% omfi.ch: Primitives for extra level of infinity. % % This file is part of Omega, % which is based on the web2c distribution of TeX, % % Copyright (c) 1994--2001 John Plaice and Yannis Haralambous % % Omega is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % Omega is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Omega; if not, write to the Free Software Foundation, Inc., % 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. % %--------------------------------------- @x [10] m.135 l.2878 - Omega fi order of infinity specifies the order of infinity to which glue setting applies (|normal|, |fil|, |fill|, or |filll|). The |subtype| field is not used. @y specifies the order of infinity to which glue setting applies (|normal|, |sfi|, |fil|, |fill|, or |filll|). The |subtype| field is not used. @z %--------------------------------------- @x [10] m.150 l.3136 - Omega fi order of infinity orders of infinity (|normal|, |fil|, |fill|, or |filll|) @y orders of infinity (|normal|, |sfi|, |fil|, |fill|, or |filll|) @z %--------------------------------------- @x [10] m.150 l.3145 - Omega fi order of infinity @d fil=1 {first-order infinity} @d fill=2 {second-order infinity} @d filll=3 {third-order infinity} @y @d sfi=1 {first-order infinity} @d fil=2 {second-order infinity} @d fill=3 {third-order infinity} @d filll=4 {fourth-order infinity} @z %--------------------------------------- @x [10] m.150 l.3150 - Omega fi order of infinity @!glue_ord=normal..filll; {infinity to the 0, 1, 2, or 3 power} @y @!glue_ord=normal..filll; {infinity to the 0, 1, 2, 3, or 4 power} @z %--------------------------------------- @x [11] m.162 l.3296 - Omega fi order of infinity @d fil_glue==zero_glue+glue_spec_size {\.{0pt plus 1fil minus 0pt}} @y @d sfi_glue==zero_glue+glue_spec_size {\.{0pt plus 1fi minus 0pt}} @d fil_glue==sfi_glue+glue_spec_size {\.{0pt plus 1fil minus 0pt}} @z %--------------------------------------- @x [11] m.164 l.3296 - Omega fi order of infinity stretch(fil_glue):=unity; stretch_order(fil_glue):=fil;@/ @y stretch(sfi_glue):=unity; stretch_order(sfi_glue):=sfi;@/ stretch(fil_glue):=unity; stretch_order(fil_glue):=fil;@/ @z %--------------------------------------- @x [12] m.177 l.3591 - Omega fi order of infinity begin print("fil"); while order>fil do @y begin print("fi"); while order>sfi do @z %--------------------------------------- @x [26] m.454 l.8924 - Omega fi order of infinity if scan_keyword("fil") then @.fil@> begin cur_order:=fil; @y if scan_keyword("fi") then @.fil@> begin cur_order:=sfi; @z %--------------------------------------- @x [33] m.650 l.12877 - Omega fi order of infinity total_stretch[fil]:=0; total_shrink[fil]:=0; @y total_stretch[sfi]:=0; total_shrink[sfi]:=0; total_stretch[fil]:=0; total_shrink[fil]:=0; @z %--------------------------------------- @x [33] m.659 l.12996 - Omega fi order of infinity else if total_stretch[fil]<>0 then o:=fil @y else if total_stretch[fil]<>0 then o:=fil else if total_stretch[sfi]<>0 then o:=sfi @z %--------------------------------------- @x [33] m.665 l.13061 - Omega fi order of infinity else if total_shrink[fil]<>0 then o:=fil @y else if total_shrink[fil]<>0 then o:=fil else if total_shrink[sfi]<>0 then o:=sfi @z %--------------------------------------- @x [38] m.822 l.16135 - Omega fi order of infinity contains six scaled numbers, since it must record the net change in glue stretchability with respect to all orders of infinity. The natural width difference appears in |mem[q+1].sc|; the stretch differences in units of pt, fil, fill, and filll appear in |mem[q+2..q+5].sc|; and the shrink difference appears in |mem[q+6].sc|. The |subtype| field of a delta node is not used. @d delta_node_size=7 {number of words in a delta node} @y contains seven scaled numbers, since it must record the net change in glue stretchability with respect to all orders of infinity. The natural width difference appears in |mem[q+1].sc|; the stretch differences in units of pt, sfi, fil, fill, and filll appear in |mem[q+2..q+6].sc|; and the shrink difference appears in |mem[q+7].sc|. The |subtype| field of a delta node is not used. @d delta_node_size=8 {number of words in a delta node} @z %--------------------------------------- @x [38] m.823 l.16144 - Omega fi order of infinity @ As the algorithm runs, it maintains a set of six delta-like registers for the length of the line following the first active breakpoint to the current position in the given hlist. When it makes