// Slide demo. // Command-line options to enable stepping and/or reverse video: // asy [-u stepping=true] [-u reverse=true] slidedemo orientation=Landscape; import slide; import three; viewportsize=pagewidth-2pagemargin; usersetting(); // Commands to generate optional bibtex citations: // asy slidedemo // bibtex slidedemo_ // asy slidedemo // bibliographystyle("alpha"); // Generated needed files if they don't already exist. asy(nativeformat(),"Pythagoras","log","PythagoreanTree"); // Optional background color or header: // import x11colors; // fill(background,box((-1,-1),(1,1)),Azure); // label(background,"Header",(0,startposition.y)); titlepage(title="Slides with {\tt Asymptote}: A Demo", author="John C. Bowman", institution="University of Alberta", date="\today", url="http://asymptote.sf.net"); outline("Basic Commands"); item("item"); subitem("subitem"); remark("remark"); item("draw \cite{Hobby86,Knuth86b}"); item("figure"); item("embedded and external animations: see {\tt slidemovie.asy}"); title("Items"); item("First item."); subitem("First subitem."); subitem("Second subitem."); item("Second item."); equation("a^2+b^2=c^2."); equations("\frac{\sin^2\theta+\cos^2\theta}{\cos^2\theta} &=&\frac{1}{\cos^2\theta}\nonumber\\ &=&\sec^2\theta."); remark("A remark."); item("To enable pausing between bullets:"); remark("{\tt asy -u stepping=true}"); item("To enable reverse video:"); remark("{\tt asy -u reverse=true}"); title("Can draw on a slide, preserving the aspect ratio:"); picture pic,pic2; draw(pic,unitcircle); add(pic.fit(15cm)); step(); fill(pic2,unitcircle,paleblue); label(pic2,"$\pi$",(0,0),fontsize(500)); add(pic2.fit(15cm)); newslide(); item("The slide \Red{title} \Green{can} \Blue{be} omitted."); figure("Pythagoras","height=12cm", "A simple proof of Pythagoras' Theorem."); newslide(); item("Single skip:"); skip(); item("Double skip:"); skip(2); figure(new string[] {"log."+nativeformat(),"PythagoreanTree."+nativeformat()}, "width=10cm",new string[] {"{\tt log.asy}","{\tt PythagoreanTree.asy}"}, "Examples of {\tt Asymptote} output."); title("Embedded Interactive 3D Graphics"); picture pic; import graph3; import solids; viewportmargin=(0,1cm); currentprojection=orthographic(1,0,10,up=Y); pen color=green; real alpha=-240; real f(real x) {return sqrt(x);} pair F(real x) {return (x,f(x));} triple F3(real x) {return (x,f(x),0);} path p=graph(pic,F,0,1,n=30,operator ..)--(1,0)--cycle; path3 p3=path3(p); revolution a=revolution(p3,X,alpha,0); draw(pic,surface(a),color); draw(pic,p3,blue); surface s=surface(p); draw(pic,s,color); draw(pic,rotate(alpha,X)*s,color); xaxis3(pic,Label("$x$",1),xmax=1.25,dashed,Arrow3); yaxis3(pic,Label("$y$",1),Arrow3); dot(pic,"$(1,1)$",(1,1,0)); arrow(pic,"$y=\sqrt{x}$",F3(0.8),Y,0.75cm,red); real r=0.4; draw(pic,F3(r)--(1,f(r),0),red); real x=(1+r)/2; draw(pic,"$r$",(x,0,0)--(x,f(r),0),X+0.2Z,red,Arrow3); draw(pic,arc(1.1X,0.4,90,90,3,-90),Arrow3); add(pic.fit(8.5cm)); viewportsize=viewportmargin=0; title("\mbox{Asymptote: 2D \& 3D Vector Graphics Language}"); asyinclude("logo3"); skip(); center("\tt http://asymptote.sf.net"); center("(freely available under the GNU public license)"); bibliography("refs");