/* Copyright 2009-2010 Taco Hoekwater This file is part of LuaTeX. LuaTeX is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. LuaTeX is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU General Public License along with LuaTeX; if not, see . */ #include "ptexlib.h" /*tex We're essentially done with the parts of \TeX\ that are concerned with the input (|get_next|) and the output (|ship_out|). So it's time to get heavily into the remaining part, which does the real work of typesetting. After lists are constructed, \TeX\ wraps them up and puts them into boxes. Two major subroutines are given the responsibility for this task: |hpack| applies to horizontal lists (hlists) and |vpack| applies to vertical lists (vlists). The main duty of |hpack| and |vpack| is to compute the dimensions of the resulting boxes, and to adjust the glue if one of those dimensions is pre-specified. The computed sizes normally enclose all of the material inside the new box; but some items may stick out if negative glue is used, if the box is overfull, or if a \.{\\vbox} includes other boxes that have been shifted left. The subroutine call |hpack(p,w,m)| returns a pointer to an |hlist_node| for a box containing the hlist that starts at |p|. Parameter |w| specifies a width; and parameter |m| is either `|exactly|' or `|additional|'. Thus, |hpack(p,w,exactly)| produces a box whose width is exactly |w|, while |hpack(p,w,additional)| yields a box whose width is the natural width plus |w|. It is convenient to define a macro called `|natural|' to cover the most common case, so that we can say |hpack(p,natural)| to get a box that has the natural width of list |p|. Similarly, |vpack(p,w,m)| returns a pointer to a |vlist_node| for a box containing the vlist that starts at |p|. In this case |w| represents a height instead of a width; the parameter |m| is interpreted as in |hpack|. The parameters to |hpack| and |vpack| correspond to \TeX's primitives like `\.{\\hbox} \.{to} \.{300pt}', `\.{\\hbox} \.{spread} \.{10pt}'; note that `\.{\\hbox}' with no dimension following it is equivalent to `\.{\\hbox} \.{spread} \.{0pt}'. The |scan_spec| subroutine scans such constructions in the user's input, including the mandatory left brace that follows them, and it puts the specification onto |save_stack| so that the desired box can later be obtained by executing the following code: $$\vbox{\halign{#\hfil\cr |save_ptr:=save_ptr-1;|\cr |hpack(p,saved_value(0),saved_level(0)).|\cr}}$$ */ /*tex Scan a box specification and left brace: */ void scan_spec(group_code c) { int spec_code; boolean done = false ; do { get_x_token(); } while ((cur_cmd == spacer_cmd) || (cur_cmd == relax_cmd)); if (cur_cmd == left_brace_cmd) { spec_code = additional; cur_val = 0; done = true; } else { /*tex todo: attr */ back_input(); if (scan_keyword("to")) { spec_code = exactly; scan_normal_dimen(); } else if (scan_keyword("spread")) { spec_code = additional; scan_normal_dimen(); } else { spec_code = additional; cur_val = 0; } } set_saved_record(0, saved_boxspec, spec_code, cur_val); save_ptr++; new_save_level(c); if (!done) { scan_left_brace(); } } /*tex When scanning, special care is necessary to ensure that the special |save_stack| codes are placed just below the new group code, because scanning can change |save_stack| when \.{\\csname} appears. This coincides with the text on |dir| and |attr| keywords, as these are exaclty the uses of \.{\\hbox}, \.{\\vbox}, and \.{\\vtop} in the input stream (the others are \.{\\vcenter}, \.{\\valign}, and \.{\\halign}). */ /*tex Scan a box specification and left brace: */ #define first_char_is(a,A) (cur_cs == 0 && (cur_chr == a || cur_chr == A)) void scan_full_spec(group_code c, int spec_direction, int just_pack) { int s, i, v, spec_code; boolean done = false ; halfword attr_list; boolean attr_done = false ; boolean dir_done = false ; if (attr_list_cache == cache_disabled) update_attribute_cache(); attr_list = attr_list_cache; /*tex The box context: */ s = saved_value(0); do { get_x_token(); } while ((cur_cmd == spacer_cmd) || (cur_cmd == relax_cmd)); if (cur_cmd == left_brace_cmd) { goto QUICK; } else { back_input(); goto KEYWORDS; } CONTINUE: while (cur_cmd == relax_cmd || cur_cmd == spacer_cmd) { get_x_token(); if (cur_cmd == left_brace_cmd) { goto QUICK; } else if (cur_cmd != relax_cmd && cur_cmd != spacer_cmd) { back_input(); break; } } KEYWORDS: /*tex Multiple |attr| keys possible (before or after dir). */ if (scan_keyword("attr")) { scan_register_num(); i = cur_val; scan_optional_equals(); scan_int(); v = cur_val; if (! attr_done) { attr_list = copy_attribute_list(attr_list_cache); attr_done = true; } attr_list = do_set_attribute(attr_list, i, v); goto CONTINUE; } /*tex We only permit one |(b)dir| directive. */ if (! dir_done) { if (scan_keyword("bdir")) { scan_int(); check_dir_value(cur_val); spec_direction = cur_val; dir_done = true; goto CONTINUE; } if (scan_keyword("dir")) { scan_direction(); spec_direction = cur_val; dir_done = true; goto CONTINUE; } } /*tex Only one |to| or |spread| key possible and it comes last. */ if (scan_keyword("to")) { spec_code = exactly; } else if (scan_keyword("spread")) { spec_code = additional; } else { spec_code = additional; cur_val = 0; goto FOUND; } scan_normal_dimen(); goto FOUND; QUICK: spec_code = additional; cur_val = 0; done = true; FOUND: add_node_attr_ref(attr_list); set_saved_record(0, saved_boxcontext, 0, s); set_saved_record(1, saved_boxspec, spec_code, cur_val); /*tex Adjust |text_dir_ptr| for |scan_spec|. */ if (spec_direction != -1) { set_saved_record(2, saved_boxdir, spec_direction, text_dir_ptr); text_dir_ptr = new_dir(spec_direction); } else { set_saved_record(2, saved_boxdir, spec_direction, null); } set_saved_record(3, saved_boxattr, 0, attr_list); set_saved_record(4, saved_boxpack, 0, just_pack); save_ptr += 5; new_save_level(c); if (! done) { scan_left_brace(); } /*tex No gain in |if (body_direction_par != spec_direction)| etc. */ eq_word_define(int_base + body_direction_code, spec_direction); eq_word_define(int_base + par_direction_code, spec_direction); eq_word_define(int_base + text_direction_code, spec_direction); } /*tex To figure out the glue setting, |hpack| and |vpack| determine how much stretchability and shrinkability are present, considering all four orders of infinity. The highest order of infinity that has a nonzero coefficient is then used as if no other orders were present. For example, suppose that the given list contains six glue nodes with the respective stretchabilities 3pt, 8fill, 5fil, 6pt, $-3$fil, $-8$fill. Then the total is essentially 2fil; and if a total additional space of 6pt is to be achieved by stretching, the actual amounts of stretch will be 0pt, 0pt, 15pt, 0pt, $-9$pt, and 0pt, since only `fil' glue will be considered. (The `fill' glue is therefore not really stretching infinitely with respect to `fil'; nobody would actually want that to happen.) The arrays |total_stretch| and |total_shrink| are used to determine how much glue of each kind is present. A global variable |last_badness| is used to implement \.