% printing.w % % Copyright 2009-2011 Taco Hoekwater % % This file is part of LuaTeX. % % LuaTeX is free software; you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free % Software Foundation; either version 2 of the License, or (at your % option) any later version. % % LuaTeX is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or % FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public % License for more details. % % You should have received a copy of the GNU General Public License along % with LuaTeX; if not, see . @ @c static const char _svn_version[] = "$Id: printing.w 4624 2013-04-05 08:59:24Z taco $" "$URL: https://foundry.supelec.fr/svn/luatex/tags/beta-0.76.0/source/texk/web2c/luatexdir/tex/printing.w $"; #include "ptexlib.h" #include "lua/luatex-api.h" /* for ptexbanner */ @ @c #define font_id_text(A) cs_text(font_id_base+(A)) #define wlog(A) fputc(A,log_file) #define wterm(A) fputc(A,term_out) @ Messages that are sent to a user's terminal and to the transcript-log file are produced by several `|print|' procedures. These procedures will direct their output to a variety of places, based on the setting of the global variable |selector|, which has the following possible values: \yskip \hang |term_and_log|, the normal setting, prints on the terminal and on the transcript file. \hang |log_only|, prints only on the transcript file. \hang |term_only|, prints only on the terminal. \hang |no_print|, doesn't print at all. This is used only in rare cases before the transcript file is open. \hang |pseudo|, puts output into a cyclic buffer that is used by the |show_context| routine; when we get to that routine we shall discuss the reasoning behind this curious mode. \hang |new_string|, appends the output to the current string in the string pool. \hang 0 to 15, prints on one of the sixteen files for \.{\\write} output. \yskip \noindent The symbolic names `|term_and_log|', etc., have been assigned numeric codes that satisfy the convenient relations |no_print+1=term_only|, |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. Three additional global variables, |tally| and |term_offset| and |file_offset|, record the number of characters that have been printed since they were most recently cleared to zero. We use |tally| to record the length of (possibly very long) stretches of printing; |term_offset| and |file_offset|, on the other hand, keep track of how many characters have appeared so far on the current line that has been output to the terminal or to the transcript file, respectively. @c alpha_file log_file; /* transcript of \TeX\ session */ int selector = term_only; /* where to print a message */ int dig[23]; /* digits in a number being output */ int tally = 0; /* the number of characters recently printed */ int term_offset = 0; /* the number of characters on the current terminal line */ int file_offset = 0; /* the number of characters on the current file line */ packed_ASCII_code trick_buf[(ssup_error_line + 1)]; /* circular buffer for pseudoprinting */ int trick_count; /* threshold for pseudoprinting, explained later */ int first_count; /* another variable for pseudoprinting */ boolean inhibit_par_tokens = false; /* for minor adjustments to |show_token_list| */ @ To end a line of text output, we call |print_ln| @c void print_ln(void) { /* prints an end-of-line */ switch (selector) { case term_and_log: wterm_cr(); wlog_cr(); term_offset = 0; file_offset = 0; break; case log_only: wlog_cr(); file_offset = 0; break; case term_only: wterm_cr(); term_offset = 0; break; case no_print: case pseudo: case new_string: break; default: fprintf(write_file[selector], "\n"); break; } } /* |tally| is not affected */ @ The |print_char| procedure sends one byte to the desired destination. All printing comes through |print_ln| or |print_char|, except for the case of |tprint| (see below). @c #define wterm_char(A) do { \ if ((A>=0x20)||(A==0x0A)||(A==0x0D)||(A==0x09)) { \ wterm(A); \ } else { \ if (term_offset+2>=max_print_line) { \ wterm_cr(); term_offset=0; \ } \ incr(term_offset); wterm('^'); \ incr(term_offset); wterm('^'); \ wterm(A+64); \ } \ } while (0) #define needs_wrapping(A,B) \ (((A>=0xF0)&&(B+4>=max_print_line))|| \ ((A>=0xE0)&&(B+3>=max_print_line))|| \ ((A>=0xC0)&&(B+2>=max_print_line))) #define fix_term_offset(A) do { \ if (needs_wrapping(A,term_offset)){ \ wterm_cr(); term_offset=0; \ } \ } while (0) #define fix_log_offset(A) do { \ if (needs_wrapping(A,file_offset)){ \ wlog_cr(); file_offset=0; \ } \ } while (0) void print_char(int s) { /* prints a single byte */ assert(s >= 0 && s < 256); if (s == int_par(new_line_char_code)) { if (selector < pseudo) { print_ln(); return; } } switch (selector) { case term_and_log: fix_term_offset(s); fix_log_offset(s); wterm_char(s); wlog(s); incr(term_offset); incr(file_offset); if (term_offset == max_print_line) { wterm_cr(); term_offset = 0; } if (file_offset == max_print_line) { wlog_cr(); file_offset = 0; } break; case log_only: fix_log_offset(s); wlog(s); incr(file_offset); if (file_offset == max_print_line) { wlog_cr(); file_offset = 0; } break; case term_only: fix_term_offset(s); wterm_char(s); incr(term_offset); if (term_offset == max_print_line) { wterm_cr(); term_offset = 0; } break; case no_print: break; case pseudo: if (tally < trick_count) trick_buf[tally % error_line] = (packed_ASCII_code) s; break; case new_string: append_char(s); break; /* we drop characters if the string space is full */ default: fprintf(write_file[selector], "%c", s); } incr(tally); } @ An entire string is output by calling |print|. Note that if we are outputting the single standard ASCII character \.c, we could call |print("c")|, since |"c"=99| is the number of a single-character string, as explained above. But |print_char("c")| is quicker, so \TeX\ goes directly to the |print_char| routine when it knows that this is safe. (The present implementation assumes that it is always safe to print a visible ASCII character.) @^system dependencies@> The first 256 entries above the 17th unicode plane are used for a special trick: when \TeX\ has to print items in that range, it will instead print the character that results from substracting 0x110000 from that value. This allows byte-oriented output to things like \.{\\specials} and \.{\\pdfliterals}. Todo: Perhaps it would be useful to do the same substraction while typesetting. @c void print(int s) { /* prints string |s| */ unsigned char *j, *l; /* current character code position */ if (s >= str_ptr) { /* this can't happen */ print_char('?'); print_char('?'); print_char('?'); return; } else if (s < STRING_OFFSET) { if (s < 0) { /* can't happen */ print_char('?'); print_char('?'); print_char('?'); } else { /* TH not sure about this, disabled for now! */ if ((false) && (selector > pseudo)) { print_char(s); return; /* internal strings are not expanded */ } if (s == int_par(new_line_char_code)) { if (selector < pseudo) { print_ln(); return; } } if (s <= 0x7F) { print_char(s); } else if (s <= 0x7FF) { print_char(0xC0 + (s / 0x40)); print_char(0x80 + (s % 0x40)); } else if (s <= 0xFFFF) { print_char(0xE0 + (s / 0x1000)); print_char(0x80 + ((s % 0x1000) / 0x40)); print_char(0x80 + ((s % 0x1000) % 0x40)); } else if (s >= 0x110000) { int c = s - 0x110000; if (c >= 256) { pdf_warning("print", "bad raw byte to print (c=", true, false); print_int(c); tprint("), skipped."); print_ln(); } else { print_char(c); } } else { print_char(0xF0 + (s / 0x40000)); print_char(0x80 + ((s % 0x40000) / 0x1000)); print_char(0x80 + (((s % 0x40000) % 0x1000) / 0x40)); print_char(0x80 + (((s % 0x40000) % 0x1000) % 0x40)); } } return; } if (selector == new_string) { append_string(str_string(s), (unsigned) str_length(s)); return; } j = str_string(s); l = j + str_length(s); while (j < l) { /* 0x110000 in utf=8: 0xF4 0x90 0x80 0x80 */ /* I don't bother checking the last two bytes explicitly */ if ((j < l - 4) && (*j == 0xF4) && (*(j + 1) == 0x90)) { int c = (*(j + 2) - 128) * 64 + (*(j + 3) - 128); assert(c >= 0 && c < 256); print_char(c); j = j + 4; } else { print_char(*j); incr(j); } } } @ The procedure |print_nl| is like |print|, but it makes sure that the string appears at the beginning of a new line. @c void print_nlp(void) { /* move to beginning of a line */ if (((term_offset > 0) && (odd(selector))) || ((file_offset > 0) && (selector >= log_only))) print_ln(); } void print_nl(str_number s) { /* prints string |s| at beginning