/* primitive.c Copyright 2008-2009 Taco Hoekwater This file is part of LuaTeX. LuaTeX is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. LuaTeX is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU General Public License along with LuaTeX; if not, see . */ #include "luatex-api.h" #include #include "commands.h" #include "primitive.h" #include "tokens.h" static const char _svn_version[] = "$Id: primitive.c 2448 2009-06-08 07:43:50Z taco $ $URL: http://foundry.supelec.fr/svn/luatex/tags/beta-0.40.3/source/texk/web2c/luatexdir/tex/primitive.c $"; /* as usual, the file starts with a bunch of #defines that mimic pascal @ds */ #define level_one 1 #define flush_string() do { decr(str_ptr); pool_ptr=str_start_macro(str_ptr); } while (0) #define cur_length (pool_ptr - str_start_macro(str_ptr)) #define append_char(a) str_pool[pool_ptr++]=(a) #define next(a) hash[(a)].lhfield /* link for coalesced lists */ #define text(a) hash[(a)].rh /* string number for control sequence name */ #define hash_is_full (hash_used==hash_base) /* test if all positions are occupied */ #define hash_size 65536 #define span_code 1114113 #define unless_code 32 /* amount added for `\.{\\unless}' prefix */ #define protected_token 0x1C00001 /* $2^{21}\cdot|end_match|+1$ */ #define offset_ocp_name 1 #define ocp_name(A) ocp_tables[(A)][offset_ocp_name] #define skip_base get_skip_base() #define mu_skip_base get_mu_skip_base() #define glue_base static_glue_base #define toks_base get_toks_base() #define count_base get_count_base() #define int_base static_int_base #define attribute_base get_attribute_base() #define scaled_base get_scaled_base() #define dimen_base get_dimen_base() /* \primitive support needs a few extra variables and definitions */ #define prim_base 1 /* The arrays |prim| and |prim_eqtb| are used for name -> cmd,chr lookups. * * The are modelled after |hash| and |eqtb|, except that primitives do not * have an |eq_level|, that field is replaced by |origin|. */ #define prim_next(a) prim[(a)].lhfield /* link for coalesced lists */ #define prim_text(a) prim[(a)].rh /* string number for control sequence name */ #define prim_is_full (prim_used==prim_base) /* test if all positions are occupied */ #define prim_origin_field(a) (a).hh.b1 #define prim_eq_type_field(a) (a).hh.b0 #define prim_equiv_field(a) (a).hh.rh #define prim_origin(a) prim_origin_field(prim_eqtb[(a)]) /* level of definition */ #define prim_eq_type(a) prim_eq_type_field(prim_eqtb[(a)]) /* command code for equivalent */ #define prim_equiv(a) prim_equiv_field(prim_eqtb[(a)]) /* equivalent value */ static pointer prim_used; /* allocation pointer for |prim| */ static two_halves prim[(prim_size + 1)]; /* the primitives table */ static memory_word prim_eqtb[(prim_size + 1)]; /* The array |prim_data| works the other way around, it is used for cmd,chr -> name lookups. */ typedef struct prim_info { halfword subids; /* number of name entries */ halfword offset; /* offset to be used for |chr_code|s */ str_number *names; /* array of names */ } prim_info; static prim_info prim_data[(last_cmd + 1)]; /* initialize the memory arrays */ void init_primitives(void) { int k; memset(prim_data, 0, (sizeof(prim_info) * (last_cmd + 1))); memset(prim, 0, (sizeof(two_halves) * (prim_size + 1))); memset(prim_eqtb, 0, (sizeof(memory_word) * (prim_size + 1))); for (k = 0; k <= prim_size; k++) prim_eq_type(k) = undefined_cs_cmd; } void ini_init_primitives(void) { prim_used = prim_size; /* nothing is used */ } /* The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it should be a prime number. The theory of hashing tells us to expect fewer than two table probes, on the average, when the search is successful. [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.] @^Vitter, Jeffrey Scott@> */ static halfword compute_hash(char *j, pool_pointer l, halfword prime_number) { pool_pointer k; halfword h = (unsigned char) *j; for (k = 1; k <= l - 1; k++) { h = h + h + (unsigned char) *(j + k); while (h >= prime_number) h = h - prime_number; } return h; } /* Here is the subroutine that searches the primitive table for an identifier */ pointer