/***** * drawsurface.cc * * Stores a surface that has been added to a picture. *****/ #include "drawsurface.h" #include "arrayop.h" namespace camp { const double pixel=1.0; // Adaptive rendering constant. const triple drawElement::zero; using vm::array; #ifdef HAVE_GL void storecolor(GLfloat *colors, int i, const vm::array &pens, int j) { pen p=vm::read(pens,j); p.torgb(); colors[i]=p.red(); colors[i+1]=p.green(); colors[i+2]=p.blue(); colors[i+3]=p.opacity(); } #endif void drawSurface::bounds(bbox3& b) { double x,y,z; double X,Y,Z; if(straight) { double *v=vertices[0]; x=v[0]; y=v[1]; z=v[2]; X=x; Y=y; Z=z; for(size_t i=1; i < 4; ++i) { double *v=vertices[i]; double vx=v[0]; x=min(x,vx); X=max(X,vx); double vy=v[1]; y=min(y,vy); Y=max(Y,vy); double vz=v[2]; z=min(z,vz); Z=max(Z,vz); } } else { static double c1[16]; for(int i=0; i < 16; ++i) c1[i]=controls[i][0]; double c0=c1[0]; double fuzz=sqrtFuzz*run::norm(c1,16); x=bound(c1,min,b.empty ? c0 : min(c0,b.left),fuzz); X=bound(c1,max,b.empty ? c0 : max(c0,b.right),fuzz); for(int i=0; i < 16; ++i) c1[i]=controls[i][1]; c0=c1[0]; fuzz=sqrtFuzz*run::norm(c1,16); y=bound(c1,min,b.empty ? c0 : min(c0,b.bottom),fuzz); Y=bound(c1,max,b.empty ? c0 : max(c0,b.top),fuzz); for(int i=0; i < 16; ++i) c1[i]=controls[i][2]; c0=c1[0]; fuzz=sqrtFuzz*run::norm(c1,16); z=bound(c1,min,b.empty ? c0 : min(c0,b.lower),fuzz); Z=bound(c1,max,b.empty ? c0 : max(c0,b.upper),fuzz); } Min=triple(x,y,z); Max=triple(X,Y,Z); b.add(Min); b.add(Max); } void drawSurface::ratio(pair &b, double (*m)(double, double), double fuzz, bool &first) { if(straight) { if(first) { first=false; double *ci=vertices[0]; triple v=triple(ci[0],ci[1],ci[2]); b=pair(xratio(v),yratio(v)); } double x=b.getx(); double y=b.gety(); for(size_t i=0; i < 4; ++i) { double *ci=vertices[i]; triple v=triple(ci[0],ci[1],ci[2]); x=m(x,xratio(v)); y=m(y,yratio(v)); } b=pair(x,y); } else { static triple c3[16]; for(int i=0; i < 16; ++i) { double *ci=controls[i]; c3[i]=triple(ci[0],ci[1],ci[2]); } if(first) { triple v=c3[0]; b=pair(xratio(v),yratio(v)); first=false; } b=pair(bound(c3,m,xratio,b.getx(),fuzz),bound(c3,m,yratio,b.gety(),fuzz)); } } bool drawSurface::write(prcfile *out, unsigned int *, array *, array *, double, groupsmap&) { if(invisible || !prc) return true; PRCmaterial m(ambient,diffuse,emissive,specular,opacity,PRCshininess); if(straight) out->addRectangle(vertices,m); else out->addPatch(controls,m); return true; } // return the perpendicular displacement of a point z from the plane // through u with unit normal n. inline triple displacement2(const Triple& z, const Triple& u, const triple& n) { triple Z=triple(z)-triple(u); return n != triple(0,0,0) ? dot(Z,n)*n : Z; } inline triple maxabs(triple u, triple v) { return triple(max(fabs(u.getx()),fabs(v.getx())), max(fabs(u.gety()),fabs(v.gety())), max(fabs(u.getz()),fabs(v.getz()))); } inline triple displacement(const Triple& z0, const Triple& c0, const Triple& c1, const Triple& z1) { triple Z0(z0); triple Z1(z1); return maxabs(displacement(triple(c0[0],c0[1],c0[2]),Z0,Z1), displacement(triple(c1[0],c1[1],c1[2]),Z0,Z1)); } void drawSurface::displacement() { #ifdef HAVE_GL if(normal != zero) { d=zero; if(!straight) { for(size_t i=1; i < 16; ++i) d=camp::maxabs(d,camp::displacement2(controls[i],controls[0],normal)); dperp=d; for(size_t i=0; i < 4; ++i) d=camp::maxabs(d,camp::displacement(controls[4*i],controls[4*i+1], controls[4*i+2],controls[4*i+3])); for(size_t i=0; i < 4; ++i) d=camp::maxabs(d,camp::displacement(controls[i],controls[i+4], controls[i+8],controls[i+12])); } } #endif } inline double fraction(double d, double size) { return size == 0 ? 