{\\badness}. */ /*tex Glue found by |hpack| or |vpack|. */ scaled total_stretch[5]; scaled total_shrink[5]; /*tex Badness of the most recently packaged box. */ int last_badness; /*tex If the global variable |adjust_tail| is non-null, the |hpack| routine also removes all occurrences of |ins_node|, |mark_node|, and |adjust_node| items and appends the resulting material onto the list that ends at location |adjust_tail|. */ /*tex Tail of adjustment list. */ halfword adjust_tail; /*tex Materials in \.{\\vadjust} used with \.{pre} keyword will be appended to |pre_adjust_tail| instead of |adjust_tail|. */ halfword pre_adjust_tail; halfword last_leftmost_char; halfword last_rightmost_char; /*tex Pointers to the prev and next char of an implicit kern. */ halfword next_char_p; halfword prev_char_p; /*tex This procedure is called repeatedly from inside the line break algorithm. */ void set_prev_char_p(halfword p) { prev_char_p = p; } /*tex The kern stretch / shrink code was (or had become) rather weird ... the width field is set, and then used in a second calculation, repeatedly, so why is that ... maybe some some weird left-over ... anyway, the values are so small that in practice they are not significant at all when the backend sees them because a few hundred sp positive or negative are just noise there (so adjustlevel 3 has hardly any consequence for the result but is more efficient). */ scaled char_stretch(halfword p) { internal_font_number f = font(p); int m = font_max_stretch(f); if (m > 0) { int c = character(p); int ef = get_ef_code(f, c); if (ef > 0) { scaled dw = calc_char_width(f, c, m) - char_width(f, c); if (dw > 0) { return round_xn_over_d(dw, ef, 1000); } } } return 0; } scaled char_shrink(halfword p) { internal_font_number f = font(p); int m = font_max_shrink(f); if (m > 0) { int c = character(p); int ef = get_ef_code(f, c); if (ef > 0) { scaled dw = char_width(f, c) - calc_char_width(f, c, -m); if (dw > 0) { return round_xn_over_d(dw, ef, 1000); } } } return 0; } scaled kern_stretch(halfword p) { int m; scaled d, e, x; scaled w = width(p) ; halfword l; halfword r; if (w == 0) { /*tex Why bother about zero kerns. */ return 0; } l = prev_char_p ; if ((l == null) || (vlink(l) != p)) { /*tex We only care about kerns following a char. */ return 0; } r = vlink(p); if (r == null) { /*tex We only care about kerns between a char and something else. */ } if (!(is_char_node(l) && is_char_node(r))) { /*tex We want two chars (but but don't care about the fonts). */ return 0; } /*tex We use the old logic, kind of, but average the ef as we might depend on proper overlap. */ m = (font_max_stretch(font(l)) + font_max_stretch(font(r)))/2; if (m == 0) { /*tex nothing to kern */ return 0; } d = round_xn_over_d(w, 1000 + m, 1000); /*tex We use the old logic, kind of, but average the ef as we might depend on proper overlap. */ e = (get_ef_code(font(l), character(l)) + get_ef_code(font(r), character(r)))/2 ; if (e == 1000) { x = d - w; } else { x = round_xn_over_d(d - w, e, 1000); } return x; } scaled kern_shrink(halfword p) { int m; scaled d, e, x; scaled w = width(p) ; halfword l; halfword r; if (w == 0) { /*tex Why bother about zero kerns. */ return 0; } l = prev_char_p ; if ((l == null) || (vlink(l) != p)) { /*tex We only care about kerns following a char. */ return 0; } r = vlink(p); if (r == null) { /*tex We only care about kerns between a char and something else. */ } if (!(is_char_node(l) && is_char_node(r))) { /*tex We want two chars (but but don't care about the fonts). */ return 0; } /*tex We use the old logic, kind of, but average the ef as we might depend on proper overlap. */ m = (font_max_shrink(font(l)) + font_max_shrink(font(r)))/2; if (m == 0) { /*tex Nothing to kern. */ return 0; } d = round_xn_over_d(w, 1000 - m, 1000); e = (get_ef_code(font(l), character(l)) + get_ef_code(font(r), character(r)))/2 ; if (e == 1000) { x = w - d ; } else { x = round_xn_over_d(w - d, e, 1000); } return x; } void do_subst_font(halfword p, int ex_ratio) { if (type(p) == disc_node) { halfword r = vlink(pre_break(p)); while (r != null) { if (is_char_node(r)) do_subst_font(r, ex_ratio); r = vlink(r); } r = vlink(post_break(p)); while (r != null) { if (is_char_node(r)) do_subst_font(r, ex_ratio); r = vlink(r); } r = vlink(no_break(p)); while (r != null) { if (is_char_node(r)) do_subst_font(r, ex_ratio); r = vlink(r); } return; } if (! is_char_node(p)) { normal_error("font expansion", "invalid node type"); return; } else { internal_font_number f = font(p); int ef = get_ef_code(f, character(p)); if (ef == 0) return; if ((font_max_stretch(f) > 0) && (ex_ratio > 0)) { int ex_stretch = ext_xn_over_d(ex_ratio * ef, font_max_stretch(f), 1000000); ex_glyph(p) = fix_expand_value(f, ex_stretch)*1000; } else if ((font_max_shrink(f) > 0) && (ex_ratio < 0)) { int ex_shrink = ext_xn_over_d(ex_ratio * ef, font_max_shrink(f), 1000000); ex_glyph(p) = fix_expand_value(f, ex_shrink)*1000; } } } scaled char_pw(halfword p, int side) { internal_font_number f; int c, w; if (side == left_side) last_leftmost_char = null; else last_rightmost_char = null; if (p == null) return 0; if (!is_char_node(p)) return 0; f = font(p); if (side == left_side) { c = get_lp_code(f, character(p)); last_leftmost_char = p; } else { c = get_rp_code(f, character(p)); last_rightmost_char = p; } if (c == 0) return 0; w = quad(f); return round_xn_over_d(w, c, 1000); } halfword new_margin_kern(scaled w, halfword p, int side) { halfword k, q; k = new_node(margin_kern_node, side); width(k) = w; if (p == null) normal_error("margin kerning", "invalid pointer to marginal char node"); q = new_char(font(p), character(p)); margin_char(k) = q; return k; } /*tex Here we prepare for |hpack|, which is place where we do font substituting when font expansion is being used. */ /*tex The current expansion ratio, needed for recursive call. */ int font_expand_ratio = 0; int ignore_math_skip(halfword p) { if (math_skip_mode == 6) { if (subtype(p) == after) { if (math_skip_boundary(vlink(p))) { return 0; } } else { if (math_skip_boundary(alink(p))) { return 0; } } } else if (math_skip_mode == 7) { if (subtype(p) == after) { if (! math_skip_boundary(vlink(p))) { return 0; } } else { if (! math_skip_boundary(alink(p))) { return 0; } } } else { return 0; } reset_glue_to_zero(p); return 1; } halfword hpack(halfword p, scaled w, int m, int pack_direction) { /*tex the box node that will be returned */ halfword r; /*tex trails behind |p| */ halfword q; /*tex height */ scaled h = 0; /*tex depth */ scaled d = 0; /*tex natural width */ scaled x = 0; scaled_whd whd; /*tex shift amount */ scaled s; /*tex order of infinity */ int o; /*tex for managing the direction stack */ halfword dir_ptr1 = null; /*tex the current direction */ int hpack_dir; int disc_level = 0; halfword pack_interrupt[8]; scaled font_stretch = 0; scaled font_shrink = 0; int adjust_spacing = adjust_spacing_par; last_badness = 0; /*tex the box node that will be returned */ r = new_node(hlist_node, min_quarterword); if (pack_direction == -1) { hpack_dir = text_direction_par; } else { hpack_dir = pack_direction; } box_dir(r) = hpack_dir; /*tex A potential optimimization, save a little but neglectable in practice (not so many empty boxes are used): \starttyping if (p == null) { width(r) = w; return r; } \stoptyping */ /*tex push null */ push_dir(dir_ptr1,hpack_dir); /*tex hm, adding something to a node address? */ q = r + list_offset; vlink(q) = p; if (m == cal_expand_ratio) { /*tex Why not always: */ prev_char_p = null; } if (adjust_spacing > 2) { adjust_spacing = 0; } total_stretch[normal] = 0; total_shrink[normal] = 0; total_stretch[sfi] = 0; total_shrink[sfi] = 0; total_stretch[fil] = 0; total_shrink[fil] = 0; total_stretch[fill] = 0; total_shrink[fill] = 0; total_stretch[filll] = 0; total_shrink[filll] = 0; RESWITCH: while ((p != null) || (disc_level > 0)) { if (p == null) { decr(disc_level); p = pack_interrupt[disc_level]; goto RESWITCH; } /*tex Examine node |p| in the hlist, taking account of its effect on the dimensions of the new box, or moving it to the adjustment list; then advance |p| to the next node. */ while (is_char_node(p)) { /*tex Incorporate character dimensions into the dimensions of the hbox that will contain~it, then move to the next node. The following code is part of \TeX's inner loop; i.e., adding another character of text to the user's input will cause each of these instructions to be exercised one more time. */ if (m >= cal_expand_ratio) { prev_char_p = p; if (m == cal_expand_ratio) { font_stretch += char_stretch(p); font_shrink += char_shrink(p); } else if (m == subst_ex_font) { do_subst_font(p, font_expand_ratio); } } whd = pack_width_height_depth(hpack_dir, dir_TRT, p, true); x += whd.wd; if (whd.ht > h) h = whd.ht; if (whd.dp > d) d = whd.dp; p = vlink(p); } if (p != null) { switch (type(p)) { case hlist_node: case vlist_node: /*tex Incorporate box dimensions into the dimensions of the hbox that will contain~it The code here implicitly uses the fact that running dimensions are indicated by |null_flag|, which will be ignored in the calculations because it is a highly negative number. */ s = shift_amount(p); whd = pack_width_height_depth(hpack_dir, box_dir(p), p, false); x += whd.wd; if (whd.ht - s > h) h = whd.ht - s; if (whd.dp + s > d) d = whd.dp + s; break; case rule_node: case unset_node: x += width(p); if (height(p) > h) h = height(p); if (depth(p) > d) d = depth(p); break; case math_node: /*tex Begin mathskip code. */ if (glue_is_zero(p) || ignore_math_skip(p)) { x += surround(p); break; } else { /*tex Fall through. */ } /*tex End mathskip code. */ case glue_node: /*tex Incorporate glue into the horizontal totals. */ x += width(p); o = stretch_order(p); total_stretch[o] = total_stretch[o] + stretch(p); o = shrink_order(p); total_shrink[o] = total_shrink[o] + shrink(p); if (subtype(p) >= a_leaders) { halfword g = leader_ptr(p); if (height(g) > h) h = height(g); if (depth(g) > d) d = depth(g); } break; case kern_node: x += width(p); if (subtype(p) == font_kern && adjust_spacing) { /*tex So only when 1 or 2. */ if (m == cal_expand_ratio) { font_stretch = font_stretch + kern_stretch(p); font_shrink = font_shrink + kern_shrink(p); } else if (m == subst_ex_font) { /*tex This is the finalizer. */ int k = 0; if (font_expand_ratio > 0) { k = kern_stretch(p); } else if (font_expand_ratio < 0) { k = kern_shrink(p); } ex_kern(p) = k; x += k; } } break; case disc_node: if (m == subst_ex_font) do_subst_font(p, font_expand_ratio); if ((subtype(p) != select_disc) && (vlink(no_break(p)) != null)) { pack_interrupt[disc_level] = vlink(p); incr(disc_level); p = no_break(p); } break; case dir_node: /*tex Adjust the dir stack for the |hpack| routine. */ if (subtype(p) == normal_dir) { hpack_dir = dir_dir(p); push_dir_node(dir_ptr1,p); } else { pop_dir_node(dir_ptr1); if (dir_ptr1 != null) hpack_dir = dir_dir(dir_ptr1); } break; case margin_kern_node: if (m == cal_expand_ratio) { int f = font(margin_char(p)); do_subst_font(margin_char(p), 1000); if (f != font(margin_char(p))) font_stretch = font_stretch - width(p) - char_pw(margin_char(p), subtype(p)); font(margin_char(p)) = f; do_subst_font(margin_char(p), -1000); if (f != font(margin_char(p))) font_shrink = font_shrink - width(p) - char_pw(margin_char(p), subtype(p)); font(margin_char(p)) = f; } else if (m == subst_ex_font) { do_subst_font(margin_char(p), font_expand_ratio); width(p) = -char_pw(margin_char(p), subtype(p)); } x += width(p); break; case ins_node: case mark_node: case adjust_node: /*tex Transfer node |p| to the adjustment list.