prim_lookup(str_number s) { integer h; /* hash code */ pointer p; /* index in |hash| array */ pool_pointer j, l; if (s < string_offset) { p = s; if ((p < 0) || (get_prim_eq_type(p) == undefined_cs_cmd)) { p = undefined_primitive; } } else { j = str_start_macro(s); if (s == str_ptr) l = cur_length; else l = length(s); h = compute_hash((char *) (str_pool + j), l, prim_prime); p = h + prim_base; /* we start searching here; note that |0<=h 0) if (length(prim_text(p)) == l) if (str_eq_str(prim_text(p), s)) goto FOUND; if (prim_next(p) == 0) { if (no_new_control_sequence) { p = undefined_primitive; } else { /* Insert a new primitive after |p|, then make |p| point to it */ if (prim_text(p) > 0) { do { /* search for an empty location in |prim| */ if (prim_is_full) overflow_string("primitive size", prim_size); decr(prim_used); } while (prim_text(prim_used) != 0); prim_next(p) = prim_used; p = prim_used; } prim_text(p) = s; } goto FOUND; } p = prim_next(p); } } FOUND: return p; } /* how to test a csname for primitive-ness */ boolean is_primitive(str_number csname) { integer n, m; m = prim_lookup(csname); n = string_lookup(makecstring(csname), length(csname)); return ((n != undefined_cs_cmd) && (m != undefined_primitive) && (eq_type(n) == prim_eq_type(m)) && (equiv(n) == prim_equiv(m))); } /* a few simple accessors */ quarterword get_prim_eq_type(integer p) { return prim_eq_type(p); } quarterword get_prim_origin(integer p) { return prim_origin(p); } halfword get_prim_equiv(integer p) { return prim_equiv(p); } str_number get_prim_text(integer p) { return prim_text(p); } /* dumping and undumping */ void dump_primitives(void) { int p, q; for (p = 0; p <= prim_size; p++) dump_hh(prim[p]); for (p = 0; p <= prim_size; p++) dump_wd(prim_eqtb[p]); for (p = 0; p <= last_cmd; p++) { dump_int(prim_data[p].offset); dump_int(prim_data[p].subids); for (q = 0; q < prim_data[p].subids; q++) { dump_int(prim_data[p].names[q]); } } } void undump_primitives(void) { int p, q; for (p = 0; p <= prim_size; p++) undump_hh(prim[p]); for (p = 0; p <= prim_size; p++) undump_wd(prim_eqtb[p]); for (p = 0; p <= last_cmd; p++) { undump_int(prim_data[p].offset); undump_int(prim_data[p].subids); if (prim_data[p].subids > 0) { prim_data[p].names = (str_number *) xcalloc((prim_data[p].subids), sizeof(str_number *)); } for (q = 0; q < prim_data[p].subids; q++) { undump_int(prim_data[p].names[q]); } } } /* We need to put \TeX's ``primitive'' control sequences into the hash table, together with their command code (which will be the |eq_type|) and an operand (which will be the |equiv|). The |primitive| procedure does this, in a way that no \TeX\ user can. The global value |cur_val| contains the new |eqtb| pointer after |primitive| has acted. */ /* Because the definitions of the actual user-accessible name of a primitive can be postponed until runtime, the function |primitive_def| is needed that does nothing except creating the control sequence name. */ void primitive_def(char *s, size_t l, quarterword c, halfword o) { int nncs = no_new_control_sequence; no_new_control_sequence = false; cur_val = string_lookup(s, l); /* this creates the |text()| string */ no_new_control_sequence = nncs; eq_level(cur_val) = level_one; eq_type(cur_val) = c; equiv(cur_val) = o; } /* The function |store_primitive_name| sets up the bookkeeping for the reverse lookup. It is quite paranoid, because it is easy to mess this up accidentally. The |offset| is needed because sometimes character codes (in |o|) are indices into |eqtb| or are offset by a magical value to make sure they do not conflict with something else. We don't want the |prim_data[c].names| to have too many entries as it will just be wasted room, so |offset| is substracted from |o| because creating or accessing the array. The |assert(idx<=0xFFFF)| is not strictly needed, but it helps catch errors of this kind. */ void store_primitive_name(str_number s, quarterword c, halfword o, halfword offset) { int idx; if (prim_data[c].offset != 0 && prim_data[c].offset != offset) { assert(false); } prim_data[c].offset = offset; idx = ((int) o - offset); assert(idx >= 0); assert(idx <= 