1.0 : min(fabs(d)/size,1.0); } // estimate the viewport fraction associated with the displacement d inline double fraction(const triple& d, const triple& size) { return max(max(fraction(d.getx(),size.getx()), fraction(d.gety(),size.gety())), fraction(d.getz(),size.getz())); } void drawSurface::render(GLUnurbs *nurb, double size2, const triple& Min, const triple& Max, double perspective, bool transparent) { #ifdef HAVE_GL if(invisible || ((colors ? colors[3]+colors[7]+colors[11]+colors[15] < 4.0 : diffuse.A < 1.0) ^ transparent)) return; double s; static GLfloat Normal[3]; static GLfloat v[16]; static GLfloat v1[16]; static GLfloat v2[16]; bool havebillboard=interaction == BILLBOARD; triple m,M; if(perspective || !havebillboard) { initMatrix(v1,v2); glPushMatrix(); glMultMatrixf(v1); glGetFloatv(GL_MODELVIEW_MATRIX,v); glPopMatrix(); bbox3 B(v[0],v[1],v[2]); B.addnonempty(v[4],v[5],v[6]); B.addnonempty(v[8],v[9],v[10]); B.addnonempty(v[12],v[13],v[14]); glPushMatrix(); glMultMatrixf(v2); glGetFloatv(GL_MODELVIEW_MATRIX,v); glPopMatrix(); B.addnonempty(v[0],v[1],v[2]); B.addnonempty(v[4],v[5],v[6]); B.addnonempty(v[8],v[9],v[10]); B.addnonempty(v[12],v[13],v[14]); m=B.Min(); M=B.Max(); } if(perspective) { double f=m.getz()*perspective; double F=M.getz()*perspective; s=max(f,F); if(!havebillboard && (M.getx() < min(f*Min.getx(),F*Min.getx()) || m.getx() > max(f*Max.getx(),F*Max.getx()) || M.gety() < min(f*Min.gety(),F*Min.gety()) || m.gety() > max(f*Max.gety(),F*Max.gety()) || M.getz() < Min.getz() || m.getz() > Max.getz())) return; } else { s=1.0; if(!havebillboard && (M.getx() < Min.getx() || m.getx() > Max.getx() || M.gety() < Min.gety() || m.gety() > Max.gety() || M.getz() < Min.getz() || m.getz() > Max.getz())) return; } bool ambientdiffuse=true; bool emission=true; if(colors) { glEnable(GL_COLOR_MATERIAL); if(lighton) { glColorMaterial(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE); ambientdiffuse=false; } else { glColorMaterial(GL_FRONT_AND_BACK,GL_EMISSION); emission=false; } } if(ambientdiffuse) { GLfloat Diffuse[]={diffuse.R,diffuse.G,diffuse.B,diffuse.A}; glMaterialfv(GL_FRONT_AND_BACK,GL_DIFFUSE,Diffuse); GLfloat Ambient[]={ambient.R,ambient.G,ambient.B,ambient.A}; glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT,Ambient); } if(emission) { GLfloat Emissive[]={emissive.R,emissive.G,emissive.B,emissive.A}; glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION,Emissive); } GLfloat Specular[]={specular.R,specular.G,specular.B,specular.A}; glMaterialfv(GL_FRONT_AND_BACK,GL_SPECULAR,Specular); glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,128.0*shininess); triple size3=triple(s*(Max.getx()-Min.getx()),s*(Max.gety()-Min.gety()), Max.getz()-Min.getz()); bool havenormal=normal != zero; if(havebillboard) BB.init(); if(!havenormal || (!straight && fraction(d,size3)*size2 >= pixel)) { if(lighton) { if(havenormal && fraction(dperp,size3)*size2 <= 0.1) { if(havebillboard) BB.store(Normal,normal,zero); else store(Normal,normal); glNormal3fv(Normal); gluNurbsCallback(nurb,GLU_NURBS_NORMAL,NULL); } else