\Although node |q| is not necessarily the immediate predecessor of node |p|, it always points to some node in the list preceding |p|. Thus, we can delete nodes by moving |q| when necessary. The algorithm takes linear time, and the extra computation does not intrude on the inner loop unless it is necessary to make a deletion. */ if (adjust_tail != null || pre_adjust_tail != null) { while (vlink(q) != p) q = vlink(q); if (type(p) == adjust_node) { if (adjust_pre(p) != 0) update_adjust_list(pre_adjust_tail); else update_adjust_list(adjust_tail); p = vlink(p); adjust_ptr(vlink(q)) = null; flush_node(vlink(q)); } else { vlink(adjust_tail) = p; adjust_tail = p; p = vlink(p); } vlink(q) = p; p = q; } break; default: break; } p = vlink(p); } } if (adjust_tail != null) vlink(adjust_tail) = null; if (pre_adjust_tail != null) vlink(pre_adjust_tail) = null; height(r) = h; depth(r) = d; /*tex Determine the value of |width(r)| and the appropriate glue setting; then |return| or |goto common_ending|. When we get to the present part of the program, |x| is the natural width of the box being packaged. */ if (m == additional) w = x + w; width(r) = w; x = w - x; /*tex Now |x| is the excess to be made up. */ if (x == 0) { glue_sign(r) = normal; glue_order(r) = normal; set_glue_ratio_zero(glue_set(r)); goto EXIT; } else if (x > 0) { /*tex Determine horizontal glue stretch setting, then |return| or |goto common_ending|. If |hpack| is called with |m=cal_expand_ratio| we calculate |font_expand_ratio| and return without checking for overfull or underfull box. */ if (total_stretch[filll] != 0) o = filll; else if (total_stretch[fill] != 0) o = fill; else if (total_stretch[fil] != 0) o = fil; else if (total_stretch[sfi] != 0) o = sfi; else o = normal; if ((m == cal_expand_ratio) && (o == normal) && (font_stretch > 0)) { font_expand_ratio = divide_scaled_n(x, font_stretch, 1000.0); goto EXIT; } glue_order(r) = (quarterword) o; glue_sign(r) = stretching; if (total_stretch[o] != 0) { glue_set(r) = unfloat((double) x / total_stretch[o]); } else { /*tex There's nothing to stretch. */ glue_sign(r) = normal; set_glue_ratio_zero(glue_set(r)); } if (o == normal) { if (list_ptr(r) != null) { /*tex Report an underfull hbox and |goto common_ending|, if this box is sufficiently bad. */ last_badness = badness(x, total_stretch[normal]); if (last_badness > hbadness_par) { int callback_id = callback_defined(hpack_quality_callback); if (callback_id > 0) { halfword rule = null; if (last_badness > 100) { run_callback(callback_id, "SdNdd->N","underfull",last_badness,r,abs(pack_begin_line),line,&rule); } else { run_callback(callback_id, "SdNdd->N","loose",last_badness,r,abs(pack_begin_line),line,&rule); } if (rule != null) { while (vlink(q) != null) { q = vlink(q); } couple_nodes(q,rule); } } else { print_ln(); if (last_badness > 100) { tprint_nl("Underfull \\hbox (badness "); } else { tprint_nl("Loose \\hbox (badness "); } print_int(last_badness); goto COMMON_ENDING; } } } } goto EXIT; } else { /*tex Determine horizontal glue shrink setting, then |return| or |goto common_ending|, */ if (total_shrink[filll] != 0) o = filll; else if (total_shrink[fill] != 0) o = fill; else if (total_shrink[fil] != 0) o = fil; else if (total_shrink[sfi] != 0) o = sfi; else o = normal; if ((m == cal_expand_ratio) && (o == normal) && (font_shrink > 0)) { font_expand_ratio = divide_scaled_n(x, font_shrink, 1000.0); goto EXIT; } glue_order(r) = (quarterword) o; glue_sign(r) = shrinking; if (total_shrink[o] != 0) { glue_set(r) = unfloat((double) (-x) / (double) total_shrink[o]); } else { /*tex There's nothing to shrink. */ glue_sign(r) = normal; set_glue_ratio_zero(glue_set(r)); } if ((total_shrink[o] < -x) && (o == normal) && (list_ptr(r) != null)) { int overshoot = -x - total_shrink[normal] ; last_badness = 1000000; /*tex Use the maximum shrinkage */ set_glue_ratio_one(glue_set(r)); /*tex Report an overfull hbox and |goto common_ending|, if this box is sufficiently bad. */ if ((overshoot > hfuzz_par) || (hbadness_par < 100)) { int callback_id = callback_defined(hpack_quality_callback); halfword rule = null; if (callback_id > 0) { run_callback(callback_id, "SdNdd->N","overfull",overshoot,r,abs(pack_begin_line),line,&rule); } else if (overfull_rule_par > 0) { rule = new_rule(normal_rule); rule_dir(rule) = box_dir(r); width(rule) = overfull_rule_par; } if (rule != null) { while (vlink(q) != null) { q = vlink(q); } couple_nodes(q,rule); } if (callback_id == 0) { print_ln(); tprint_nl("Overfull \\hbox ("); print_scaled(overshoot); tprint("pt too wide"); goto COMMON_ENDING; } } } else if (o == normal) { if (list_ptr(r) != null) { /*tex Report a tight hbox and |goto common_ending|, if this box is sufficiently bad. */ last_badness = badness(-x, total_shrink[normal]); if (last_badness > hbadness_par) { int callback_id = callback_defined(hpack_quality_callback); if (callback_id > 0) { halfword rule = null; run_callback(callback_id, "SdNdd->N","tight",last_badness,r,abs(pack_begin_line),line,&rule); if (rule != null) { while (vlink(q) != null) { q = vlink(q); } couple_nodes(q,rule); } } else { print_ln(); tprint_nl("Tight \\hbox (badness "); print_int(last_badness); goto COMMON_ENDING; } } } } goto EXIT; } COMMON_ENDING: /*tex Finish issuing a diagnostic message for an overfull or underfull hbox. */ if (output_active) { tprint(") has occurred while \\output is active"); } else { if (pack_begin_line != 0) { if (pack_begin_line > 0) { tprint(") in paragraph at lines "); } else { tprint(") in alignment at lines "); } print_int(abs(pack_begin_line)); tprint("--"); } else { tprint(") detected at line "); } print_int(line); } print_ln(); font_in_short_display = null_font; short_display(list_ptr(r)); print_ln(); begin_diagnostic(); show_box(r); end_diagnostic(true); EXIT: if ((m == cal_expand_ratio) && (font_expand_ratio != 0)) { font_expand_ratio = fix_int(font_expand_ratio, -1000, 1000); q = list_ptr(r); list_ptr(r) = null; flush_node(r); /*tex This nested call uses the more or less global font_expand_ratio. */ r = hpack(q, w, subst_ex_font, hpack_dir); } while (dir_ptr1 != null) pop_dir_node(dir_ptr1); /*tex Here we reset the |font_expand_ratio|. */ font_expand_ratio = 0; return r; } halfword filtered_hpack(halfword p, halfword qt, scaled w, int m, int grp, int pac, int just_pack, halfword attr) { halfword q; if (just_pack) { q = vlink(p); } else if (type(p) == temp_node && vlink(p) == null) { q = vlink(p); } else { new_hyphenation(p, qt); /*tex We don't care about the tail in this case. */ (void) new_ligkern(p, qt); q = vlink(p); /*tex Maybe here: |alink(p) = null|. */ /*tex ignores empty anyway. Maybe also pass tail? */ q = lua_hpack_filter(q, w, m, grp, pac, attr); } return hpack(q, w, m, pac); } /*tex Here is a function to calculate the natural whd of a (horizontal) node list. */ scaled_whd natural_sizes(halfword p, halfword pp, glue_ratio g_mult, int g_sign, int g_order, int pack_direction) { /*tex shift amount */ scaled s; /*tex points to a glue specification */ halfword g; int hpack_dir; /*tex For recursion */ scaled_whd xx; scaled_whd whd, siz = { 