/* sha2 implementation excerpted from code by Aaron D. Gifford */ /* * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/ * * Copyright (c) 2000-2001, Aaron D. Gifford * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ */ #include /* FILE */ #include /* memcpy()/memset() or bcopy()/bzero() */ //#include /* assert() */ #include "utilsha.h" /* * UNROLLED TRANSFORM LOOP NOTE: * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform * loop version for the hash transform rounds (defined using macros * later in this file). Either define on the command line, for example: * * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c * * or define below: * * #define SHA2_UNROLL_TRANSFORM * */ /*** SHA-256/384/512 Machine Architecture Definitions *****************/ /* * BYTE_ORDER NOTE: * * Please make sure that your system defines BYTE_ORDER. If your * architecture is little-endian, make sure it also defines * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are * equivilent. * * If your system does not define the above, then you can do so by * hand like this: * * #define LITTLE_ENDIAN 1234 * #define BIG_ENDIAN 4321 * * And for little-endian machines, add: * * #define BYTE_ORDER LITTLE_ENDIAN * * Or for big-endian machines: * * #define BYTE_ORDER BIG_ENDIAN * * The FreeBSD machine this was written on defines BYTE_ORDER * appropriately by including (which in turn includes * where the appropriate definitions are actually * made). */ #ifndef BYTE_ORDER #define BYTE_ORDER LITTLE_ENDIAN #endif //#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) //#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN //#endif /* * Define the following sha2_* types to types of the correct length on * the native archtecture. Most BSD systems and Linux define u_intXX_t * types. Machines with very recent ANSI C headers, can use the * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H * during compile or in the sha.h header file. * * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t * will need to define these three typedefs below (and the appropriate * ones in sha.h too) by hand according to their system architecture. * * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t * types and pointing out recent ANSI C support for uintXX_t in inttypes.h. * * PJ: replace by uintX_t */ //typedef uint8_t sha2_byte; /* Exactly 1 byte */ //typedef uint32_t sha2_word32; /* Exactly 4 bytes */ //typedef uint64_t sha2_word64; /* Exactly 8 bytes */ /*** SHA-256/384/512 Various Length Definitions ***********************/ /* NOTE: Most of these are in header */ #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) /*** ENDIAN REVERSAL MACROS *******************************************/ #if BYTE_ORDER == LITTLE_ENDIAN #define REVERSE32(w, x) { \ uint32_t tmp = (w); \ tmp = (tmp >> 16) | (tmp << 16); \ (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ } #define REVERSE64(w, x) { \ uint64_t tmp = (w); \ tmp = (tmp >> 32) | (tmp << 32); \ tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ ((tmp & 0x0000ffff0000ffffULL) << 16); \ } #endif /* BYTE_ORDER == LITTLE_ENDIAN */ /* * Macro for incrementally adding the unsigned 64-bit integer n to the * unsigned 128-bit integer (represented using a two-element array of * 64-bit words): */ #define ADDINC128(w,n) { \ (w)[0] += (uint64_t)(n); \ if ((w)[0] < (n)) { \ (w)[1]++; \ } \ } #define MEMSET_BZERO(p,l) memset((p), 0, (l)) #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) /*** THE SIX LOGICAL FUNCTIONS ****************************************/ /* * Bit shifting and rotation (used by the six SHA-XYZ logical functions: * * NOTE: The naming of R and S appears backwards here (R is a SHIFT and * S is a ROTATION) because the SHA-256/384/512 description document * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this * same "backwards" definition. */ /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ #define R(b,x) ((x) >> (b)) /* 32-bit Rotate-right (used in SHA-256): */ #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) /* Four of six logical functions used in SHA-256: */ #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) /* Four of six logical functions used in SHA-384 and SHA-512: */ #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) static void sha512_last (sha512_state *state); static void sha256_transform (sha256_state *state, const uint32_t idata[16]); static void sha512_transform (sha512_state *state, const uint64_t idata[16]); /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ /* Hash constant words K for SHA-256: */ static const uint32_t K256[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Initial hash value H for SHA-256: */ static const uint32_t sha256_initial_hash_value[8] = { 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL }; /* Hash constant words K for SHA-384 and SHA-512: */ static const uint64_t K512[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; /* Initial hash value H for SHA-384 */ static const uint64_t sha384_initial_hash_value[8] = { 0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL, 0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL, 0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL, 0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL }; /* Initial hash value H for SHA-512 */ static const uint64_t sha512_initial_hash_value[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; /*** SHA-256: *********************************************************/ sha256_state * sha256_digest_init (sha256_state *state) { MEMCPY_BCOPY(state->words, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); MEMSET_BZERO(state->buffer, SHA256_BLOCK_LENGTH); state->bitcount = 0; return state; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-256 round macros: */ #if BYTE_ORDER == LITTLE_ENDIAN #define ROUND256_0_TO_15(v, a, b, c, d, e, f, g, h) \ REVERSE32(v, W256[j]); \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)) #else /* BYTE_ORDER == LITTLE_ENDIAN */ #define ROUND256_0_TO_15(v, a, b, c, d, e, f, g, h) \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + (W256[j] = v); \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)) #endif /* BYTE_ORDER == LITTLE_ENDIAN */ #define ROUND256(a, b, c, d, e, f, g, h) \ s0 = W256[(j+1)&0x0f]; \ s0 = sigma0_256(s0); \ s1 = W256[(j+14)&0x0f]; \ s1 = sigma1_256(s1); \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)) static void sha256_transform (sha256_state *state, const uint32_t idata[16]) { uint32_t a, b, c, d, e, f, g, h, s0, s1; uint32_t T1, *W256, v; int j; W256 = state->buffer32; /* Initialize registers with the prev. intermediate value */ a = state->words[0]; b = state->words[1]; c = state->words[2]; d = state->words[3]; e = state->words[4]; f = state->words[5]; g = state->words[6]; h = state->words[7]; j = 0; do { /* Rounds 0 to 15 (unrolled): */ v = idata[j]; ROUND256_0_TO_15(v, a, b, c, d, e, f, g, h); ++j; v = idata[j]; ROUND256_0_TO_15(v, h, a, b, c, d, e, f, g); ++j; v = idata[j]; ROUND256_0_TO_15(v, g, h, a, b, c, d, e, f); ++j; v = idata[j]; ROUND256_0_TO_15(v, f, g, h, a, b, c, d, e); ++j; v = idata[j]; ROUND256_0_TO_15(v, e, f, g, h, a, b, c, d); ++j; v = idata[j]; ROUND256_0_TO_15(v, d, e, f, g, h, a, b, c); ++j; v = idata[j]; ROUND256_0_TO_15(v, c, d, e, f, g, h, a, b); ++j; v = idata[j]; ROUND256_0_TO_15(v, b, c, d, e, f, g, h, a); ++j; } while (j < 16); /* Now for the remaining rounds to 64: */ do { ROUND256(a, b, c, d, e, f, g, h); ++j; ROUND256(h, a, b, c, d, e, f, g); ++j; ROUND256(g, h, a, b, c, d, e, f); ++j; ROUND256(f, g, h, a, b, c, d, e); ++j; ROUND256(e, f, g, h, a, b, c, d); ++j; ROUND256(d, e, f, g, h, a, b, c); ++j; ROUND256(c, d, e, f, g, h, a, b); ++j; ROUND256(b, c, d, e, f, g, h, a); ++j; } while (j < 64); /* Compute the current intermediate hash value */ state->words[0] += a; state->words[1] += b; state->words[2] += c; state->words[3] += d; state->words[4] += e; state->words[5] += f; state->words[6] += g; state->words[7] += h; } #else /* SHA2_UNROLL_TRANSFORM */ static void sha256_transform (sha256_state *state, const uint32_t idata[16]) { uint32_t a, b, c, d, e, f, g, h, s0, s1; uint32_t T1, T2, *W256, v; int j; W256 = state->buffer32; /* Initialize registers with the prev. intermediate value */ a = state->words[0]; b = state->words[1]; c = state->words[2]; d = state->words[3]; e = state->words[4]; f = state->words[5]; g = state->words[6]; h = state->words[7]; j = 0; do { v = idata[j]; #if BYTE_ORDER == LITTLE_ENDIAN /* Copy data while converting to host byte order */ REVERSE32(v, W256[j]); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; #else /* BYTE_ORDER == LITTLE_ENDIAN */ /* Apply the SHA-256 compression function to update a..h with copy */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = v); #endif /* BYTE_ORDER == LITTLE_ENDIAN */ T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W256[(j+1)&0x0f]; s0 = sigma0_256(s0); s1 = W256[(j+14)&0x0f]; s1 = sigma1_256(s1); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 64); /* Compute the current intermediate hash value */ state->words[0] += a; state->words[1] += b; state->words[2] += c; state->words[3] += d; state->words[4] += e; state->words[5] += f; state->words[6] += g; state->words[7] += h; } #endif /* SHA2_UNROLL_TRANSFORM */ /* PJ: alignment-safe version */ #define data_aligned4(data) (((data - (const uint8_t *)(0UL)) & 3) == 0) #define data_aligned8(data) (((data - (const uint8_t *)(0ULL)) & 7) == 0) static void sha256_transform_aligned (sha256_state *state, const uint8_t *data) { if (data_aligned4(data)) { sha256_transform(state, (const uint32_t *)((const void *)data)); // alignment ok } else { uint32_t idata[16]; memcpy(&idata[0], data, 16 * sizeof(uint32_t)); sha256_transform(state, idata); } } void sha256_digest_add (sha256_state *state, const void *vdata, size_t len) { unsigned int freespace, usedspace; const uint8_t *data; if (len == 0) /* Calling with no data is valid - we do nothing */ return; data = (const uint8_t *)vdata; usedspace = (state->bitcount >> 3) % SHA256_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA256_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ MEMCPY_BCOPY(&state->buffer[usedspace], data, freespace); state->bitcount += freespace << 3; len -= freespace; data += freespace; sha256_transform(state, state->buffer32); } else { /* The buffer is not yet full */ MEMCPY_BCOPY(&state->buffer[usedspace], data, len); state->bitcount += len << 3; return; } } while (len >= SHA256_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ sha256_transform_aligned(state, data); state->bitcount += SHA256_BLOCK_LENGTH << 3; len -= SHA256_BLOCK_LENGTH; data += SHA256_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ MEMCPY_BCOPY(state->buffer, data, len); state->bitcount += len << 3; } } static void digest_hex (uint8_t digest[], const void *data, size_t size, int flags); void sha256_digest_get (sha256_state *state, uint8_t digest[], int flags) { unsigned int usedspace; usedspace = (state->bitcount >> 3) % SHA256_BLOCK_LENGTH; #if BYTE_ORDER == LITTLE_ENDIAN /* Convert FROM host byte order */ REVERSE64(state->bitcount,state->bitcount); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ state->buffer[usedspace++] = 0x80; if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ MEMSET_BZERO(&state->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < SHA256_BLOCK_LENGTH) { MEMSET_BZERO(&state->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ sha256_transform(state, state->buffer32); /* And set-up for the last transform: */ MEMSET_BZERO(state->buffer, SHA256_SHORT_BLOCK_LENGTH); } } else { /* Set-up for the last transform: */ MEMSET_BZERO(state->buffer, SHA256_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *state->buffer = 0x80; } /* Set