gluNurbsCallback(nurb,GLU_NURBS_NORMAL,(_GLUfuncptr) glNormal3fv); } static GLfloat Controls[48]; if(havebillboard) { for(size_t i=0; i < 16; ++i) BB.store(Controls+3*i,controls[i],center); } else { for(size_t i=0; i < 16; ++i) store(Controls+3*i,controls[i]); } static GLfloat bezier[]={0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0}; gluBeginSurface(nurb); gluNurbsSurface(nurb,8,bezier,8,bezier,12,3,Controls,4,4,GL_MAP2_VERTEX_3); if(colors) { static GLfloat linear[]={0.0,0.0,1.0,1.0}; gluNurbsSurface(nurb,4,linear,4,linear,8,4,colors,2,2,GL_MAP2_COLOR_4); } gluEndSurface(nurb); } else { GLfloat Vertices[12]; if(havebillboard) { for(size_t i=0; i < 4; ++i) BB.store(Vertices+3*i,vertices[i],center); } else { for(size_t i=0; i < 4; ++i) store(Vertices+3*i,vertices[i]); } if(havebillboard) BB.store(Normal,normal,zero); else store(Normal,normal); glBegin(GL_QUADS); if(lighton) glNormal3fv(Normal); if(colors) glColor4fv(colors); glVertex3fv(Vertices); if(colors) glColor4fv(colors+8); glVertex3fv(Vertices+6); if(colors) glColor4fv(colors+12); glVertex3fv(Vertices+9); if(colors) glColor4fv(colors+4); glVertex3fv(Vertices+3); glEnd(); } if(colors) glDisable(GL_COLOR_MATERIAL); #endif } drawElement *drawSurface::transformed(const array& t) { return new drawSurface(t,this); } bool drawNurbs::write(prcfile *out, unsigned int *, array *, array *, double, groupsmap&) { if(invisible) return true; PRCmaterial m(ambient,diffuse,emissive,specular,opacity,PRCshininess); out->addSurface(udegree,vdegree,nu,nv,controls,uknots,vknots,m,weights); return true; } // Approximate bounds by bounding box of control polyhedron. void drawNurbs::bounds(bbox3& b) { size_t n=nu*nv; double *v=controls[0]; double x=v[0]; double y=v[1]; double z=v[2]; double X=x; double Y=y; double Z=z; for(size_t i=1; i < n; ++i) { double *v=controls[i]; double vx=v[0]; x=min(x,vx); X=max(X,vx); double vy=v[1]; y=min(y,vy); Y=max(Y,vy); double vz=v[2]; z=min(z,vz); Z=max(Z,vz); } Min=triple(x,y,z); Max=triple(X,Y,Z); b.add(Min); b.add(Max); } drawElement *drawNurbs::transformed(const array& t) { return new drawNurbs(t,this); } void drawNurbs::ratio(pair &b, double (*m)(double, double), double, bool &first) { size_t n=nu*nv; if(first) { first=false; double *ci=controls[0]; triple v=triple(ci[0],ci[1],ci[2]); b=pair(xratio(v),yratio(v)); } double x=b.getx(); double y=b.gety(); for(size_t i=0; i < n; ++i) { double *ci=controls[i]; triple v=triple(ci[0],ci[1],ci[2]); x=m(x,xratio(v)); y=m(y,yratio(v)); } b=pair(x,y); } void drawNurbs::displacement() { #ifdef HAVE_GL size_t n=nu*nv; size_t nuknots=udegree+nu+1; size_t nvknots=vdegree+nv+1; if(Controls == NULL) { Controls=new(UseGC) GLfloat[(weights ? 4 : 3)*n]; uKnots=new(UseGC) GLfloat[nuknots]; vKnots=new(UseGC) GLfloat[nvknots]; } if(weights) for(size_t i=0; i < n; ++i) store(Controls+4*i,controls[i],weights[i]); else for(size_t i=0; i < n; ++i) store(Controls+3*i,controls[i]); for(size_t i=0; i < nuknots; ++i) uKnots[i]=uknots[i]; for(size_t i=0; i < nvknots; ++i) vKnots[i]=vknots[i]; #endif } void drawNurbs::render(GLUnurbs *nurb, double size2, const triple& Min, const triple& Max, double perspective, bool transparent) { #ifdef HAVE_GL if(invisible || ((colors ? colors[3]+colors[7]+colors[11]+colors[15] < 4.0 : diffuse.A < 1.0) ^ transparent)) return; static GLfloat v[16]; static GLfloat