0, 0, 0 }; scaled gp = 0; scaled gm = 0; if (pack_direction == -1) { hpack_dir = text_direction_par; } else { hpack_dir = pack_direction; } while (p != pp && p != null) { while (is_char_node(p) && p != pp) { whd = pack_width_height_depth(hpack_dir, dir_TRT, p, true); siz.wd += whd.wd; if (whd.ht > siz.ht) siz.ht = whd.ht; if (whd.dp > siz.dp) siz.dp = whd.dp; p = vlink(p); } if (p != pp && p != null) { switch (type(p)) { case hlist_node: case vlist_node: s = shift_amount(p); whd = pack_width_height_depth(hpack_dir, box_dir(p), p, false); siz.wd += whd.wd; if (whd.ht - s > siz.ht) siz.ht = whd.ht - s; if (whd.dp + s > siz.dp) siz.dp = whd.dp + s; break; case rule_node: case unset_node: siz.wd += width(p); if (height(p) > siz.ht) siz.ht = height(p); if (depth(p) > siz.dp) siz.dp = depth(p); break; case math_node: /*tex Begin mathskip code. */ if (glue_is_zero(p) || ignore_math_skip(p)) { siz.wd += surround(p); break; } else { /*tex Fall through. */ } /*tex End mathskip code. */ case glue_node: siz.wd += width(p); if (g_sign != normal) { if (g_sign == stretching) { if (stretch_order(p) == g_order) { /*tex |siz.wd += float_round(float_cast(g_mult) * float_cast(stretch(p)))| */ gp += stretch(p); } } else if (shrink_order(p) == g_order) { /*tex |siz.wd -= float_round(float_cast(g_mult) * float_cast(shrink(p)));| */ gm += shrink(p); } } if (subtype(p) >= a_leaders) { g = leader_ptr(p); if (height(g) > siz.ht) siz.ht = height(g); if (depth(g) > siz.dp) siz.dp = depth(g); } break; case margin_kern_node: siz.wd += width(p); break; case kern_node: siz.wd += width(p) + ex_kern(p); break; case disc_node: xx = natural_sizes(no_break(p), null, g_mult, g_sign, g_order, hpack_dir); siz.wd += xx.wd; if (xx.ht > siz.ht) siz.ht = xx.ht; if (xx.dp > siz.dp) siz.dp = xx.dp; break; default: break; } p = vlink(p); } } if (g_sign != normal) { if (g_sign == stretching) { siz.wd += float_round(float_cast(g_mult) * float_cast(gp)); } else { siz.wd -= float_round(float_cast(g_mult) * float_cast(gm)); } } return siz; } /*tex In order to provide a decent indication of where an overfull or underfull box originated, we use a global variable |pack_begin_line| that is set nonzero only when |hpack| is being called by the paragraph builder or the alignment finishing routine. The source file line where the current paragraph or alignment began; a negative value denotes alignment: */ int pack_begin_line; /*tex The |vpack| subroutine is actually a special case of a slightly more general routine called |vpackage|, which has four parameters. The fourth parameter, which is |max_dimen| in the case of |vpack|, specifies the maximum depth of the page box that is constructed. The depth is first computed by the normal rules; if it exceeds this limit, the reference point is simply moved down until the limiting depth is attained. */ halfword vpackage(halfword p, scaled h, int m, scaled l, int pack_direction) { /*tex the box node that will be returned */ halfword r; /*tex width */ scaled w = 0; /*tex depth */ scaled d = 0; /*tex natural height */ scaled x = 0; scaled_whd whd; /*tex shift amount */ scaled s; /*tex order of infinity */ int o; last_badness = 0; r = new_node(vlist_node, 0); if (pack_direction == -1) { box_dir(r) = body_direction_par; } else { box_dir(r) = pack_direction; } subtype(r) = min_quarterword; shift_amount(r) = 0; list_ptr(r) = p; total_stretch[normal] = 0; total_shrink[normal] = 0; total_stretch[sfi] = 0; total_shrink[sfi] = 0; total_stretch[fil] = 0; total_shrink[fil] = 0; total_stretch[fill] = 0; total_shrink[fill] = 0; total_stretch[filll] = 0; total_shrink[filll] = 0; while (p != null) { /*tex Examine node |p| in the vlist, taking account of its effect on the dimensions of the new box; then advance |p| to the next node. */ if (is_char_node(p)) { confusion("vpack"); } else { switch (type(p)) { case hlist_node: case vlist_node: /*tex Incorporate box dimensions into the dimensions of the vbox that will contain it. */ s = shift_amount(p); whd = pack_width_height_depth(box_dir(r), box_dir(p), p, false); if (whd.wd + s > w) w = whd.wd + s; x += d + whd.ht; d = whd.dp; break; case rule_node: case unset_node: x += d + height(p); d = depth(p); if (width(p) > w) w = width(p); break; case glue_node: /*tex Incorporate glue into the vertical totals. */ x += d; d = 0; x += width(p); o = stretch_order(p); total_stretch[o] = total_stretch[o] + stretch(p); o = shrink_order(p); total_shrink[o] = total_shrink[o] + shrink(p); if (subtype(p) >= a_leaders) { halfword g = leader_ptr(p); if (width(g) > w) w = width(g); } break; case kern_node: x += d + width(p); d = 0; break; default: break; } } p = vlink(p); } width(r) = w; if (d > l) { x += d - l; depth(r) = l; } else { depth(r) = d; } /*tex Determine the value of |height(r)| and the appropriate glue setting; then |return| or |goto common_ending|. When we get to the present part of the program, |x| is the natural height of the box being packaged. */ if (m == additional) h = x + h; height(r) = h; x = h - x; /*tex Now |x| is the excess to be made up. */ if (x == 0) { glue_sign(r) = normal; glue_order(r) = normal; set_glue_ratio_zero(glue_set(r)); return r; } else if (x > 0) { /*tex Determine vertical glue stretch setting, then |return| or |goto common_ending|. */ if (total_stretch[filll] != 0) o = filll; else if (total_stretch[fill] != 0) o = fill; else if (total_stretch[fil] != 0) o = fil; else if (total_stretch[sfi] != 0) o = sfi; else o = normal; glue_order(r) = (quarterword) o; glue_sign(r) = stretching; if (total_stretch[o] != 0) { glue_set(r) = unfloat((double) x / total_stretch[o]); } else { /*tex There's nothing to stretch. */ glue_sign(r) = normal; set_glue_ratio_zero(glue_set(r)); } if (o == normal) { if (list_ptr(r) != null) { /*tex Report an underfull vbox and |goto common_ending|, if this box is sufficiently bad. */ last_badness = badness(x, total_stretch[normal]); if (last_badness > vbadness_par) { int callback_id = callback_defined(vpack_quality_callback); if (callback_id > 0) { if (last_badness > 100) { run_callback(callback_id, "SdNdd->","underfull",last_badness,r,abs(pack_begin_line),line); } else { run_callback(callback_id, "SdNdd->","loose",last_badness,r,abs(pack_begin_line),line); } goto EXIT; } else { print_ln(); if (last_badness > 100) { tprint_nl("Underfull \\vbox (badness "); } else { tprint_nl("Loose \\vbox (badness "); } print_int(last_badness); goto COMMON_ENDING; } } } } return r; } else { /*tex