% $Id: psout.w 616 2008-07-09 14:05:55Z taco $ % % Copyright 2008-2009 Taco Hoekwater. % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Lesser General Public License % along with this program. If not, see . % % TeX is a trademark of the American Mathematical Society. % METAFONT is a trademark of Addison-Wesley Publishing Company. % PostScript is a trademark of Adobe Systems Incorporated. % Here is TeX material that gets inserted after \input webmac \font\tenlogo=logo10 % font used for the METAFONT logo \def\MP{{\tenlogo META}\-{\tenlogo POST}} \def\title{MetaPost MEM reading and writing} \def\topofcontents{\hsize 5.5in \vglue -30pt plus 1fil minus 1.5in \def\?##1]{\hbox to 1in{\hfil##1.\ }} } \def\botofcontents{\vskip 0pt plus 1fil minus 1.5in} \pdfoutput=1 \pageno=3 @ As usual, need true and false. @d true 1 @d false 0 @d null 0 /* the null pointer */ @d incr(A) (A)=(A)+1 /* increase a variable by unity */ @d decr(A) (A)=(A)-1 /* decrease a variable by unity */ @d qo(A) (A) /* to read eight bits from a quarterword */ @d qi(A) (quarterword)(A) /* to store eight bits in a quarterword */ @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */ @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */ @d max_str_ref 127 /* ``infinite'' number of references */ @c #include "config.h" #include #include #include #include "mplib.h" #include "mpmp.h" @ @c void mp_store_mem_file (MP mp) { integer k; /* all-purpose index */ pointer p,q; /* all-purpose pointers */ integer x; /* something to dump */ four_quarters w; /* four ASCII codes */ memory_word WW; @; @; @; @; @; @; @; } @ Corresponding to the procedure that dumps a mem file, we also have a function that reads~one~in. The function returns |false| if the dumped mem is incompatible with the present \MP\ table sizes, etc. @d too_small(A) { wake_up_terminal; wterm_ln("---! Must increase the "); wterm((A)); @.Must increase the x@> goto OFF_BASE; } @c boolean mp_load_mem_file (MP mp) { integer k; /* all-purpose index */ pointer p,q; /* all-purpose pointers */ integer x; /* something undumped */ str_number s; /* some temporary string */ four_quarters w; /* four ASCII codes */ memory_word WW; @; @; @; @; return true; /* it worked! */ OFF_BASE: wake_up_terminal; wterm_ln("(Fatal mem file error; I'm stymied)\n"); @.Fatal mem file error@> return false; } @ Mem files consist of |memory_word| items, and we use the following macros to dump words of different types: @d dump_wd(A) { WW=(A); (mp->write_binary_file)(mp,mp->mem_file,&WW,sizeof(WW)); } @d dump_int(A) { int cint=(A); (mp->write_binary_file)(mp,mp->mem_file,&cint,sizeof(cint)); } @d dump_hh(A) { WW.hh=(A); (mp->write_binary_file)(mp,mp->mem_file,&WW,sizeof(WW)); } @d dump_qqqq(A) { WW.qqqq=(A); (mp->write_binary_file)(mp,mp->mem_file,&WW,sizeof(WW)); } @d dump_string(A) { dump_int((int)(strlen(A)+1)); (mp->write_binary_file)(mp,mp->mem_file,A,strlen(A)+1); } @ The inverse macros are slightly more complicated, since we need to check the range of the values we are reading in. We say `|undump(a)(b)(x)|' to read an integer value |x| that is supposed to be in the range |a<=x<=b|. @d mgeti(A) do { size_t wanted = sizeof(A); void *A_ptr = &A; (mp->read_binary_file)(mp, mp->mem_file,&A_ptr,&wanted); if (wanted!=sizeof(A)) goto OFF_BASE; } while (0) @d mgetw(A) do { size_t wanted = sizeof(A); void *A_ptr = &A; (mp->read_binary_file)(mp, mp->mem_file,&A_ptr,&wanted); if (wanted!=sizeof(A)) goto OFF_BASE; } while (0) @d undump_wd(A) { mgetw(WW); A=WW; } @d undump_int(A) { int cint; mgeti(cint); A=cint; } @d undump_hh(A) { mgetw(WW); A=WW.hh; } @d undump_qqqq(A) { mgetw(WW); A=WW.qqqq; } @d undump_strings(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); } @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; } @d undump_size(A,B,C,D) { undump_int(x); if (x<(A)) goto OFF_BASE; if (x>(B)) too_small((C)); else D=x; } @d undump_string(A) { size_t the_wanted; void *the_string; integer XX=0; undump_int(XX); the_wanted = (size_t)XX; the_string = mp_xmalloc(mp,(size_t)XX,1); (mp->read_binary_file)(mp,mp->mem_file,&the_string,&the_wanted); A = (char *)the_string; if (the_wanted!