the bit count: */ //*(uint64_t*)&state->buffer[SHA256_SHORT_BLOCK_LENGTH] = state->bitcount; // aliasing violation warning state->buffer64[SHA256_SHORT_BLOCK_LENGTH / sizeof(uint64_t)] = state->bitcount; /* Final transform: */ sha256_transform(state, state->buffer32); #if BYTE_ORDER == LITTLE_ENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { REVERSE32(state->words[j], state->words[j]); } } #endif if (flags & SHA_HEX) digest_hex(digest, state->words, SHA256_DIGEST_LENGTH, flags); else memcpy(digest, state->words, SHA256_DIGEST_LENGTH); } /*** SHA-512: *********************************************************/ sha512_state * sha512_digest_init (sha512_state *state) { MEMCPY_BCOPY(state->words, sha512_initial_hash_value, SHA512_DIGEST_LENGTH); MEMSET_BZERO(state->buffer, SHA512_BLOCK_LENGTH); state->bitcount[0] = 0; state->bitcount[1] = 0; return state; } #ifdef SHA2_UNROLL_TRANSFORM /* PJ: ++ operations moved out of macros! */ /* Unrolled SHA-512 round macros: */ #if BYTE_ORDER == LITTLE_ENDIAN #define ROUND512_0_TO_15(v, a, b, c, d, e, f, g, h) \ REVERSE64(v, W512[j]); \ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ (d) += T1; \ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)) #else /* BYTE_ORDER == LITTLE_ENDIAN */ #define ROUND512_0_TO_15(v, a, b, c, d, e, f, g, h) \ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + (W512[j] = v); \ (d) += T1; \ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)) #endif /* BYTE_ORDER == LITTLE_ENDIAN */ #define ROUND512(a, b, c, d, e, f, g, h) \ s0 = W512[(j+1)&0x0f]; \ s0 = sigma0_512(s0); \ s1 = W512[(j+14)&0x0f]; \ s1 = sigma1_512(s1); \ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)) static void sha512_transform (sha512_state *state, const uint64_t idata[16]) { uint64_t a, b, c, d, e, f, g, h, s0, s1; uint64_t T1, *W512, v; int j; W512 = state->buffer64; /* Initialize registers with the prev. intermediate value */ a = state->words[0]; b = state->words[1]; c = state->words[2]; d = state->words[3]; e = state->words[4]; f = state->words[5]; g = state->words[6]; h = state->words[7]; j = 0; do { v = idata[j]; ROUND512_0_TO_15(v, a, b, c, d, e, f, g, h); ++j; v = idata[j]; ROUND512_0_TO_15(v, h, a, b, c, d, e, f, g); ++j; v = idata[j]; ROUND512_0_TO_15(v, g, h, a, b, c, d, e, f); ++j; v = idata[j]; ROUND512_0_TO_15(v, f, g, h, a, b, c, d, e); ++j; v = idata[j]; ROUND512_0_TO_15(v, e, f, g, h, a, b, c, d); ++j; v = idata[j]; ROUND512_0_TO_15(v, d, e, f, g, h, a, b, c); ++j; v = idata[j]; ROUND512_0_TO_15(v, c, d, e, f, g, h, a, b); ++j; v = idata[j]; ROUND512_0_TO_15(v, b, c, d, e, f, g, h, a); ++j; } while (j < 16); /* Now for the remaining rounds up to 79: */ do { ROUND512(a, b, c, d, e, f, g, h); ++j; ROUND512(h, a, b, c, d, e, f, g); ++j; ROUND512(g, h, a, b, c, d, e, f); ++j; ROUND512(f, g, h, a, b, c, d, e); ++j; ROUND512(e, f, g, h, a, b, c, d); ++j; ROUND512(d, e, f, g, h, a, b, c); ++j; ROUND512(c, d, e, f, g, h, a, b); ++j; ROUND512(b, c, d, e, f, g, h, a); ++j; } while (j < 80); /* Compute the current intermediate hash value */ state->words[0] += a; state->words[1] += b; state->words[2] += c; state->words[3] += d; state->words[4] += e; state->words[5] += f; state->words[6] += g; state->words[7] += h; } #else /* SHA2_UNROLL_TRANSFORM */ static void sha512_transform (sha512_state *state, const uint64_t idata[16]) { uint64_t a, b, c, d, e, f, g, h, s0, s1; uint64_t T1, T2, *W512, v; int j; W512 = state->buffer64; /* Initialize registers with the prev. intermediate value */ a = state->words[0]; b = state->words[1]; c = state->words[2]; d = state->words[3]; e = state->words[4]; f = state->words[5]; g = state->words[6]; h = state->words[7]; j = 0; do { v = idata[j]; #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ REVERSE64(v, W512[j]); /* Apply the SHA-512 compression function to update a..h */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; #else /* BYTE_ORDER == LITTLE_ENDIAN */ /* Apply the SHA-512 compression function to update a..h with copy */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = v); #endif /* BYTE_ORDER == LITTLE_ENDIAN */ T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W512[(j+1)&0x0f]; s0 = sigma0_512(s0); s1 = W512[(j+14)&0x0f]; s1 = sigma1_512(s1); /* Apply the SHA-512 compression function to update a..h */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 80); /* Compute the current intermediate hash value */ state->words[0] += a; state->words[1] += b; state->words[2] += c; state->words[3] += d; state->words[4] += e; state->words[5] += f; state->words[6] += g; state->words[7] += h; } #endif /* SHA2_UNROLL_TRANSFORM */ static void sha512_transform_aligned (sha512_state *state, const uint8_t *data) { if (data_aligned8(data)) { sha512_transform(state, (const uint64_t *)((const void *)data)); // alignment ok } else { uint64_t idata[16]; memcpy(&idata[0], data, 16 * sizeof(uint64_t)); sha512_transform(state, idata); } } void sha512_digest_add (sha512_state *state, const void *vdata, size_t len) { unsigned int freespace, usedspace; const uint8_t *data; if (len == 0) /* Calling with no data is valid - we do nothing */ return; /* Sanity check: */ data = (const uint8_t *)vdata; usedspace = (state->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA512_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ MEMCPY_BCOPY(&state->buffer[usedspace], data, freespace); ADDINC128(state->bitcount, freespace << 3); len -= freespace; data += freespace; sha512_transform(state, state->buffer64); } else { /* The buffer is not yet full */ MEMCPY_BCOPY(&state->buffer[usedspace], data, len); ADDINC128(state->bitcount, len << 3); return; } } while (len >= SHA512_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ sha512_transform_aligned(state, data); ADDINC128(state->bitcount, SHA512_BLOCK_LENGTH << 3); len -= SHA512_BLOCK_LENGTH; data += SHA512_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ MEMCPY_BCOPY(state->buffer, data, len); ADDINC128(state->bitcount, len << 3); } } static void sha512_last (sha512_state *state) { unsigned int usedspace; usedspace = (state->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; #if BYTE_ORDER == LITTLE_ENDIAN /* Convert FROM host byte order */ REVERSE64(state->bitcount[0],state->bitcount[0]); REVERSE64(state->bitcount[1],state->bitcount[1]); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ state->buffer[usedspace++] = 0x80; if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ MEMSET_BZERO(&state->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < SHA512_BLOCK_LENGTH) { MEMSET_BZERO(&state->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ sha512_transform(state, state->buffer64); /* And set-up for the last transform: */ //MEMSET_BZERO(state->buffer, SHA512_BLOCK_LENGTH - 2); // seems a typo, we overwrite last 16 bytes below MEMSET_BZERO(state->buffer, SHA512_SHORT_BLOCK_LENGTH); } } else { /* Prepare for final transform: */ MEMSET_BZERO(state->buffer, SHA512_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *state->buffer = 0x80; } /* Store the length of input data (in bits): */ //*(uint64_t*)&state->buffer[SHA512_SHORT_BLOCK_LENGTH] = state->bitcount[1]; // aliasing violation warning //*(uint64_t*)&state->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = state->bitcount[0]; state->buffer64[SHA512_SHORT_BLOCK_LENGTH / sizeof(uint64_t)] = state->bitcount[1]; state->buffer64[SHA512_SHORT_BLOCK_LENGTH / sizeof(uint64_t) + 1] = state->bitcount[0]; /* Final transform: */ sha512_transform(state, state->buffer64); } void sha512_digest_get (sha512_state *state, uint8_t digest[], int flags) { /* If no digest buffer is passed, we don't bother doing this: */ sha512_last(state); /* Save the hash data for output: */ #if BYTE_ORDER == LITTLE_ENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { REVERSE64(state->words[j], state->words[j]); } } #endif