Fourier transform of n complex values. // Before calling fft(), the arrays in and out (which may coincide) must be // allocated as Complex[n]. // // Out-of-place usage: // // fft1d Forward(n,-1,in,out); // Forward.fft(in,out); // // fft1d Backward(n,1,in,out); // Backward.fft(in,out); // // fft1d Backward(n,1,in,out); // Backward.fftNormalized(in,out); // True inverse of Forward.fft(out,in); // // In-place usage: // // fft1d Forward(n,-1); // Forward.fft(in); // // fft1d Backward(n,1); // Backward.fft(in); // class fft1d : public fftw { unsigned int nx; public: fft1d(unsigned int nx, int sign, Complex *in=NULL, Complex *out=NULL) : fftw(2*nx,sign), nx(nx) {Setup(in,out);} #ifdef __Array_h__ fft1d(int sign, const Array::array1& in, const Array::array1& out=Array::NULL1) : fftw(2*in.Nx(),sign), nx(in.Nx()) {Setup(in,out);} #endif fftw_plan Plan(Complex *in, Complex *out) { return fftw_plan_dft_1d(nx,(fftw_complex *) in,(fftw_complex *) out, sign,effort); } }; // Compute the complex Fourier transform of M complex vectors, each of // length n. // Before calling fft(), the arrays in and out (which may coincide) must be // allocated as Complex[M*n]. // // Out-of-place usage: // // mfft1d Forward(n,-1,M,stride,dist,in,out); // Forward.fft(in,out); // // In-place usage: // // mfft1d Forward(n,-1,M,stride,dist); // Forward.fft(in); // // Notes: // stride is the spacing between the elements of each Complex vector; // dist is the spacing between the first elements of the vectors; // // class mfft1d : public fftw { unsigned int nx; unsigned int M; unsigned int stride; unsigned int dist; public: mfft1d(unsigned int nx, int sign, unsigned int M=1, unsigned int stride=1, unsigned int dist=0, Complex *in=NULL, Complex *out=NULL) : fftw(2*((nx-1)*stride+(M-1)*Dist(nx,stride,dist)+1),sign,nx), nx(nx), M(M), stride(stride), dist(Dist(nx,stride,dist)) {Setup(in,out);} fftw_plan Plan(Complex *in, Complex *out) { int n[1]={nx}; return fftw_plan_many_dft(1,n,M, (fftw_complex *) in,NULL,stride,dist, (fftw_complex *) out,NULL,stride,dist, sign,effort); } void fftNormalized(Complex *in, Complex *out=NULL) { fftw::fftNormalized(in,out,nx,M,stride,dist); } }; // Compute the complex Fourier transform of n real values, using phase sign -1. // Before calling fft(), the array in must be allocated as double[n] and // the array out must be allocated as Complex[n/2+1]. The arrays in and out // may coincide, allocated as Complex[n/2+1]. // // Out-of-place usage: // // rcfft1d Forward(n,in,out); // Forward.fft(in,out); // // In-place usage: // // rcfft1d Forward(n); // Forward.fft(out); // // Notes: // in contains the n real values stored as a Complex array; // out contains the first n/2+1 Complex Fourier values. // class rcfft1d : public fftw { unsigned int nx; public: rcfft1d(unsigned int nx, Complex *out=NULL) : fftw(2*(nx/2+1),-1,nx), nx(nx) {Setup(out);} rcfft1d(unsigned int nx, double *in, Complex *out=NULL) : fftw(realsize(nx,in,out),-1,nx), nx(nx) {Setup(in,out);} #ifdef __Array_h__ rcfft1d(unsigned int nx, const Array::array1& out) : fftw(out.Size(),-1,nx), nx(nx) {Setup(out);} rcfft1d(unsigned int nx, const