Determine vertical glue shrink setting, then |return| or |goto common_ending|. */ if (total_shrink[filll] != 0) o = filll; else if (total_shrink[fill] != 0) o = fill; else if (total_shrink[fil] != 0) o = fil; else if (total_shrink[sfi] != 0) o = sfi; else o = normal; glue_order(r) = (quarterword) o; glue_sign(r) = shrinking; if (total_shrink[o] != 0) { glue_set(r) = unfloat((double) (-x) / total_shrink[o]); } else { /*tex There's nothing to shrink. */ glue_sign(r) = normal; set_glue_ratio_zero(glue_set(r)); } if ((total_shrink[o] < -x) && (o == normal) && (list_ptr(r) != null)) { int overshoot = -x - total_shrink[normal]; last_badness = 1000000; /*tex Use the maximum shrinkage */ set_glue_ratio_one(glue_set(r)); /*tex Report an overfull vbox and |goto common_ending|, if this box is sufficiently bad. */ if ((overshoot > vfuzz_par) || (vbadness_par < 100)) { int callback_id = callback_defined(vpack_quality_callback); if (callback_id > 0) { run_callback(callback_id, "SdNdd->","overfull",overshoot,r,abs(pack_begin_line),line); goto EXIT; } else { print_ln(); tprint_nl("Overfull \\vbox ("); print_scaled(-x - total_shrink[normal]); tprint("pt too high"); goto COMMON_ENDING; } } } else if (o == normal) { if (list_ptr(r) != null) { /*tex Report a tight vbox and |goto common_ending|, if this box is sufficiently bad. */ last_badness = badness(-x, total_shrink[normal]); if (last_badness > vbadness_par) { int callback_id = callback_defined(vpack_quality_callback); if (callback_id > 0) { run_callback(callback_id, "SdNdd->","tight",last_badness,r,abs(pack_begin_line),line); goto EXIT; } else { print_ln(); tprint_nl("Tight \\vbox (badness "); print_int(last_badness); goto COMMON_ENDING; } } } } return r; } COMMON_ENDING: /*tex Finish issuing a diagnostic message or an overfull or underfull vbox. */ if (output_active) { tprint(") has occurred while \\output is active"); } else { if (pack_begin_line != 0) { /*tex It's actually negative. */ tprint(") in alignment at lines "); print_int(abs(pack_begin_line)); tprint("--"); } else { tprint(") detected at line "); } print_int(line); print_ln(); } begin_diagnostic(); show_box(r); end_diagnostic(true); EXIT: return r; } halfword filtered_vpackage(halfword p, scaled h, int m, scaled l, int grp, int pack_direction, int just_pack, halfword attr) { halfword q = p; if (!just_pack) q = lua_vpack_filter(q, h, m, l, grp, pack_direction, attr); return vpackage(q, h, m, l, pack_direction); } void finish_vcenter(void) { halfword p; unsave(); save_ptr--; p = vpack(vlink(cur_list.head_field), saved_value(0), saved_level(0), -1); pop_nest(); p = math_vcenter_group(p); tail_append(p); } void package(int c) { halfword saved0, saved2, saved3, saved4; int grp = cur_group; scaled d = box_max_depth_par; unsave(); save_ptr -= 5; saved0 = saved_value(0); saved2 = saved_value(2); saved3 = saved_value(3); saved4 = saved_value(4); if (cur_list.mode_field == -hmode) { cur_box = filtered_hpack(cur_list.head_field, cur_list.tail_field, saved_value(1), saved_level(1), grp, saved_level(2), saved4, saved3); subtype(cur_box) = hbox_list; } else { cur_box = filtered_vpackage(vlink(cur_list.head_field), saved_value(1), saved_level(1), d, grp, saved_level(2), saved4, saved3); if (c == vtop_code) { /*tex Read just the height and depth of |cur_box|, for \.{\\vtop}. The height of a `\.{\\vtop}' box is inherited from the first item on its list, if that item is an |hlist_node|, |vlist_node|, or |rule_node|; otherwise the \.{\\vtop} height is zero. */ scaled h = 0; halfword p = list_ptr(cur_box); if ((p != null) && (type(p) <= rule_node)) { /* hlist, vlist, rule */ h = height(p); } depth(cur_box) = depth(cur_box) - h + height(cur_box); height(cur_box) = h; } } if (saved2 != null) { /*tex Adjust back |text_dir_ptr| for |scan_spec| */ flush_node_list(text_dir_ptr); text_dir_ptr = saved2; } replace_attribute_list(cur_box, saved3); pop_nest(); box_end(saved0); } /*tex When a box is being appended to the current vertical list, the baselineskip calculation is handled by the |append_to_vlist| routine. */ void append_to_vlist(halfword b, int location) { /*tex The deficiency of space between baselines: */ scaled d; /*tex A new glue node. */ halfword p; boolean mirrored = (type(b) == hlist_node) && is_mirrored(box_dir(b)) ; halfword result = null; halfword next_depth = ignore_depth; boolean prev_set = false ; if (lua_appendtovlist_callback(b,location,prev_depth_par,mirrored,&result,&next_depth,&prev_set)) { while (result != null) { couple_nodes(cur_list.tail_field, result); cur_list.tail_field = result; result = vlink(result); } if (prev_set) { prev_depth_par = next_depth; } } else { if (prev_depth_par > ignore_depth) { if (mirrored) { d = width(baseline_skip_par) - prev_depth_par - depth(b); } else { d = width(baseline_skip_par) - prev_depth_par - height(b); } if (d < line_skip_limit_par) { p = new_param_glue(line_skip_code); } else { p = new_skip_param(baseline_skip_code); width(p) = d; } couple_nodes(cur_list.tail_field, p); cur_list.tail_field = p; } couple_nodes(cur_list.tail_field, b); cur_list.tail_field = b; if (mirrored) { prev_depth_par = height(b); } else { prev_depth_par = depth(b); } } } /*tex When |saving_vdiscards| is positive then the glue, kern, and penalty nodes removed by the page builder or by \.{\\vsplit} from the top of a vertical list are saved in special lists instead of being discarded. */ /*tex last item removed by page builder */ #define tail_page_disc disc_ptr[copy_code] /*tex first item removed by page builder */ #define page_disc disc_ptr[last_box_code] /*tex first item removed by \.{\\vsplit} */ #define split_disc disc_ptr[vsplit_code] /*tex List pointers. */ halfword disc_ptr[(vsplit_code + 1)]; /*tex The |vsplit| procedure, which implements \TeX's \.