a pass through the active list, it also maintains a similar set of six registers for the @y @ As the algorithm runs, it maintains a set of seven delta-like registers for the length of the line following the first active breakpoint to the current position in the given hlist. When it makes a pass through the active list, it also maintains a similar set of seven registers for the @z %--------------------------------------- @x [38] m.823 l.16154 - Omega fi order of infinity k:=1 to 6 do cur_active_width[k]:=cur_active_width[k]+mem[q+k].sc|};$$ and we want to do this without the overhead of |for| loops. The |do_all_six| macro makes such six-tuples convenient. @d do_all_six(#)==#(1);#(2);#(3);#(4);#(5);#(6) @= @!active_width:array[1..6] of scaled; {distance from first active node to~|cur_p|} @!cur_active_width:array[1..6] of scaled; {distance from current active node} @!background:array[1..6] of scaled; {length of an ``empty'' line} @!break_width:array[1..6] of scaled; {length being computed after current break} @y k:=1 to 7 do cur_active_width[k]:=cur_active_width[k]+mem[q+k].sc|};$$ and we want to do this without the overhead of |for| loops. The |do_all_six| macro makes such six-tuples convenient. @d do_all_six(#)==#(1);#(2);#(3);#(4);#(5);#(6);#(7) @= @!active_width:array[1..7] of scaled; {distance from first active node to~|cur_p|} @!cur_active_width:array[1..7] of scaled; {distance from current active node} @!background:array[1..7] of scaled; {length of an ``empty'' line} @!break_width:array[1..7] of scaled; {length being computed after current break} @z %--------------------------------------- @x [38] m.827 l.16242 - Omega fi order of infinity background[2]:=0; background[3]:=0; background[4]:=0; background[5]:=0;@/ @y background[2]:=0; background[3]:=0; background[4]:=0; background[5]:=0;@/ background[6]:=0;@/ @z %--------------------------------------- @x [38] m.827 l.16260 - Omega fi order of infinity background[6]:=shrink(q)+shrink(r); @y background[7]:=shrink(q)+shrink(r); @z %--------------------------------------- @x [38] m.838 l.16470 - Omega fi order of infinity break_width[6]:=break_width[6]-shrink(v); @y break_width[7]:=break_width[7]-shrink(v); @z %--------------------------------------- @x [38] m.852 l.16713 - Omega fi order of infinity subarray |cur_active_width[2..5]|, in units of points, fil, fill, and filll. @y subarray |cur_active_width[2..6]|, in units of points, sfi, fil, fill and filll. @z %--------------------------------------- @x [38] m.852 l.16722 - Omega fi order of infinity if (cur_active_width[3]<>0)or(cur_active_width[4]<>0)or@| (cur_active_width[5]<>0) then @y if (cur_active_width[3]<>0)or(cur_active_width[4]<>0)or@| (cur_active_width[5]<>0)or(cur_active_width[6]<>0) then @z %--------------------------------------- @x [38] m.853 l.16738 - Omega fi order of infinity we can shrink the line from |r| to |cur_p| by at most |cur_active_width[6]|. @= begin if -shortfall>cur_active_width[6] then b:=inf_bad+1 else b:=badness(-shortfall,cur_active_width[6]); @y we can shrink the line from |r| to |cur_p| by at most |cur_active_width[7]|. @= begin if -shortfall>cur_active_width[7] then b:=inf_bad+1 else b:=badness(-shortfall,cur_active_width[7]); @z %--------------------------------------- @x [39] m.868 l.17054 - Omega fi order of infinity active_width[6]:=active_width[6]+shrink(q) @y active_width[7]:=active_width[7]+shrink(q) @z %--------------------------------------- @x [44] m.975 l.18932 - Omega fi order of infinity if (active_height[3]<>0) or (active_height[4]<>0) or (active_height[5]<>0) then b:=0 else b:=badness(h-cur_height,active_height[2]) else if cur_height-h>active_height[6] then b:=awful_bad else b:=badness(cur_height-h,active_height[6]) @y if (active_height[3]<>0) or (active_height[4]<>0) or (active_height[5]<>0) or (active_height[6]<>0) then b:=0 else b:=badness(h-cur_height,active_height[2]) else if cur_height-h>active_height[7] then b:=awful_bad else b:=badness(cur_height-h,active_height[7]) @z %--------------------------------------- @x [44] m.976 l.18947 - Omega fi order of infinity active_height[6]:=active_height[6]+shrink(q); @y active_height[7]:=active_height[7]+shrink(q); @z %--------------------------------------- @x [48] m.1201 l.22454 - Omega fi order of infinity (total_shrink[fil]<>0)or(total_shrink[fill]<>0)or (total_shrink[filll]<>0)) then @y (total_shrink[sfi]<>0)or(total_shrink[fil]<>0)or (total_shrink[fill]<>0)or(total_shrink[filll]<>0)) then @z