of line */ print_nlp(); print(s); } @ |char *| versions of the same procedures. |tprint| is different because it uses buffering, which works well because most of the output actually comes through |tprint|. @c void tprint(const char *sss) { char *buffer = NULL; int i = 0; /* buffer index */ int newlinechar = int_par(new_line_char_code); int dolog = 0; int doterm = 0; switch (selector) { case new_string: append_string((const unsigned char *)sss, (unsigned) strlen(sss)); return; break; case pseudo: while (*sss) { if (tally++ < trick_count) { trick_buf[tally % error_line] = (packed_ASCII_code) *sss++; } else { return; } } return; break; case no_print: return; break; case term_and_log: dolog = 1; doterm = 1; break; case log_only: dolog = 1; break; case term_only: doterm = 1; break; default: { char *newstr = xstrdup(sss); char *s; for (s=newstr;*s;s++) { if (*s == newlinechar) { *s = '\n'; } } fputs(newstr, write_file[selector]); free(newstr); return; } break; } /* what is left is the 3 term/log settings */ buffer = xmalloc(strlen(sss)*3); if (dolog) { const unsigned char *ss = (const unsigned char *) sss; while (*ss) { int s = *ss++; if (needs_wrapping(s,file_offset) || s == newlinechar) { buffer[i++] = '\n'; buffer[i++] = '\0'; fputs(buffer, log_file); i = 0; buffer[0] = '\0'; file_offset=0; } if (s != newlinechar) { buffer[i++] = s; if (file_offset++ == max_print_line) { buffer[i++] = '\n'; buffer[i++] = '\0'; fputs(buffer, log_file); i = 0; buffer[0] = '\0'; file_offset = 0; } } } if (*buffer) { buffer[i++] = '\0'; fputs(buffer, log_file); buffer[0] = '\0'; } i = 0; } if (doterm) { const unsigned char *ss = (const unsigned char *) sss; while (*ss) { int s = *ss++; if (needs_wrapping(s,term_offset) || s == newlinechar) { buffer[i++] = '\n'; buffer[i++] = '\0'; fputs(buffer, term_out); i = 0; buffer[0] = '\0'; term_offset=0; } if (s != newlinechar) { if ((s>=0x20)||(s==0x0A)||(s==0x0D)||(s==0x09)) { buffer[i++] = s; } else { buffer[i++] = '^'; buffer[i++] = '^'; buffer[i++] = s+64; term_offset += 2; } if (term_offset++ == max_print_line) { buffer[i++] = '\n'; buffer[i++] = '\0'; fputs(buffer, term_out); i = 0; buffer[0] = '\0'; term_offset = 0; } } } if (*buffer) { buffer[i++] = '\0'; fputs(buffer, term_out); } } free(buffer); } void tprint_nl(const char *s) { print_nlp(); tprint(s); } @ Here is the very first thing that \TeX\ prints: a headline that identifies the version number and format package. The |term_offset| variable is temporarily incorrect, but the discrepancy is not serious since we assume that the banner and format identifier together will occupy at most |max_print_line| character positions. @c void print_banner(const char *v, int e, int ver) { int callback_id; callback_id = callback_defined(start_run_callback); if (callback_id == 0) { if (ver < 0) fprintf(term_out, "This is LuaTeX, Version %s-%d ", v, e); else fprintf(term_out, "This is LuaTeX, Version %s-%d (rev %d) ", v, e, ver); if (format_ident > 0) print(format_ident); print_ln(); if (shellenabledp) { wterm(' '); if (restrictedshell) fprintf(term_out, "restricted "); fprintf(term_out, "\\write18 enabled.\n"); } } else if (callback_id > 0) { run_callback(callback_id, "->"); } } @ @c void log_banner(const char *v, int e, int ver) { const char *months[] = { " ", "JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC" }; unsigned month = (unsigned) int_par(month_code); if (month > 12) month = 0; if (ver < 0) fprintf(log_file, "This is LuaTeX, Version %s-%d ", v, e); else fprintf(log_file, "This is LuaTeX, Version %s-%d (rev %d) ", v, e, ver); print(format_ident); print_char(' '); print_char(' '); print_int(int_par(day_code)); print_char(' '); fprintf(log_file, "%s", months[month]); print_char(' '); print_int(int_par(year_code)); print_char(' '); print_two(int_par(time_code) / 60); print_char(':'); print_two(int_par(time_code) % 60); if (shellenabledp) { wlog_cr(); wlog(' '); if (restrictedshell) fprintf(log_file, "restricted "); fprintf(log_file, "\\write18 enabled."); } if (filelineerrorstylep) { wlog_cr(); fprintf(log_file, " file:line:error style messages enabled."); } if (parsefirstlinep) { wlog_cr(); fprintf(log_file, " %%&-line parsing enabled."); } } @ @c void