Array::array1& in, const Array::array1& out=Array::NULL1) : fftw(realsize(nx,in(),out()),-1,nx), nx(nx) {Setup(in,out);} #endif fftw_plan Plan(Complex *in, Complex *out) { return fftw_plan_dft_r2c_1d(nx,(double *) in,(fftw_complex *) out, effort); } void Execute(Complex *in, Complex *out, bool=false) { fftw_execute_dft_r2c(plan,(double *) in,(fftw_complex *) out); } }; // Compute the real inverse Fourier transform of the n/2+1 Complex values // corresponding to the non-negative part of the frequency spectrum, using // phase sign +1. // Before calling fft(), the array in must be allocated as Complex[n/2+1] // and the array out must be allocated as double[n]. The arrays in and out // may coincide, allocated as Complex[n/2+1]. // // Out-of-place usage (input destroyed): // // crfft1d Backward(n,in,out); // Backward.fft(in,out); // // In-place usage: // // crfft1d Backward(n); // Backward.fft(in); // // Notes: // in contains the first n/2+1 Complex Fourier values. // out contains the n real values stored as a Complex array; // class crfft1d : public fftw { unsigned int nx; public: crfft1d(unsigned int nx, double *out=NULL) : fftw(2*(nx/2+1),1,nx), nx(nx) {Setup(out);} crfft1d(unsigned int nx, Complex *in, double *out=NULL) : fftw(realsize(nx,in,out),1,nx), nx(nx) {Setup(in,out);} #ifdef __Array_h__ crfft1d(unsigned int nx, const Array::array1& out) : fftw(out.Size(),1,nx), nx(nx) {Setup(out);} crfft1d(unsigned int nx, const Array::array1& in) : fftw(2*in.Size(),1,nx), nx(nx) {Setup(in);} crfft1d(unsigned int nx, const Array::array1& in, const Array::array1& out) : fftw(out.Size(),1,nx), nx(nx) {Setup(in,out);} #endif fftw_plan Plan(Complex *in, Complex *out) { return fftw_plan_dft_c2r_1d(nx,(fftw_complex *) in,(double *) out,effort); } void Execute(Complex *in, Complex *out, bool=false) { fftw_execute_dft_c2r(plan,(fftw_complex *) in,(double *) out); } }; // Compute the real Fourier transform of M real vectors, each of length n, // using phase sign -1. Before calling fft(), the array in must be // allocated as double[M*n] and the array out must be allocated as // Complex[M*(n/2+1)]. The arrays in and out may coincide, // allocated as Complex[M*(n/2+1)]. // // Out-of-place usage: // // mrcfft1d Forward(n,M,stride,dist,in,out); // Forward.fft(in,out); // // In-place usage: // // mrcfft1d Forward(n,M,stride,dist); // Forward.fft(out); // // Notes: // stride is the spacing between the elements of each Complex vector; // dist is the spacing between the first elements of the vectors; // in contains the n real values stored as a Complex array; // out contains the first n/2+1 Complex Fourier values. // class mrcfft1d : public fftw { unsigned int nx; unsigned int M; unsigned int stride; unsigned int dist; public: mrcfft1d(unsigned int nx, unsigned int M=1, unsigned int stride=1, unsigned int dist=0, Complex *out=NULL) : fftw(2*(nx/2*stride+(M-1)*Dist(nx,stride,dist)+1),-1,nx), nx(nx), M(M), stride(stride), dist(Dist(nx,stride,dist)) {Setup(out);} mrcfft1d(unsigned int nx, unsigned int M=1, unsigned int stride=1, unsigned int dist=0, double *in=NULL, Complex *out=NULL) : fftw(2*(nx/2*stride+(M-1)*Dist(nx,stride,dist)+1),-1,nx), nx(nx), M(M), stride(stride), dist(Dist(nx,stride,dist)) {Setup(in,out);} fftw_plan Plan(Complex *in, Complex *out) { const int n[1]={nx}; return fftw_plan_many_dft_r2c(1,n,M, (double *) in,NULL,stride,2*dist, (fftw_complex *) out,NULL,stride,dist, effort); } void Execute(Complex *in, Complex *out, bool=false) { fftw_execute_dft_r2c(plan,(double *) in,(fftw_complex *) out); } void fftNormalized(Complex *in, Complex *out=NULL) { fftw::fftNormalized(in,out,nx/2+1,M,stride,dist); } }; // Compute the real inverse Fourier transform of M complex vectors, each of // length n/2+1, corresponding to the non-negative parts of the frequency // spectra, using phase sign +1. Before calling fft(), the array in must be // allocated as Complex[M*(n/2+1)] and the array out must be allocated as // double[M*n]. The arrays in and out may coincide, // allocated as Complex[M*(n/2+1)]. // // Out-of-place usage (input destroyed): // // mcrfft1d Backward(n,M,stride,dist,in,out); // Backward.fft(in,out); // // In-place usage: // // mcrfft1d Backward(n,M,stride,dist); // Backward.fft(out); // // Notes: // stride is the spacing between the elements of each Complex vector; // dist is the spacing between the first elements of the vectors; // in contains the first n/2+1 Complex Fourier values. // out contains the n real values stored as a Complex array; // class mcrfft1d : public fftw { unsigned int nx; unsigned int M; unsigned int stride; unsigned int dist; public: mcrfft1d(unsigned int nx, unsigned int M=1, unsigned int stride=1, unsigned int dist=0, Complex *in=NULL, double *out=NULL) : fftw((realsize(nx,in,out)-2)*stride+2*(M-1)*Dist(nx,stride,dist)+2,1,nx), nx(nx), M(M), stride(stride), dist(Dist(nx,stride,dist)) {Setup(in,out);} fftw_plan Plan(Complex *in, Complex *out) { const int n[1]={nx}; return fftw_plan_many_dft_c2r(1,n,M, (fftw_complex *) in,NULL,stride,dist, (double *) out,NULL,stride,2*dist, effort); } void Execute(Complex *in, Complex *out, bool=false) { fftw_execute_dft_c2r(plan,(fftw_complex *) in,(double *) out); } void fftNormalized(Complex *in, Complex *out=NULL) { fftw::fftNormalized(in,out,(nx/2+1),M,stride,dist); } }; // Compute the complex two-dimensional Fourier transform of nx times ny // complex values. Before calling fft(), the arrays in and out (which may // coincide) must be allocated as Complex[nx*ny]. // // Out-of-place usage: // // fft2d Forward(nx,ny,-1,in,out); // Forward.fft(in,out); // // fft2d Backward(nx,ny,1,in,out); // Backward.fft(in,out); // // fft2d Backward(nx,ny,1,in,out); // Backward.fftNormalized(in,out); // True inverse of Forward.fft(out,in); // // In-place usage: // // fft2d Forward(nx,ny,-1); // Forward.fft(in); // // fft2d Backward(nx,ny,1); // Backward.fft(in); // // Note: // in[ny*i+j] contains the ny Complex values for each i=0,...,nx-1. // class fft2d : public fftw { unsigned int nx; unsigned int ny; public: fft2d(unsigned int nx, unsigned int ny, int sign, Complex *in=NULL, Complex *out=NULL) : fftw(2*nx*ny,sign), nx(nx), ny(ny) {Setup(in,out);} #ifdef __Array_h__ fft2d(int sign, const Array::array2& in, const