if (flags & SHA_HEX) digest_hex(digest, state->words, SHA512_DIGEST_LENGTH, flags); else memcpy(digest, state->words, SHA512_DIGEST_LENGTH); } /*** SHA-384: *********************************************************/ sha384_state * sha384_digest_init (sha384_state *state) { MEMCPY_BCOPY(state->words, sha384_initial_hash_value, SHA512_DIGEST_LENGTH); MEMSET_BZERO(state->buffer, SHA384_BLOCK_LENGTH); state->bitcount[0] = state->bitcount[1] = 0; return state; } void sha384_digest_add (sha384_state *state, const void *data, size_t len) { sha512_digest_add((sha512_state *)state, data, len); } void sha384_digest_get (sha384_state *state, uint8_t digest[], int flags) { sha512_last((sha512_state *)state); /* Save the hash data for output: */ #if BYTE_ORDER == LITTLE_ENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 6; j++) { REVERSE64(state->words[j], state->words[j]); } } #endif if (flags & SHA_HEX) digest_hex(digest, state->words, SHA384_DIGEST_LENGTH, flags); else memcpy(digest, state->words, SHA384_DIGEST_LENGTH); } /* hex output */ static void digest_hex (uint8_t digest[], const void *data, size_t size, int flags) { const char *alphabet; const uint8_t *bytes; size_t i; bytes = (const uint8_t *)data; alphabet = (flags & SHA_LCHEX) ? "0123456789abcdef" : "0123456789ABCDEF"; for (i = 0; i < size; ++i, ++bytes) { *digest++ = (uint8_t)alphabet[(*bytes) >> 4]; *digest++ = (uint8_t)alphabet[(*bytes) & 15]; } *digest = 0; } /* string checksum */ void sha256_digest (const void *data, size_t size, uint8_t digest[], int flags) { sha256_state state; sha256_digest_init(&state); sha256_digest_add(&state, data, size); sha256_digest_get(&state, digest, flags); } void sha384_digest (const void *data, size_t size, uint8_t digest[], int flags) { sha384_state state; sha384_digest_init(&state); sha384_digest_add(&state, data, size); sha384_digest_get(&state, digest, flags); } void sha512_digest (const void *data, size_t size, uint8_t digest[], int flags) { sha512_state state; sha512_digest_init(&state); sha512_digest_add(&state, data, size); sha512_digest_get(&state, digest, flags); } /* file checksum */ #define DIGEST_BUFFER_SIZE 4096 int sha256_digest_add_file (sha256_state *state, const char *filename) { FILE *fh; uint8_t buffer[DIGEST_BUFFER_SIZE]; size_t read; if ((fh = fopen(filename, "rb")) == NULL) return 0; do { read = fread(buffer, 1, DIGEST_BUFFER_SIZE, fh); sha256_digest_add(state, buffer, read); } while (read == DIGEST_BUFFER_SIZE); fclose(fh); return 1; } int sha256_digest_file (const char *filename, uint8_t digest[], int flags) { sha256_state state; sha256_digest_init(&state); if (sha256_digest_add_file(&state, filename)) { sha256_digest_get(&state, digest, flags); return 1; } return 0; } int sha384_digest_add_file (sha384_state *state, const char *filename) { FILE *fh; uint8_t buffer[DIGEST_BUFFER_SIZE]; size_t read; if ((fh = fopen(filename, "rb")) == NULL) return 0; do { read = fread(buffer, 1, DIGEST_BUFFER_SIZE, fh); sha384_digest_add(state, buffer, read); } while (read == DIGEST_BUFFER_SIZE); fclose(fh); return 1; } int sha384_digest_file (const char *filename, uint8_t digest[], int flags) { sha384_state state; sha384_digest_init(&state); if (sha384_digest_add_file(&state, filename)) { sha384_digest_get(&state, digest, flags); return 1; } return 0; } int sha512_digest_add_file (sha512_state *state, const char *filename) { FILE *fh; uint8_t buffer[DIGEST_BUFFER_SIZE]; size_t read; if ((fh = fopen(filename, "rb")) == NULL) return 0; do { read = fread(buffer, 1, DIGEST_BUFFER_SIZE, fh); sha512_digest_add(state, buffer, read); } while (read == DIGEST_BUFFER_SIZE); fclose(fh); return 1; } int sha512_digest_file (const char *filename, uint8_t digest[], int flags) { sha512_state state; sha512_digest_init(&state); if (sha512_digest_add_file(&state, filename)) { sha512_digest_get(&state, digest, flags); return 1; } return 0; }