0xFFFF); if (prim_data[c].subids < (idx + 1)) { str_number *new = (str_number *) xcalloc((idx + 1), sizeof(str_number *)); if (prim_data[c].names != NULL) { assert(prim_data[c].subids); memcpy(new, (prim_data[c].names), (prim_data[c].subids * sizeof(str_number))); free(prim_data[c].names); } prim_data[c].names = new; prim_data[c].subids = idx + 1; } prim_data[c].names[idx] = s; } /* Compared to tex82, |primitive| has two extra parameters. The |off| is an offset that will be passed on to |store_primitive_name|, the |cmd_origin| is the bit that is used to group primitives by originator. */ void primitive(str_number ss, quarterword c, halfword o, halfword off, int cmd_origin) { str_number s; /* actual |str_number| used */ integer prim_val; /* needed to fill |prim_eqtb| */ char *thes; assert(o >= off); if (ss < string_offset) { if (ss > 127) tconfusion("prim"); /* should be ASCII */ append_char(ss); s = make_string(); } else { s = ss; } thes = makecstring(s); if (cmd_origin == tex_command || cmd_origin == core_command) { primitive_def(thes, strlen(thes), c, o); } prim_val = prim_lookup(s); prim_origin(prim_val) = cmd_origin; prim_eq_type(prim_val) = c; prim_equiv(prim_val) = o; store_primitive_name(s, c, o, off); } /* * Here is a helper that does the actual hash insertion. */ static halfword insert_id(halfword p, unsigned char *j, pool_pointer l) { integer d; unsigned char *k; /* This code far from ideal: the existance of |hash_extra| changes all the potential (short) coalesced lists into a single (long) one. This will create a slowdown. */ if (text(p) > 0) { if (hash_high < hash_extra) { incr(hash_high); /* can't use eqtb_top here (perhaps because that is not finalized yet when called from |primitive|?) */ next(p) = hash_high + get_eqtb_size(); p = next(p); } else { do { if (hash_is_full) overflow_string("hash size", hash_size + hash_extra); decr(hash_used); } while (text(hash_used) != 0); /* search for an empty location in |hash| */ next(p) = hash_used; p = hash_used; } } check_pool_overflow((pool_ptr + l)); d = cur_length; while (pool_ptr > str_start_macro(str_ptr)) { /* move current string up to make room for another */ decr(pool_ptr); str_pool[pool_ptr + l] = str_pool[pool_ptr]; } for (k = j; k <= j + l - 1; k++) append_char(*k); text(p) = make_string(); pool_ptr = pool_ptr + d; incr(cs_count); return p; } /* Here is the subroutine that searches the hash table for an identifier that matches a given string of length |l>1| appearing in |buffer[j.. (j+l-1)]|. If the identifier is found, the corresponding hash table address is returned. Otherwise, if the global variable |no_new_control_sequence| is |true|, the dummy address |undefined_control_sequence| is returned. Otherwise the identifier is inserted into the hash table and its location is returned. */ pointer id_lookup(integer j, integer l) { /* search the hash table */ integer h; /* hash code */ pointer p; /* index in |hash| array */ h = compute_hash((char *) (buffer + j), l, hash_prime); p = h + hash_base; /* we start searching here; note that |0<=h 0) if (length(text(p)) == l) if (str_eq_buf(text(p), j)) goto FOUND; if (next(p) == 0) { if (no_new_control_sequence) { p = static_undefined_control_sequence; } else { p = insert_id(p, (buffer + j), l); } goto FOUND; } p = next(p); } FOUND: return p; } /* * Here is a similar subroutine for finding a primitive in the hash. * This one is based on a C string. */ pointer string_lookup(char *s, size_t l) { /* search the hash table */ integer h; /* hash code */ pointer p; /* index in |hash| array */ h = compute_hash(s, l, hash_prime); p = h + hash_base; /* we start searching here; note that |0<=h 0) if (str_eq_cstr(text(p), s, l)) goto FOUND; if (next(p) == 0) { if (no_new_control_sequence) { p = static_undefined_control_sequence; } else { p = insert_id(p, (unsigned char *) s, l); } goto FOUND; } p = next(p); } FOUND: return p; } /* The |print_cmd_chr| routine prints a symbolic interpretation of a command code and its modifier. This is used in certain `\.{You can\'t}' error messages, and in the implementation of diagnostic routines like \.