Array::array2& out=Array::NULL2) : fftw(2*in.Size(),sign), nx(in.Nx()), ny(in.Ny()) {Setup(in,out);} #endif fftw_plan Plan(Complex *in, Complex *out) { return fftw_plan_dft_2d(nx,ny,(fftw_complex *) in,(fftw_complex *) out, sign,effort); } void Execute(Complex *in, Complex *out, bool=false) { fftw_execute_dft(plan,(fftw_complex *) in,(fftw_complex *) out); } }; // Compute the complex two-dimensional Fourier transform of nx times ny real // values, using phase sign -1. // Before calling fft(), the array in must be allocated as double[nx*ny] and // the array out must be allocated as Complex[nx*(ny/2+1)]. The arrays in // and out may coincide, allocated as Complex[nx*(ny/2+1)]. // // Out-of-place usage: // // rcfft2d Forward(nx,ny,in,out); // Forward.fft(in,out); // Origin of Fourier domain at (0,0) // // In-place usage: // // rcfft2d Forward(nx,ny); // Forward.fft(in); // Origin of Fourier domain at (0,0) // Forward.fft0(in); // Origin of Fourier domain at (nx/2,0) // // Notes: // in contains the nx*ny real values stored as a Complex array; // out contains the upper-half portion (ky >= 0) of the Complex transform. // class rcfft2d : public fftw { unsigned int nx; unsigned int ny; public: rcfft2d(unsigned int nx, unsigned int ny, Complex *out=NULL) : fftw(2*nx*(ny/2+1),-1,nx*ny), nx(nx), ny(ny) {Setup(out);} rcfft2d(unsigned int nx, unsigned int ny, double *in, Complex *out=NULL) : fftw(nx*realsize(ny,in,out),-1,nx*ny), nx(nx), ny(ny) {Setup(in,out);} #ifdef __Array_h__ rcfft2d(unsigned int ny, const Array::array2& out) : fftw(out.Size(),-1,out.Nx()*ny), nx(out.Nx()), ny(ny) {Setup(out);} rcfft2d(unsigned int ny, const Array::array2& in, const Array::array2& out=Array::NULL2) : fftw(in.Nx()*realsize(ny,in(),out()),-1,in.Nx()*ny), nx(in.Nx()), ny(ny) {Setup(in,out);} #endif fftw_plan Plan(Complex *in, Complex *out) { return fftw_plan_dft_r2c_2d(nx,ny,(double *) in,(fftw_complex *) out, effort); } void Execute(Complex *in, Complex *out, bool shift=false) { if(shift && inplace) Shift(in,nx,ny); fftw_execute_dft_r2c(plan,(double *) in,(fftw_complex *) out); } }; // Compute the real two-dimensional inverse Fourier transform of the // nx*(ny/2+1) Complex values corresponding to the spectral values in the // half-plane ky >= 0, using phase sign +1. // Before calling fft(), the array in must be allocated as // Complex[nx*(ny+1)/2] and the array out must be allocated as // double[nx*ny]. The arrays in and out may coincide, // allocated as Complex[nx*(ny/2+1)]. // // Out-of-place usage (input destroyed): // // crfft2d Backward(nx,ny,in,out); // Backward.fft(in,out); // Origin of Fourier domain at (0,0) // Backward.fft0(in,out); // Origin of Fourier domain at (nx/2,0) // // In-place usage: // // crfft2d Backward(nx,ny); // Backward.fft(in); // Origin of Fourier domain at (0,0) // Backward.fft0(in); // Origin of Fourier domain at (nx/2,0) // // Notes: // in contains the upper-half portion (ky >= 0) of the Complex transform; // out contains the nx*ny real values stored as a Complex array. // class crfft2d : public fftw { unsigned int nx; unsigned int ny; public: crfft2d(unsigned int nx, unsigned int ny, Complex *in=NULL) : fftw(2*nx*(ny/2+1),1,nx*ny), nx(nx), ny(ny) {Setup(in);} crfft2d(unsigned int nx, unsigned int ny, Complex *in, double *out) : fftw(nx*realsize(ny,in,out),1,nx*ny), nx(nx), ny(ny) {Setup(in,out);} #ifdef __Array_h__ crfft2d(unsigned int ny, const Array::array2& out) : fftw(out.Size(),1,out.Nx()*ny), nx(out.Nx()), ny(ny) {Setup(out);} crfft2d(unsigned int ny, const Array::array2& in) : fftw(2*in.Size(),1,in.Nx()*ny), nx(in.Nx()), ny(ny) {Setup(in);} crfft2d(unsigned int ny, const Array::array2& in, const Array::array2& out) : fftw(out.Size(),1,in.Nx()*ny), nx(in.Nx()), ny(ny) {Setup(in,out);} #endif fftw_plan Plan(Complex *in, Complex *out) { return fftw_plan_dft_c2r_2d(nx,ny,(fftw_complex *) in,(double *) out, effort); } void Execute(Complex *in, Complex *out, bool shift=false) { fftw_execute_dft_c2r(plan,(fftw_complex *) in,(double *) out); if(shift) Shift(out,nx,ny); } }; // Compute the complex three-dimensional Fourier transform of // nx times ny times nz complex values. Before calling fft(), the arrays in // and out (which may coincide) must be allocated as Complex[nx*ny*nz]. // // Out-of-place usage: // // fft3d Forward(nx,ny,nz,-1,in,out); // Forward.fft(in,out); // // fft3d Backward(nx,ny,nz,1,in,out); // Backward.fft(in,out); // // fft3d Backward(nx,ny,nz,1,in,out); // Backward.fftNormalized(in,out); // True inverse of Forward.fft(out,in); // // In-place usage: // // fft3d Forward(nx,ny,nz,-1); // Forward.fft(in); // // fft3d Backward(nx,ny,nz,1); // Backward.fft(in); // // Note: // in[nz*(ny*i+j)+k] contains the (i,j,k)th Complex value, // indexed by i=0,...,nx-1, j=0,...,ny-1, and k=0,...,nz-1. // class fft3d : public fftw { unsigned int nx; unsigned int ny; unsigned int nz; public: fft3d(unsigned int nx, unsigned int ny, unsigned int nz, int sign, Complex *in=NULL, Complex *out=NULL) : fftw(2*nx*ny*nz,sign), nx(nx), ny(ny), nz(nz) {Setup(in,out);} #ifdef __Array_h__ fft3d(int sign, const Array::array3& in, const Array::array3& out=Array::NULL3) : fftw(2*in.Size(),sign), nx(in.Nx()), ny(in.Ny()), nz(in.Nz()) {Setup(in,out);} #endif fftw_plan Plan(Complex *in, Complex *out) { return fftw_plan_dft_3d(nx,ny,nz,(fftw_complex *) in, (fftw_complex *) out, sign, effort); } }; // Compute the complex two-dimensional Fourier transform of // nx times ny times nz real values, using phase sign -1. // Before calling fft(), the array in must be allocated as double[nx*ny*nz] // and the array out must be allocated as Complex[nx*ny*(nz/2+1)]. The // arrays in and out may coincide, allocated as Complex[nx*ny*(nz/2+1)]. // // Out-of-place usage: // // rcfft3d Forward(nx,ny,nz,in,out); // Forward.fft(in,out); // Origin of Fourier domain at (0,0) // // In-place usage: // // rcfft3d Forward(nx,ny,nz); // Forward.fft(in); // Origin of Fourier domain at (0,0) // Forward.fft0(in); // Origin of Fourier domain at (nx/2,ny/2,0) // // Notes: // in contains the nx*ny*nz real values stored as a Complex array; // out contains the upper-half portion (kz >= 0) of the Complex transform. // class rcfft3d : public fftw { unsigned int nx; unsigned int ny; unsigned int nz; public: rcfft3d(unsigned