v1[16]; static GLfloat v2[16]; initMatrix(v1,v2); glPushMatrix(); glMultMatrixf(v1); glGetFloatv(GL_MODELVIEW_MATRIX,v); glPopMatrix(); bbox3 B(v[0],v[1],v[2]); B.addnonempty(v[4],v[5],v[6]); B.addnonempty(v[8],v[9],v[10]); B.addnonempty(v[12],v[13],v[14]); glPushMatrix(); glMultMatrixf(v2); glGetFloatv(GL_MODELVIEW_MATRIX,v); glPopMatrix(); B.addnonempty(v[0],v[1],v[2]); B.addnonempty(v[4],v[5],v[6]); B.addnonempty(v[8],v[9],v[10]); B.addnonempty(v[12],v[13],v[14]); triple m=B.Min(); triple M=B.Max(); double s; if(perspective) { double f=m.getz()*perspective; double F=M.getz()*perspective; s=max(f,F); if(M.getx() < min(f*Min.getx(),F*Min.getx()) || m.getx() > max(f*Max.getx(),F*Max.getx()) || M.gety() < min(f*Min.gety(),F*Min.gety()) || m.gety() > max(f*Max.gety(),F*Max.gety()) || M.getz() < Min.getz() || m.getz() > Max.getz()) return; } else { s=1.0; if(M.getx() < Min.getx() || m.getx() > Max.getx() || M.gety() < Min.gety() || m.gety() > Max.gety() || M.getz() < Min.getz() || m.getz() > Max.getz()) return; } bool ambientdiffuse=true; bool emission=true; if(colors) { glEnable(GL_COLOR_MATERIAL); if(lighton) { glColorMaterial(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE); ambientdiffuse=false; } else { glColorMaterial(GL_FRONT_AND_BACK,GL_EMISSION); emission=false; } } if(ambientdiffuse) { GLfloat Diffuse[]={diffuse.R,diffuse.G,diffuse.B,diffuse.A}; glMaterialfv(GL_FRONT_AND_BACK,GL_DIFFUSE,Diffuse); GLfloat Ambient[]={ambient.R,ambient.G,ambient.B,ambient.A}; glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT,Ambient); } if(emission) { GLfloat Emissive[]={emissive.R,emissive.G,emissive.B,emissive.A}; glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION,Emissive); } GLfloat Specular[]={specular.R,specular.G,specular.B,specular.A}; glMaterialfv(GL_FRONT_AND_BACK,GL_SPECULAR,Specular); glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,128.0*shininess); gluNurbsCallback(nurb,GLU_NURBS_NORMAL,(_GLUfuncptr) glNormal3fv); gluBeginSurface(nurb); int uorder=udegree+1; int vorder=vdegree+1; size_t stride=weights ? 4 : 3; gluNurbsSurface(nurb,uorder+nu,uKnots,vorder+nv,vKnots,stride*nv,stride, Controls,uorder,vorder, weights ? GL_MAP2_VERTEX_4 : GL_MAP2_VERTEX_3); if(colors) { static GLfloat linear[]={0.0,0.0,1.0,1.0}; gluNurbsSurface(nurb,4,linear,4,linear,8,4,colors,2,2,GL_MAP2_COLOR_4); } gluEndSurface(nurb); if(colors) glDisable(GL_COLOR_MATERIAL); #endif } void drawSphere::P(Triple& t, double x, double y, double z) { if(half) { double temp=z; z=x; x=-temp; } double f=T[12]*x+T[13]*y+T[14]*z+T[15]; if(f == 0.0) run::dividebyzero(); f=1.0/f; t[0]=(T[0]*x+T[1]*y+T[2]*z+T[3])*f; t[1]=(T[4]*x+T[5]*y+T[6]*z+T[7])*f; t[2]=(T[8]*x+T[9]*y+T[10]*z+T[11])*f; } static const Triple origin={0,0,0}; static const Triple xaxis={1,0,0}; static const Triple yaxis={0,1,0}; static const double Identity4[4][4]={{1.0,0.0,0.0,0.0}, {0.0,1.0,0.0,0.0}, {0.0,0.0,1.0,0.0}, {0.0,0.0,0.0,1.0}}; bool drawSphere::write(prcfile *out, unsigned int *, array *, array *, double, groupsmap&) { if(invisible) return true; PRCmaterial m(ambient,diffuse,emissive,specular,opacity,shininess); switch(type) { case 0: // PRCsphere { if(half) out->addHemisphere(1.0,m,origin,xaxis,yaxis,1.0,(double (*)[4]) T); else out->addSphere(1.0,m,origin,xaxis,yaxis,1.0,(double (*)[4]) T); break; } case 1: // NURBSsphere { static double