=(size_t)XX) goto OFF_BASE; } @ The next few sections of the program should make it clear how we use the dump/undump macros. @= x = metapost_magic; dump_int(x); dump_int(mp->mem_top); dump_int((integer)mp->hash_size); dump_int(mp->hash_prime) dump_int(mp->param_size); dump_int(mp->max_in_open); @ Sections of a \.{WEB} program that are ``commented out'' still contribute strings to the string pool; therefore \.{INIMP} and \MP\ will have the same strings. (And it is, of course, a good thing that they do.) @.WEB@> @^string pool@> @ @c int mp_undump_constants (MP mp) { integer x; undump_int(x); if (x!=metapost_magic) return x; undump_int(x); mp->mem_top = x; undump_int(x); mp->hash_size = (unsigned)x; undump_int(x); mp->hash_prime = x; undump_int(x); mp->param_size = x; undump_int(x); mp->max_in_open = x; return metapost_magic; OFF_BASE: return -1; } @ We do string pool compaction to avoid dumping unused strings. @d dump_four_ASCII w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]); w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]); dump_qqqq(w) @= mp_do_compaction(mp, mp->pool_size); dump_int(mp->pool_ptr); dump_int(mp->max_str_ptr); dump_int(mp->str_ptr); k=0; while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) ) k++; dump_int(k); while ( k<=mp->max_str_ptr ) { dump_int(mp->next_str[k]); incr(k); } k=0; while (1) { dump_int(mp->str_start[k]); /* TODO: valgrind warning here */ if ( k==mp->str_ptr ) { break; } else { k=mp->next_str[k]; } } k=0; while (k+4pool_ptr ) { dump_four_ASCII; k=k+4; } k=mp->pool_ptr-4; dump_four_ASCII; mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr); mp_print(mp, " strings of total length "); mp_print_int(mp, mp->pool_ptr) @ @d undump_four_ASCII undump_qqqq(w); mp->str_pool[k]=(ASCII_code)qo(w.b0); mp->str_pool[k+1]=(ASCII_code)qo(w.b1); mp->str_pool[k+2]=(ASCII_code)qo(w.b2); mp->str_pool[k+3]=(ASCII_code)qo(w.b3) @= undump_int(mp->pool_ptr); mp_reallocate_pool(mp, mp->pool_ptr) ; undump_int(mp->max_str_ptr); mp_reallocate_strings (mp,mp->max_str_ptr) ; undump(0,mp->max_str_ptr,mp->str_ptr); undump(0,mp->max_str_ptr+1,s); for (k=0;k<=s-1;k++) mp->next_str[k]=k+1; for (k=s;k<=mp->max_str_ptr;k++) undump(s+1,mp->max_str_ptr+1,mp->next_str[k]); mp->fixed_str_use=0; k=0; while (1) { undump(0,mp->pool_ptr,mp->str_start[k]); if ( k==mp->str_ptr ) break; mp->str_ref[k]=max_str_ref; incr(mp->fixed_str_use); mp->last_fixed_str=k; k=mp->next_str[k]; } k=0; while ( k+4pool_ptr ) { undump_four_ASCII; k=k+4; } k=mp->pool_ptr-4; undump_four_ASCII; mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr; mp->max_pool_ptr=mp->pool_ptr; mp->strs_used_up=mp->fixed_str_use; mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use; mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use; mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0; @ By sorting the list of available spaces in the variable-size portion of |mem|, we are usually able to get by without having to dump very much of the dynamic memory. We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid information even when it has not been gathering statistics. @= mp_sort_avail(mp); mp->var_used=0; dump_int(mp->lo_mem_max); dump_int(mp->rover); p=0; q=mp->rover; x=0; do { for (k=p;k<= q+1;k++) dump_wd(mp->mem[k]); x=x+q+2-p; mp->var_used=mp->var_used+q-p; p=q+node_size(q); q=rmp_link(q); } while (q!