int nx, unsigned int ny, unsigned int nz, Complex *out=NULL) : fftw(2*nx*ny*(nz/2+1),-1,nx*ny*nz), nx(nx), ny(ny), nz(nz) {Setup(out);} rcfft3d(unsigned int nx, unsigned int ny, unsigned int nz, double *in, Complex *out=NULL) : fftw(nx*ny*realsize(nz,in,out),-1,nx*ny*nz), nx(nx), ny(ny), nz(nz) {Setup(in,out);} #ifdef __Array_h__ rcfft3d(unsigned int nz, const Array::array3& out) : fftw(out.Size(),-1,out.Nx()*out.Ny()*nz), nx(out.Nx()), ny(out.Ny()), nz(nz) {Setup(out);} rcfft3d(unsigned int nz, const Array::array3& in, const Array::array3& out=Array::NULL3) : fftw(in.Nx()*in.Ny()*realsize(nz,in(),out()),-1,in.Size()), nx(in.Nx()), ny(in.Ny()), nz(nz) {Setup(in,out);} #endif fftw_plan Plan(Complex *in, Complex *out) { return fftw_plan_dft_r2c_3d(nx,ny,nz,(double *) in,(fftw_complex *) out, effort); } void Execute(Complex *in, Complex *out, bool shift=false) { if(shift && inplace) Shift(in,nx,ny,nz); fftw_execute_dft_r2c(plan,(double *) in,(fftw_complex *) out); } }; // Compute the real two-dimensional inverse Fourier transform of the // nx*ny*(nz/2+1) Complex values corresponding to the spectral values in the // half-plane kz >= 0, using phase sign +1. // Before calling fft(), the array in must be allocated as // Complex[nx*ny*(nz+1)/2] and the array out must be allocated as // double[nx*ny*nz]. The arrays in and out may coincide, // allocated as Complex[nx*ny*(nz/2+1)]. // // Out-of-place usage (input destroyed): // // crfft3d Backward(nx,ny,nz,in,out); // Backward.fft(in,out); // Origin of Fourier domain at (0,0) // Backward.fft0(in,out); // Origin of Fourier domain at (nx/2,ny/2,0) // // In-place usage: // // crfft3d Backward(nx,ny,nz); // Backward.fft(in); // Origin of Fourier domain at (0,0) // Backward.fft0(in); // Origin of Fourier domain at (nx/2,ny/2,0) // // Notes: // in contains the upper-half portion (kz >= 0) of the Complex transform; // out contains the nx*ny*nz real values stored as a Complex array. // class crfft3d : public fftw { unsigned int nx; unsigned int ny; unsigned int nz; public: crfft3d(unsigned int nx, unsigned int ny, unsigned int nz, Complex *in=NULL) : fftw(2*nx*ny*(nz/2+1),1,nx*ny*nz), nx(nx), ny(ny), nz(nz) {Setup(in);} crfft3d(unsigned int nx, unsigned int ny, unsigned int nz, Complex *in, double *out=NULL) : fftw(nx*ny*(realsize(nz,in,out)),1,nx*ny*nz), nx(nx), ny(ny), nz(nz) {Setup(in,out);} #ifdef __Array_h__ crfft3d(unsigned int nz, const Array::array3& out) : fftw(out.Size(),1,out.Nx()*out.Ny()*nz), nx(out.Nx()), ny(out.Ny()), nz(nz) {Setup(out);} crfft3d(unsigned int nz, const Array::array3& in) : fftw(2*in.Size(),1,in.Nx()*in.Ny()*nz), nx(in.Nx()), ny(in.Ny()), nz(nz) {Setup(in);} crfft3d(unsigned int nz, const Array::array3& in, const Array::array3& out) : fftw(out.Size(),1,in.Nx()*in.Ny()*nz), nx(in.Nx()), ny(in.Ny()), nz(nz) {Setup(in,out);} #endif fftw_plan Plan(Complex *in, Complex *out) { return fftw_plan_dft_c2r_3d(nx,ny,nz,(fftw_complex *) in,(double *) out, effort); } void Execute(Complex *in, Complex *out, bool shift=false) { fftw_execute_dft_c2r(plan,(fftw_complex *) in,(double *) out); if(shift) Shift(out,nx,ny,nz); } }; } #endif