print_version_banner(void) { fprintf(term_out, "%s", ptexbanner); } @ The procedure |print_esc| prints a string that is preceded by the user's escape character (which is usually a backslash). @c void print_esc(str_number s) { /* prints escape character, then |s| */ int c; /* the escape character code */ /* Set variable |c| to the current escape character */ c = int_par(escape_char_code); if (c >= 0 && c < STRING_OFFSET) print(c); print(s); } @ @c void tprint_esc(const char *s) { /* prints escape character, then |s| */ int c; /* the escape character code */ /* Set variable |c| to the current escape character */ c = int_par(escape_char_code); if (c >= 0 && c < STRING_OFFSET) print(c); tprint(s); } @ An array of digits in the range |0..15| is printed by |print_the_digs|. @c void print_the_digs(eight_bits k) { /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */ while (k-- > 0) { if (dig[k] < 10) print_char('0' + dig[k]); else print_char('A' - 10 + dig[k]); } } @ The following procedure, which prints out the decimal representation of a given integer |n|, has been written carefully so that it works properly if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div| to negative arguments, since such operations are not implemented consistently by all PASCAL compilers. @c void print_int(longinteger n) { /* prints an integer in decimal form */ int k; /* index to current digit; we assume that $|n|<10^{23}$ */ longinteger m; /* used to negate |n| in possibly dangerous cases */ k = 0; if (n < 0) { print_char('-'); if (n > -100000000) { n = -n; } else { m = -1 - n; n = m / 10; m = (m % 10) + 1; k = 1; if (m < 10) dig[0] = (int) m; else { dig[0] = 0; incr(n); } } } do { dig[k] = (int) (n % 10); n = n / 10; incr(k); } while (n != 0); print_the_digs((eight_bits) k); } @ Here is a trivial procedure to print two digits; it is usually called with a parameter in the range |0<=n<=99|. @c void print_two(int n) { /* prints two least significant digits */ n = abs(n) % 100; print_char('0' + (n / 10)); print_char('0' + (n % 10)); } @ Hexadecimal printing of nonnegative integers is accomplished by |print_hex|. @c void print_hex(int n) { /* prints a positive integer in hexadecimal form */ int k; /* index to current digit; we assume that $0\L n<16^{22}$ */ k = 0; print_char('"'); do { dig[k] = n % 16; n = n / 16; incr(k); } while (n != 0); print_the_digs((eight_bits) k); } @ Roman numerals are produced by the |print_roman_int| routine. Readers who like puzzles might enjoy trying to figure out how this tricky code works; therefore no explanation will be given. Notice that 1990 yields \.{mcmxc}, not \.{mxm}. @c void print_roman_int(int n) { char *j, *k; /* mysterious indices */ int u, v; /* mysterious numbers */ char mystery[] = "m2d5c2l5x2v5i"; j = (char *) mystery; v = 1000; while (1) { while (n >= v) { print_char(*j); n = n - v; } if (n <= 0) return; /* nonpositive input produces no output */ k = j + 2; u = v / (*(k - 1) - '0'); if (*(k - 1) == '2') { k = k + 2; u = u / (*(k - 1) - '0'); } if (n + u >= v) { print_char(*k); n = n + u; } else { j = j + 2; v = v / (*(j - 1) - '0'); } } } @ The |print| subroutine will not print a string that is still being created. The following procedure will. @c void print_current_string(void) { /* prints a yet-unmade string */ unsigned j = 0; /* points to current character code */ while (j < cur_length) print_char(cur_string[j++]); } @ The procedure |print_cs| prints the name of a control sequence, given a pointer to its address in |eqtb|. A space is printed after the name unless it is a single nonletter or an active character. This procedure might be invoked with invalid data, so it is ``extra robust.'' The individual characters must be printed one at a time using |print|, since they may be unprintable. @c void print_cs(int p) { /* prints a purported control sequence */ str_number t = cs_text(p); if (p < hash_base) { /* nullcs */ if (p == null_cs) { tprint_esc("csname"); tprint_esc("endcsname"); } else { tprint_esc("IMPOSSIBLE."); } } else if ((p >= undefined_control_sequence) && ((p <= eqtb_size) || p > eqtb_size + hash_extra)) { tprint_esc("IMPOSSIBLE."); } else if (t >= str_ptr) { tprint_esc("NONEXISTENT."); } else { if (is_active_cs(t)) { print(active_cs_value(t)); } else { print_esc(t); if (single_letter(t)) { if (get_cat_code(int_par(cat_code_table_code), pool_to_unichar(str_string(t))) == letter_cmd) print_char(' '); } else { print_char(' '); } } } } @ Here is a similar procedure; it avoids the error checks, and it never prints a space after the control sequence. @c void sprint_cs(pointer p) { /* prints a control sequence */ str_number t; if (p == null_cs) { tprint_esc("csname"); tprint_esc("endcsname"); } else { t = cs_text(p); if (is_active_cs(t)) print(active_cs_value(t)); else print_esc(t); } } @ This procedure is never called when |interaction filll)) { tprint("foul"); } else if (order > normal) { tprint("fi"); while (order > sfi) { print_char('l'); decr(order); } } else if (s != NULL) { tprint(s); } } @ The next subroutine prints a whole glue specification @c void print_spec(int p, const char *s) { /* prints a glue specification */ if (p < 0) { print_char('*'); } else { print_scaled(width(p)); if (s != NULL) tprint(s); if (stretch(p) != 0) { tprint(" plus "); print_glue(stretch(p), stretch_order(p), s); } if (shrink(p) != 0) { tprint(" minus "); print_glue(shrink(p), shrink_order(p), s); } } } @ We can reinforce our knowledge of the data structures just introduced by considering two procedures that display a list in symbolic form. The first of these, called |short_display|, is used in ``overfull box'' messages to give the top-level description of a list. The other one, called |show_node_list|, prints a detailed description of exactly what is in the data structure. The philosophy of |short_display| is to ignore the fine points about exactly what is inside boxes, except that ligatures and discretionary breaks are expanded. As a result, |short_display| is a recursive procedure, but the recursion is never more than one level deep. @^recursion@> A global variable |font_in_short_display| keeps track of the font code that is assumed to be present when |short_display| begins; deviations from this font will be printed. @c int font_in_short_display; /* an internal font number */ @ Boxes, rules, inserts, whatsits, marks, and things in general that are sort of ``complicated'' are indicated only by printing `\.{[]}'. @c void print_font_identifier(internal_font_number f) { str_number fonttext; if (pdf_font_blink(f) == null_font) fonttext = font_id_text(f); else fonttext = font_id_text(pdf_font_blink(f)); if (fonttext > 0) { print_esc(fonttext); } else { tprint_esc("FONT"); if (pdf_font_blink(f) == null_font) print_int(f); else print_int(pdf_font_blink(f)); } if (int_par(pdf_tracing_fonts_code) > 0) { tprint(" ("); print_font_name(f); if (font_size(f) != font_dsize(f)) { tprint("@@"); print_scaled(font_size(f)); tprint("pt"); } print_char(')'); } else if (font_expand_ratio(f) != 0) { tprint(" ("); if (font_expand_ratio(f) > 0) print_char('+'); print_int(font_expand_ratio(f)); print_char(')'); } } @ @c void short_display(int p) { /* prints highlights of list |p| */ while (p != null) { if (is_char_node(p)) { if (lig_ptr(p) != null) { short_display(lig_ptr(p)); } else { if (font(p) != font_in_short_display) { if (!is_valid_font(font(p))) print_char('*'); else print_font_identifier(font(p)); print_char(' '); font_in_short_display = font(p); } print(character(p)); } } else { /* Print a short indication of the contents of node |p| */ print_short_node_contents(p); } p = vlink(p); } } @ The |show_node_list| routine requires some auxiliary subroutines: one to print a font-and-character combination, one to print a token list without its reference count, and one to print a rule dimension. @c void print_font_and_char(int p) { /* prints |char_node| data */ if (!is_valid_font(font(p))) print_char('*'); else print_font_identifier(font(p)); print_char(' '); print(character(p)); } @ @c void print_mark(int p) { /* prints token list data in braces */ print_char('{'); if ((p < (int) fix_mem_min) || (p > (int) fix_mem_end)) tprint_esc("CLOBBERED."); else show_token_list(token_link(p), null, max_print_line - 10); print_char('}'); } @ @c void print_rule_dimen(scaled d) { /* prints dimension in rule node */ if (is_running(d)) print_char('*'); else print_scaled(d); } @ Since boxes can