// Bezier triangulation routines written by Orest Shardt, 2008. private real fuzz=sqrtEpsilon; real duplicateFuzz=1e-3; // Work around font errors. private real[][] intersections(pair a, pair b, path p) { pair delta=fuzz*unit(b-a); return intersections(a-delta--b+delta,p,fuzz); } int countIntersections(path[] p, pair start, pair end) { int intersects=0; for(path q : p) intersects += intersections(start,end,q).length; return intersects; } path[][] containmentTree(path[] paths) { path[][] result; for(int i=0; i < paths.length; ++i) { bool classified=false; // check if current curve contains or is contained in a group of curves for(int j=0; !classified && j < result.length; ++j) { int test = inside(paths[i],result[j][0],zerowinding); if(test == 1) // current curve contains group's toplevel curve { // replace toplevel curve with current curve result[j].insert(0,paths[i]); classified = true; } else if(test == -1) // current curve contained in group's toplevel curve { result[j].push(paths[i]); classified = true; } } // create a new group if this curve does not belong to another group if(!classified) result.push(new path[] {paths[i]}); } // sort group so that later paths in the array are contained in previous paths bool comparepaths(path i, path j) {return inside(i,j,zerowinding)==1;} for(int i=0; i < result.length; ++i) result[i] = sort(result[i],comparepaths); return result; } bool isDuplicate(pair a, pair b, real relSize) { return abs(a-b) <= duplicateFuzz*relSize; } path removeDuplicates(path p) { real relSize = abs(max(p)-min(p)); bool cyclic=cyclic(p); for(int i=0; i < length(p); ++i) { if(isDuplicate(point(p,i),point(p,i+1),relSize)) { p=subpath(p,0,i)&subpath(p,i+1,length(p)); --i; } } return cyclic ? p&cycle : p; } path section(path p, real t1, real t2, bool loop=false) { if(t2 < t1 || loop && t1 == t2) t2 += length(p); return subpath(p,t1,t2); } path uncycle(path p, real t) { return subpath(p,t,t+length(p)); } // returns outer paths void connect(path[] paths, path[] result, path[] patch) { path[][] tree=containmentTree(paths); for(path[] group : tree) { path outer = group[0]; group.delete(0); path[][] innerTree = containmentTree(group); path[] remainingCurves; path[] inners; for(path[] innerGroup:innerTree) { inners.push(innerGroup[0]); if(innerGroup.length>1) remainingCurves.append(innerGroup[1:]); } connect(remainingCurves,result,patch); real d=2*abs(max(outer)-min(outer)); while(inners.length > 0) { int curveIndex = 0; pair direction=I*dir(inners[curveIndex],0,1); // Use outgoing direction if(direction == 0) // Try a random direction direction=expi(2pi*unitrand()); pair start=point(inners[curveIndex],0); // find first intersection of line segment with outer curve real[][] ints=intersections(start,start+d*direction,outer); assert(ints.length != 0); real endtime=ints[0][1]; // endtime is time on outer pair end = point(outer,endtime); // find first intersection of end--start with any inner curve real starttime=0; // starttime is time on inners[curveIndex] real earliestTime=1; for(int j=0; j < inners.length; ++j) { real[][] ints=intersections(end,start,inners[j]); if(ints.length > 0 && ints[0][0] < earliestTime) { earliestTime=ints[0][0]; // time on end--start starttime=ints[0][1]; // time on inner curve curveIndex=j; } } start=point(inners[curveIndex],starttime); real timeoffset=2; bool found=false; path portion; path[] allCurves = {outer}; allCurves.append(inners); while(!found && timeoffset > fuzz) { timeoffset /= 2; if(countIntersections(allCurves,start, point(outer,endtime+timeoffset)) == 2) { portion = subpath(outer,endtime,endtime+timeoffset)--start--cycle; found=true; // check if an inner curve is inside the portion for(int k = 0; found && k < inners.length; ++k) { if(k!=curveIndex && inside(portion,point(inners[k],0),zerowinding)) found = false; } } } if(!found) timeoffset=-2; while(!found && timeoffset < -fuzz) { timeoffset /= 2; if(countIntersections(allCurves,start, point(outer,endtime+timeoffset))==2) { portion = subpath(outer,endtime+timeoffset,endtime)--start--cycle; found = true; // check if an inner curve is inside the portion for(int k = 0; found && k < inners.length; ++k) { if(k!=curveIndex && inside(portion,point(inners[k],0),zerowinding)) found = false; } } } assert(found); endtime=min(endtime,endtime+timeoffset); timeoffset=abs(timeoffset); // depends on the curves having opposite orientations path remainder=section(outer,endtime+timeoffset,endtime) --uncycle(inners[curveIndex], starttime)--cycle; inners.delete(curveIndex); outer = remainder; patch.append(portion); } result.append(outer); } } bool checkSegment(path g, pair p, pair q) { pair mid=0.5*(p+q); return intersections(p,q,g).length == 2 && inside(g,mid,zerowinding) && intersections(g,mid).length == 0; } path subdivide(path p) { path q; int l=length(p); for(int i=0; i < l; ++i) q=q&subpath(p,i,i+0.5)&subpath(p,i+0.5,i+1); return cyclic(p) ? q&cycle : q; } path[] bezulate(path[] p) { if(p.length == 1 && length(p[0]) <= 4) return p; path[] patch; path[] result; connect(p,result,patch); for(int i=0; i < result.length; ++i) { path p=result[i]; int refinements=0; if(size(p) <= 1) return p; if(!cyclic(p)) abort("path must be cyclic and nonselfintersecting."); p=removeDuplicates(p); if(length(p) > 4) { static real SIZE_STEPS=10; static real factor=1.05/SIZE_STEPS; for(int k=1; k <= SIZE_STEPS; ++k) { real L=factor*k*abs(max(p)-min(p)); for(int i=0; length(p) > 4 && i < length(p); ++i) { bool found=false; pair start=point(p,i); //look for quadrilaterals and triangles with one line, 4 | 3 curves for(int desiredSides=4; !found && desiredSides >= 3; --desiredSides) { if(desiredSides == 3 && length(p) <= 3) break; pair end; int endi=i+desiredSides-1; end=point(p,endi); found=checkSegment(p,start,end) && abs(end-start) < L; if(found) { path p1=subpath(p,endi,i+length(p))--cycle; patch.append(subpath(p,i,endi)--cycle); p=removeDuplicates(p1); i=-1; // increment will make i be 0 } } if(!found && k == SIZE_STEPS && length(p) > 4 && i == length(p)-1) { // avoid infinite recursion ++refinements; if(refinements > mantissaBits) { write("warning: too many subdivisions"); } else { p=subdivide(p); i=-1; } } } } } if(length(p) <= 4) patch.append(p); } return patch; }