uknot[]={0.0,0.0,1.0/3.0,0.5,1.0,1.0}; static double vknot[]={0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0}; static double Weights[12]={2.0/3.0,2.0/9.0,2.0/9.0,2.0/3.0, 1.0/3.0,1.0/9.0,1.0/9.0,1.0/3.0, 1.0,1.0/3.0,1.0/3.0,1.0}; // NURBS representation of a sphere using 10 distinct control points // K. Qin, J. Comp. Sci. and Tech. 12, 210-216 (1997). Triple N,S,P1,P2,P3,P4,P5,P6,P7,P8; P(N,0.0,0.0,1.0); P(P1,-2.0,-2.0,1.0); P(P2,-2.0,-2.0,-1.0); P(S,0.0,0.0,-1.0); P(P3,2.0,-2.0,1.0); P(P4,2.0,-2.0,-1.0); P(P5,2.0,2.0,1.0); P(P6,2.0,2.0,-1.0); P(P7,-2.0,2.0,1.0); P(P8,-2.0,2.0,-1.0); Triple p0[]= {{N[0],N[1],N[2]}, {P1[0],P1[1],P1[2]}, {P2[0],P2[1],P2[2]}, {S[0],S[1],S[2]}, {N[0],N[1],N[2]}, {P3[0],P3[1],P3[2]}, {P4[0],P4[1],P4[2]}, {S[0],S[1],S[2]}, {N[0],N[1],N[2]}, {P5[0],P5[1],P5[2]}, {P6[0],P6[1],P6[2]}, {S[0],S[1],S[2]}, {N[0],N[1],N[2]}, {P7[0],P7[1],P7[2]}, {P8[0],P8[1],P8[2]}, {S[0],S[1],S[2]}, {N[0],N[1],N[2]}, {P1[0],P1[1],P1[2]}, {P2[0],P2[1],P2[2]}, {S[0],S[1],S[2]}, {N[0],N[1],N[2]}, {P3[0],P3[1],P3[2]}, {P4[0],P4[1],P4[2]}, {S[0],S[1],S[2]}, }; out->addSurface(2,3,3,4,p0,uknot,vknot,m,Weights); out->addSurface(2,3,3,4,p0+4,uknot,vknot,m,Weights); if(!half) { out->addSurface(2,3,3,4,p0+8,uknot,vknot,m,Weights); out->addSurface(2,3,3,4,p0+12,uknot,vknot,m,Weights); } break; } default: reportError("Invalid sphere type"); } return true; } bool drawCylinder::write(prcfile *out, unsigned int *, array *, array *, double, groupsmap&) { if(invisible) return true; PRCmaterial m(ambient,diffuse,emissive,specular,opacity,shininess); out->addCylinder(1.0,1.0,m,origin,xaxis,yaxis,1.0,(double (*)[4]) T); return true; } bool drawDisk::write(prcfile *out, unsigned int *, array *, array *, double, groupsmap&) { if(invisible) return true; PRCmaterial m(ambient,diffuse,emissive,specular,opacity,shininess); out->addDisk(1.0,m,origin,xaxis,yaxis,1.0,(double (*)[4]) T); return true; } bool drawTube::write(prcfile *out, unsigned int *, array *, array *, double, groupsmap&) { if(invisible) return true; PRCmaterial m(ambient,diffuse,emissive,specular,opacity,shininess); Int n=center.length(); if(center.piecewisestraight()) { Triple *centerControls=new(UseGC) Triple[n+1]; for(Int i=0; i <= n; ++i) store(centerControls[i],center.point(i)); size_t N=n+1; Triple *controls=new(UseGC) Triple[N]; for(Int i=0; i <= n; ++i) store(controls[i],g.point(i)); out->addTube(N,centerControls,controls,true,m,origin,xaxis,yaxis,1.0, Identity4); } else { size_t N=3*n+1; Triple *centerControls=new(UseGC) Triple[N]; store(centerControls[0],center.point((Int) 0)); store(centerControls[1],center.postcontrol((Int) 0)); size_t k=1; for(Int i=1; i < n; ++i) { store(centerControls[++k],center.precontrol(i)); store(centerControls[++k],center.point(i)); store(centerControls[++k],center.postcontrol(i)); } store(centerControls[++k],center.precontrol(n)); store(centerControls[++k],center.point(n)); Triple *controls=new(UseGC) Triple[N]; store(controls[0],g.point((Int) 0)); store(controls[1],g.postcontrol((Int) 0)); k=1; for(Int i=1; i < n; ++i) { store(controls[++k],g.precontrol(i)); store(controls[++k],g.point(i)); store(controls[++k],g.postcontrol(i)); } store(controls[++k],g.precontrol(n)); store(controls[++k],g.point(n)); out->addTube(N,centerControls,controls,false,m,origin,xaxis,yaxis,1.0, Identity4); } return true; } } //namespace camp