be inside of boxes, |show_node_list| is inherently recursive, @^recursion@> up to a given maximum number of levels. The history of nesting is indicated by the current string, which will be printed at the beginning of each line; the length of this string, namely |cur_length|, is the depth of nesting. A global variable called |depth_threshold| is used to record the maximum depth of nesting for which |show_node_list| will show information. If we have |depth_threshold=0|, for example, only the top level information will be given and no sublists will be traversed. Another global variable, called |breadth_max|, tells the maximum number of items to show at each level; |breadth_max| had better be positive, or you won't see anything. @c int depth_threshold; /* maximum nesting depth in box displays */ int breadth_max; /* maximum number of items shown at the same list level */ @ The recursive machinery is started by calling |show_box|. @c void show_box(halfword p) { /* Assign the values |depth_threshold:=show_box_depth| and |breadth_max:=show_box_breadth| */ depth_threshold = int_par(show_box_depth_code); breadth_max = int_par(show_box_breadth_code); if (breadth_max <= 0) breadth_max = 5; show_node_list(p); /* the show starts at |p| */ print_ln(); } @ Helper for debugging purposes @c void short_display_n(int p, int m) { /* prints highlights of list |p| */ int i = 0; font_in_short_display = null_font; if (p == null) return; while (p != null) { if (is_char_node(p)) { if (p <= max_halfword) { if (font(p) != font_in_short_display) { if (!is_valid_font(font(p))) print_char('*'); else print_font_identifier(font(p)); print_char(' '); font_in_short_display = font(p); } print(character(p)); } } else { if ((type(p) == glue_node) || (type(p) == disc_node) || (type(p) == penalty_node) || ((type(p) == kern_node) && (subtype(p) == explicit))) incr(i); if (i >= m) return; if (type(p) == disc_node) { print_char('|'); short_display(vlink(pre_break(p))); print_char('|'); short_display(vlink(post_break(p))); print_char('|'); } else { /* Print a short indication of the contents of node |p| */ print_short_node_contents(p); } } p = vlink(p); if (p == null) return; } update_terminal(); } @ When debugging a macro package, it can be useful to see the exact control sequence names in the format file. For example, if ten new csnames appear, it's nice to know what they are, to help pinpoint where they came from. (This isn't a truly ``basic'' printing procedure, but that's a convenient module in which to put it.) @c void print_csnames(int hstart, int hfinish) { int h; unsigned char *c, *l; fprintf(stderr, "fmtdebug:csnames from %d to %d:", (int) hstart, (int) hfinish); for (h = hstart; h <= hfinish; h++) { if (cs_text(h) > 0) { /* if have anything at this position */ c = str_string(cs_text(h)); l = c + str_length(cs_text(h)); while (c < l) { fputc(*c++, stderr); /* print the characters */ } fprintf(stderr, "|"); } } } @ A helper for printing file:line:error style messages. Look for a filename in |full_source_filename_stack|, and if we fail to find one fall back on the non-file:line:error style. @c void print_file_line(void) { int level; level = in_open; while ((level > 0) && (full_source_filename_stack[level] == 0)) decr(level); if (level == 0) { tprint_nl("! "); } else { tprint_nl(""); tprint(full_source_filename_stack[level]); print_char(':'); if (level == in_open) print_int(line); else print_int(line_stack[level + 1]); tprint(": "); } } @ \TeX\ is occasionally supposed to print diagnostic information that goes only into the transcript file, unless |tracing_online| is positive. Here are two routines that adjust the destination of print commands: @c void begin_diagnostic(void) { /* prepare to do some tracing */ global_old_setting = selector; if ((int_par(tracing_online_code) <= 0) && (selector == term_and_log)) { decr(selector); if (history == spotless) history = warning_issued; } } @ @c void end_diagnostic(boolean blank_line) { /* restore proper conditions after tracing */ tprint_nl(""); if (blank_line) print_ln(); selector = global_old_setting; } @ Of course we had better declare another global variable, if the previous routines are going to work. @c int global_old_setting;