=mp->rover); mp->var_used=mp->var_used+mp->lo_mem_max-p; mp->dyn_used=mp->mem_end+1-mp->hi_mem_min; for (k=p;k<= mp->lo_mem_max;k++ ) dump_wd(mp->mem[k]); x=x+mp->lo_mem_max+1-p; dump_int(mp->hi_mem_min); dump_int(mp->avail); for (k=mp->hi_mem_min;k<=mp->mem_end;k++ ) dump_wd(mp->mem[k]); x=x+mp->mem_end+1-mp->hi_mem_min; p=mp->avail; while ( p!=null ) { decr(mp->dyn_used); p=mp_link(p); } dump_int(mp->var_used); dump_int(mp->dyn_used); mp_print_ln(mp); mp_print_int(mp, x); mp_print(mp, " memory locations dumped; current usage is "); mp_print_int(mp, mp->var_used); mp_print_char(mp, xord('&')); mp_print_int(mp, mp->dyn_used) @ @= undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max); undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover); p=0; q=mp->rover; do { for (k=p;k<= q+1; k++) undump_wd(mp->mem[k]); p=q+node_size(q); if ( (p>mp->lo_mem_max)||((q>=rmp_link(q))&&(rmp_link(q)!=mp->rover)) ) goto OFF_BASE; q=rmp_link(q); } while (q!=mp->rover); for (k=p;k<=mp->lo_mem_max;k++ ) undump_wd(mp->mem[k]); undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min); undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top; mp->last_pending=spec_head; for (k=mp->hi_mem_min;k<= mp->mem_end;k++) undump_wd(mp->mem[k]); undump_int(mp->var_used); undump_int(mp->dyn_used) @ A different scheme is used to compress the hash table, since its lower region is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely packed for |p>=hash_used|, so the remaining entries are output in~a~block. @= dump_int(mp->hash_used); mp->st_count=frozen_inaccessible-1-mp->hash_used; for (p=1;p<=mp->hash_used;p++) { if ( text(p)!=0 ) { dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count); } } for (p=mp->hash_used+1;p<=(int)hash_end;p++) { dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); } dump_int(mp->st_count); mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens") @ @= undump(1,frozen_inaccessible,mp->hash_used); p=0; do { undump(p+1,mp->hash_used,p); undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]); } while (p!=mp->hash_used); for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) { undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]); } undump_int(mp->st_count) @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0| to prevent them appearing again. @= dump_int(mp->max_internal); dump_int(mp->int_ptr); for (k=1;k<= mp->int_ptr;k++ ) { dump_int(mp->internal[k]); dump_int(mp->int_type[k]); dump_string(mp->int_name[k]); } dump_int(mp->start_sym); dump_int(mp->interaction); dump_string(mp->mem_ident); dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073); mp->internal[mp_tracing_stats]=0 @ @= undump_int(x); if (x>mp->max_internal) mp_grow_internals(mp,x); undump_int(mp->int_ptr); for (k=1;k<= mp->int_ptr;k++) { undump_int(mp->internal[k]); undump_int(mp->int_type[k]); undump_string(mp->int_name[k]); } undump(0,frozen_inaccessible,mp->start_sym); if (mp->interaction==mp_unspecified_mode) { undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction); } else { undump(mp_unspecified_mode,mp_error_stop_mode,x); } undump_string(mp->mem_ident); undump(1,hash_end,mp->bg_loc); undump(1,hash_end,mp->eg_loc); undump_int(mp->serial_no); undump_int(x); if (x!=69073) goto OFF_BASE @ @= { char *tmp = mp_xmalloc(mp,11,1); mp_xfree(mp->mem_ident); mp->mem_ident = mp_xmalloc(mp,256,1); mp_snprintf(tmp,11,"%04d.%02d.%02d", (int)mp_round_unscaled(mp, mp->internal[mp_year]), (int)mp_round_unscaled(mp, mp->internal[mp_month]), (int)mp_round_unscaled(mp, mp->internal[mp_day])); mp_snprintf(mp->mem_ident,256," (mem=%s %s)",mp->job_name, tmp); mp_xfree(tmp); mp_pack_job_name(mp, ".mem"); while (! mp_w_open_out(mp, &mp->mem_file) ) mp_prompt_file_name(mp, "mem file name", ".mem"); mp_print_nl(mp, "Beginning to dump on file "); @.Beginning to dump...@> mp_print(mp, mp->name_of_file); mp_print_nl(mp, mp->mem_ident); } @ @= (mp->close_file)(mp,mp->mem_file)