{\\vsplit} operation, is considerably simpler than |line_break| because it doesn't have to worry about hyphenation, and because its mission is to discover a single break instead of an optimum sequence of breakpoints. But before we get into the details of |vsplit|, we need to consider a few more basic things. A subroutine called |prune_page_top| takes a pointer to a vlist and returns a pointer to a modified vlist in which all glue, kern, and penalty nodes have been deleted before the first box or rule node. However, the first box or rule is actually preceded by a newly created glue node designed so that the topmost baseline will be at distance |split_top_skip| from the top, whenever this is possible without backspacing. When the second argument |s| is |false| the deleted nodes are destroyed, otherwise they are collected in a list starting at |split_disc|. */ halfword prune_page_top(halfword p, boolean s) { halfword q; /*tex Lags one step behind |p|. */ halfword prev_p = temp_head; halfword r = null; vlink(temp_head) = p; while (p != null) { switch (type(p)) { case hlist_node: case vlist_node: case rule_node: /*tex Insert glue for |split_top_skip| and set |p:=null|. */ q = new_skip_param(split_top_skip_code); vlink(prev_p) = q; vlink(q) = p; if (width(q) > height(p)) width(q) = width(q) - height(p); else width(q) = 0; p = null; break; case boundary_node: case whatsit_node: case mark_node: case ins_node: prev_p = p; p = vlink(prev_p); break; case glue_node: case kern_node: case penalty_node: q = p; p = vlink(q); vlink(q) = null; vlink(prev_p) = p; if (s) { if (split_disc == null) split_disc = q; else vlink(r) = q; r = q; } else { flush_node_list(q); } break; default: confusion("pruning"); break; } } return vlink(temp_head); } /*tex The next subroutine finds the best place to break a given vertical list so as to obtain a box of height~|h|, with maximum depth~|d|. A pointer to the beginning of the vertical list is given, and a pointer to the optimum breakpoint is returned. The list is effectively followed by a forced break, i.e., a penalty node with the |eject_penalty|; if the best break occurs at this artificial node, the value |null| is returned. */ /*tex The distance from first active node to |cur_p|: */ scaled active_height[10]; /*tex An array of six |scaled| distances is used to keep track of the height from the beginning of the list to the current place, just as in |line_break|. In fact, we use one of the same arrays, only changing its name to reflect its new significance. */ #define do_all_six(A) A(1);A(2);A(3);A(4);A(5);A(6);A(7) #define set_height_zero(A) active_height[A]=0 /* initialize the height to zero */ /*tex A global variable |best_height_plus_depth| will be set to the natural size of the box that corresponds to the optimum breakpoint found by |vert_break|. (This value is used by the insertion-splitting algorithm of the page builder.) */ /*tex The height of the best box, without stretching or shrinking: */ scaled best_height_plus_depth; halfword vert_break(halfword p, scaled h, scaled d) { /*tex If |p| is a glue node, |type(prev_p)| determines whether |p| is a legal breakpoint, an initial glue node is not a legal breakpoint. */ halfword prev_p = p; /*tex penalty value */ int pi = 0; /*tex badness at a trial breakpoint */ int b; /*tex |type| of the node following a kern */ int t; /*tex the smallest badness plus penalties found so far */ int least_cost; /*tex the most recent break that leads to |least_cost| */ halfword best_place = null; /*tex depth of previous box in the list */ scaled prev_dp = 0; least_cost = awful_bad; do_all_six(set_height_zero); while (1) { /*tex If node |p| is a legal breakpoint, check if this break is the best known, and |goto done| if |p| is null or if the page-so-far is already too full to accept more stuff. A subtle point to be noted here is that the maximum depth~|d| might be negative, so |cur_height| and |prev_dp| might need to be corrected even after a glue or kern node. */ if (p == null) { pi = eject_penalty; } else { /*tex Use node |p| to update the current height and depth measurements; if this node is not a legal breakpoint, |goto not_found| or |update_heights|, otherwise set |pi| to the associated penalty at the break. */ switch (type(p)) { case hlist_node: case vlist_node: case rule_node: cur_height = cur_height + prev_dp + height(p); prev_dp = depth(p); goto NOT_FOUND; break; case boundary_node: case whatsit_node: goto NOT_FOUND; break; case glue_node: if (precedes_break(prev_p)) pi = 0; else goto UPDATE_HEIGHTS; break; case kern_node: if (vlink(p) == null) t = penalty_node; else t = type(vlink(p)); if (t == glue_node) pi = 0; else goto UPDATE_HEIGHTS; break; case penalty_node: pi = penalty(p); break; case mark_node: case ins_node: goto NOT_FOUND; break; default: confusion("vertbreak"); break; } } /*tex Check if node |p| is a new champion breakpoint; then |goto done| if |p| is a forced break or if the page-so-far is already too full. */ if (pi < inf_penalty) { /*tex Compute the badness, |b|, using |awful_bad| if the box is too full. */ if (cur_height < h) { if ((active_height[3] != 0) || (active_height[4] != 0) || (active_height[5] != 0) || (active_height[6] != 0)) b = 0; else b = badness(h - cur_height, active_height[2]); } else if (cur_height - h > active_height[7]) { b = awful_bad; } else { b = badness(cur_height - h, active_height[7]); } if (b < awful_bad) { if (pi <= eject_penalty) b = pi; else if (b < inf_bad) b = b + pi; else b = deplorable; } if (b <= least_cost) { best_place = p; least_cost = b; best_height_plus_depth = cur_height + prev_dp; } if ((b == awful_bad) || (pi <= eject_penalty)) goto DONE; } if ((type(p) < glue_node) || (type(p) > kern_node)) goto NOT_FOUND; UPDATE_HEIGHTS: /*tex Update the current height and depth measurements with respect to a glue or kern node~|p|. Vertical lists that are subject to the |vert_break| procedure should not contain infinite shrinkability, since that would permit any amount of information to ``fit'' on one page. */ if (type(p) != kern_node) { active_height[2 + stretch_order(p)] += stretch(p); active_height[7] += shrink(p); if ((shrink_order(p) != normal) && (shrink(p) != 0)) { print_err("Infinite glue shrinkage found in box being split"); help4( "The box you are \\vsplitting contains some infinitely", "shrinkable glue, e.g., `\\vss' or `\\vskip 0pt minus 1fil'.", "Such glue doesn't belong there; but you can safely proceed,", "since the offensive shrinkability has been made finite." ); error(); shrink_order(p) = normal; } } cur_height = cur_height + prev_dp + width(p); prev_dp = 0; NOT_FOUND: if (prev_dp > d) { cur_height = cur_height + prev_dp - d; prev_dp = d; } prev_p = p; p = vlink(prev_p); } DONE: return best_place; } /*tex Now we are ready to consider |vsplit| itself. Most of its work is accomplished by the two subroutines that we have just considered. Given the number of a vlist box |n|, and given a desired page height |h|, the |vsplit| function finds the best initial segment of the vlist and returns a box for a page of height~|h|. The remainder of the vlist, if any, replaces the original