{\\show}. The body of |print_cmd_chr| use to be a rather tedious listing of print commands, and most of it was essentially an inverse to the |primitive| routine that enters a \TeX\ primitive into |eqtb|. Thanks to |prim_data|, there is no need for all that tediousness. What is left of |primt_cnd_chr| are just the exceptions to the general rule that the |cmd,chr_code| pair represents in a single primitive command. */ #define chr_cmd(A) do { tprint(A); print(chr_code); } while (0) void prim_cmd_chr(quarterword cmd, halfword chr_code) { int idx = chr_code - prim_data[cmd].offset; if (cmd <= last_cmd && idx >= 0 && idx < prim_data[cmd].subids && prim_data[cmd].names != NULL && prim_data[cmd].names[idx] != 0) { tprint("\\"); print(prim_data[cmd].names[idx]); } else { /* TEX82 didn't print the |cmd,idx| information, but it may be useful */ tprint("[unknown command code! ("); print_int(cmd); tprint(", "); print_int(idx); tprint(")]"); } } void print_cmd_chr(quarterword cmd, halfword chr_code) { integer n; /* temp variable */ switch (cmd) { case left_brace_cmd: chr_cmd("begin-group character "); break; case right_brace_cmd: chr_cmd("end-group character "); break; case math_shift_cmd: chr_cmd("math shift character "); break; case mac_param_cmd: chr_cmd("macro parameter character "); break; case sup_mark_cmd: chr_cmd("superscript character "); break; case sub_mark_cmd: chr_cmd("subscript character "); break; case endv_cmd: tprint("end of alignment template"); break; case spacer_cmd: chr_cmd("blank space "); break; case letter_cmd: chr_cmd("the letter "); break; case other_char_cmd: chr_cmd("the character "); break; case tab_mark_cmd: if (chr_code == span_code) tprint_esc("span"); else chr_cmd("alignment tab character "); break; case if_test_cmd: if (chr_code >= unless_code) tprint_esc("unless"); prim_cmd_chr(cmd, (chr_code % unless_code)); break; case char_given_cmd: tprint_esc("char"); print_hex(chr_code); break; case math_given_cmd: tprint_esc("mathchar"); show_mathcode_value(mathchar_from_integer(chr_code, tex_mathcode)); break; case omath_given_cmd: tprint_esc("omathchar"); show_mathcode_value(mathchar_from_integer(chr_code, aleph_mathcode)); break; case xmath_given_cmd: tprint_esc("Umathchar"); show_mathcode_value(mathchar_from_integer(chr_code, xetex_mathcode)); break; case set_font_cmd: tprint("select font "); tprint(font_name(chr_code)); if (font_size(chr_code) != font_dsize(chr_code)) { tprint(" at "); print_scaled(font_size(chr_code)); tprint("pt"); } break; case undefined_cs_cmd: tprint("undefined"); break; case call_cmd: case long_call_cmd: case outer_call_cmd: case long_outer_call_cmd: n = cmd - call_cmd; if (info(link(chr_code)) == protected_token) n = n + 4; if (odd(n / 4)) tprint_esc("protected"); if (odd(n)) tprint_esc("long"); if (odd(n / 2)) tprint_esc("outer"); if (n > 0) tprint(" "); tprint("macro"); break; case extension_cmd: if (chr_code < prim_data[cmd].subids && prim_data[cmd].names[chr_code] != 0) { prim_cmd_chr(cmd, chr_code); } else { tprint("[unknown extension! ("); print_int(chr_code); tprint(")]"); } break; case set_ocp_cmd: tprint("select ocp "); slow_print(ocp_name(chr_code)); break; case set_ocp_list_cmd: tprint("select ocp list "); break; case assign_glue_cmd: case assign_mu_glue_cmd: if (chr_code < skip_base) { print_skip_param(chr_code - glue_base); } else if (chr_code < mu_skip_base) { tprint_esc("skip"); print_int(chr_code - skip_base); } else { tprint_esc("muskip"); print_int(chr_code - mu_skip_base); } break; case assign_toks_cmd: if (chr_code >= toks_base) { tprint_esc("toks"); print_int(chr_code - toks_base); } else { prim_cmd_chr(cmd, chr_code); } break; case assign_int_cmd: if (chr_code < count_base) { print_param(chr_code - int_base); } else { tprint_esc("count"); print_int(chr_code - count_base); } break; case assign_attr_cmd: tprint_esc("attribute"); print_int(chr_code - attribute_base); break; case assign_dimen_cmd: if (chr_code < scaled_base) { print_length_param(chr_code - dimen_base); } else { tprint_esc("dimen"); print_int(chr_code - scaled_base); } break; default: /* these are most commands, actually */ prim_cmd_chr(cmd, chr_code); break; } }