box, after removing glue and penalties and adjusting for |split_top_skip|. Mark nodes in the split-off box are used to set the values of |split_first_mark| and |split_bot_mark|; we use the fact that |split_first_mark(x)=null| if and only if |split_bot_mark(x)=null|. The original box becomes ``void'' if and only if it has been entirely extracted. The extracted box is ``void'' if and only if the original box was void (or if it was, erroneously, an hlist box). */ /*tex Extract a page of height |h| from box |n|: */ halfword vsplit(halfword n, scaled h, int m) { /*tex the box to be split */ halfword v; /*tex the direction of the box to be split */ int vdir; /*tex runs through the vlist */ halfword p; /*tex points to where the break occurs */ halfword q; /*tex for traversing marks lists */ halfword i; v = box(n); vdir = box_dir(v); flush_node_list(split_disc); split_disc = null; for (i = 0; i <= biggest_used_mark; i++) { delete_split_first_mark(i); delete_split_bot_mark(i); } /*tex Dispense with trivial cases of void or bad boxes. */ if (v == null) { return null; } if (type(v) != vlist_node) { print_err("\\vsplit needs a \\vbox"); help2( "The box you are trying to split is an \\hbox.", "i can't split such a box, so I''ll leave it alone." ); error(); return null; } q = vert_break(list_ptr(v), h, split_max_depth_par); /*tex Look at all the marks in nodes before the break, and set the final link to |null| at the break. It's possible that the box begins with a penalty node that is the ``best'' break, so we must be careful to handle this special case correctly. */ p = list_ptr(v); if (p == q) { list_ptr(v) = null; } else { while (1) { if (type(p) == mark_node) { if (split_first_mark(mark_class(p)) == null) { set_split_first_mark(mark_class(p), mark_ptr(p)); set_split_bot_mark(mark_class(p), split_first_mark(mark_class(p))); set_token_ref_count(split_first_mark(mark_class(p)), token_ref_count(split_first_mark(mark_class(p))) + 2); } else { delete_token_ref(split_bot_mark(mark_class(p))); set_split_bot_mark(mark_class(p), mark_ptr(p)); add_token_ref(split_bot_mark(mark_class(p))); } } if (vlink(p) == q) { vlink(p) = null; break; } p = vlink(p); } } q = prune_page_top(q, saving_vdiscards_par > 0); p = list_ptr(v); list_ptr(v) = null; flush_node(v); if (q == null) { /*tex The |eq_level| of the box stays the same. */ box(n) = null; } else { box(n) = filtered_vpackage(q, 0, additional, max_depth_par, split_keep_group, vdir, 0, 0); } if (m == exactly) { return filtered_vpackage(p, h, exactly, split_max_depth_par, split_off_group, vdir, 0, 0); } else { return filtered_vpackage(p, 0, additional, max_depth_par, split_off_group, vdir, 0, 0); } } /*tex Now that we can see what eventually happens to boxes, we can consider the first steps in their creation. The |begin_box| routine is called when |box_context| is a context specification, |cur_chr| specifies the type of box desired, and |cur_cmd=make_box|. */ void begin_box(int box_context) { /*tex run through the current list */ halfword q; /*tex 0 or |vmode| or |hmode| */ halfword k; /*tex a box number */ int n; int spec_direction = -1; int just_pack = 0; int split_mode = exactly ; switch (cur_chr) { case box_code: scan_register_num(); cur_box = box(cur_val); /*tex The box becomes void, at the same level. */ box(cur_val) = null; break; case copy_code: scan_register_num(); cur_box = copy_node_list(box(cur_val)); break; case last_box_code: /*tex If the current list ends with a box node, delete it from the list and make |cur_box| point to it; otherwise set |cur_box:=null|. */ cur_box = null; if (abs(cur_list.mode_field) == mmode) { you_cant(); help1("Sorry; this \\lastbox will be void."); error(); } else if ((cur_list.mode_field == vmode) && (cur_list.head_field == cur_list.tail_field)) { you_cant(); help2( "Sorry...I usually can't take things from the current page.", "This \\lastbox will therefore be void." ); error(); } else { if (cur_list.head_field != cur_list.tail_field) { if ((type(cur_list.tail_field) == hlist_node) || (type(cur_list.tail_field) == vlist_node)) { /*tex Remove the last box */ q = alink(cur_list.tail_field); if (q == null || vlink(q) != cur_list.tail_field) { q = cur_list.head_field; while (vlink(q) != cur_list.tail_field) q = vlink(q); } uncouple_node(cur_list.tail_field); cur_box = cur_list.tail_field; shift_amount(cur_box) = 0; cur_list.tail_field = q; vlink(cur_list.tail_field) = null; } } } break; case vsplit_code: /*tex Split off part of a vertical box, make |cur_box| point to it. Here we deal with things like `\.{\\vsplit 13 to 100pt}'. */ scan_register_num(); n = cur_val; if (scan_keyword("upto")) { split_mode = additional ; } else if (!scan_keyword("to")) { print_err("Missing `to' inserted"); help2( "I'm working on `\\vsplit to ';", "will look for the next." ); error(); } scan_normal_dimen(); cur_box = vsplit(n, cur_val, split_mode); break; default: /*tex Initiate the construction of an hbox or vbox, then |return|. Here is where we enter restricted horizontal mode or internal vertical mode, in order to make a box. */ switch (cur_chr) { case tpack_code: cur_chr = vtop_code; just_pack = 1; break; case vpack_code: cur_chr = vtop_code + vmode; just_pack = 1; break; case hpack_code: cur_chr = vtop_code + hmode; just_pack = 1; break; } k = cur_chr - vtop_code; set_saved_record(0, saved_boxcontext, 0, box_context); switch (abs(cur_list.mode_field)) { case vmode: spec_direction = body_direction_par; break; case hmode: spec_direction = text_direction_par; break; case mmode: spec_direction = math_direction_par; break; } if (k == hmode) { if ((box_context < box_flag) && (abs(cur_list.mode_field) == vmode)) scan_full_spec(adjusted_hbox_group, spec_direction,just_pack); else scan_full_spec(hbox_group, spec_direction,just_pack); } else { if (k == vmode) { scan_full_spec(vbox_group, spec_direction,just_pack); } else { scan_full_spec(vtop_group, spec_direction,just_pack); k = vmode; } normal_paragraph(); } push_nest(); /* new */ /* eq_word_define(int_base + no_local_whatsits_code, 0); */ eq_word_define(int_base + no_local_dirs_code, 0); cur_list.mode_field = -k; if (k == vmode) { prev_depth_par = ignore_depth; if (every_vbox_par != null) begin_token_list(every_vbox_par, every_vbox_text); } else { space_factor_par = 1000; if (every_hbox_par != null) begin_token_list(every_hbox_par, every_hbox_text); } return; break; } /*tex In simple cases, we use the box immediately. */ box_end(box_context); }