
HiTEX

User Manual

Für Beatriz

Version 1.1 (Draft)

MARTIN RUCKERT Munich University of Applied Sciences

The author has taken care in the preparation of this document, but makes

no expressed or implied warranty of any kind and assumes no responsibility

for errors or omissions. No liability is assumed for incidental or consequential

damages in connection with or arising out of the use of the information or

programs contained herein.

Internet page http://hint.userweb.mwn.de/hint/hitex.html may

contain current information, downloadable software, and news.

Copyright c© 2022 by Martin Ruckert

All rights reserved.

This publication is protected by copyright, and permission must be obtained

prior to any prohibited reproduction, storage in a retrieval system, or trans-

mission in any form or by any means, electronic, mechanical, photocopying,

recording, or likewise. To obtain permission to use material from this work,

please submit a written request to Martin Ruckert, Hochschule München,

Fakultät für Informatik und Mathematik, Lothstrasse 64, 80335 München,

Germany.

ruckert_@cs.hm.edu

Revision: 2705, Date: Fri, 04 Mar 2022

Contents iii

Contents

Contents iii

1 HiTEX primitives 1
1.1 Syntax Description . 1
1.2 Version and Revision . 2
1.3 Images . 2
1.4 Links, Labels, and Outlines . 2
1.5 Page Templates and Streams . 4

2 Other Primitives 7

3 Replacing TEX’s Page Builder 9
3.1 TEX’s page building mechanism . 9
3.2 HINT Page Templates . 10

Index 15

1

1 HiTEX primitives

While currently HiTEX is the only TEX engine that supports output in the HINT
file format, this might not be so forever. To avoid unnecessary complications for
package writers, it is strongly suggested that all such TEX engines implement the
same primitives according to the same specification. The following is the first draft
of this specification. All the primitives use HINT as a prefix to avoid name conflicts.
The prefix HINT, as opposed to e.g. HiTeX, was chosen to stress the idea that these
primitives are specific for the output format—not for the TEX engine.

Because this is the first specification that will reach a wider user base, it is
reasonable to expect changes to occur in the future. Therefore it is recommended
that these primitives should not be used directly in a TEX document; instead they
should be encapsulated in suitable macros so that the consequences of any change
to the primitives will be local to these macros.

1.1 Syntax Description

In the following, we describe the syntax of primitive control sequences which were
added to TEX.

• We use a typewriter font for text that occurs verbatim in the TEX document.

• We use <italics> enclosed in pointed brackets to denote symbols.

• We use rules to define the meaning of symbols. A rule starts with the symbol to
be explained, followed by a colon “:”, and then the text that this symbol stands
for. A rule ends with a period “.”.

• Optional parts of the rule’s text are enclosed in [square brackets] .

• Alternatives are separated by a vertical bar “ | ”.

• Some symbols refer to text that is defined as part of standard TEX. These are
explained here by an example:

<integer> : an integer as in \penalty<integer> .
<normal dimension> : a dimension as in \hrule width <normal

dimension> .
<dimension> : a dimension as in \vskip 0pt plus <dimension> .
<name> : a name as in \input <name> .
<vertical list> : a token list with matching braces as in \vbox{ <vertical

list> }.
<horizontal list> : a token list with matching braces as in \hbox{<horizontal

list> }.

2 1 HiTEX primitives

<general text> : a token list with matching braces as in \write{ <general
text> }.

1.2 Version and Revision

The control sequences \HINTversion and \HINTsubversion are used to determine
the version and subversion numbers of the HINT output format that is generated by
HiTEX. It can be used as part of the output as in \the\HINTversion. The most
important use, however, is testing whether the current TEX engine will in fact
produce HINT output. As an example the file ifhint.tex contains the following
code:

\newif\ifhint

\expandafter\ifx\csname HINTversion\endcsname\relax

\hintfalse\else\hinttrue\fi

1.3 Images

The primitive \HINTimage includes an image in a document. The syntax is as
follows:

\HINTimage [=] <name> [<width>] [<height>]

The optional equal sign can be added to make the code look nicer. The <name>
specifies the image file. The width specification determines the width of the image.
If omitted, HiTEX tries to determine the image’s width from the image file. The
same holds for the height specification.

<width> : width <normal dimension> .

<height> : height <normal dimension> .

Note that a <normal dimension> that is computed from \hsize or \vsize

retains this dependency when processed by HiTEX. This allows an image to adapt
to the size of the viewing area. Scaling in the HINT viewer will, however, never
change the aspect ratio of an image. So it may become smaller or larger, but it will
never be distorted. For this reason, HiTEX will inspect the image file to determine
the aspect ratio of the stored image. The width and height values as given in
the TEX file serve as the maximum values for the actual width and height. When
rendering, the image will become as large as possible within the given bounds. If
TEX does not specify neither width nor height, the image file must specify the
absolute width and height of the image. It is considered an error if valid settings
for the image’s width and height can not be obtained.

1.4 Links, Labels, and Outlines 3

1.4 Links, Labels, and Outlines

A link in a HINT document refers to another location in the same document.
It can be used to navigate to that location. A link is defined using the primitives
\HINTstartlink and \HINTendlink. Neither of them can be used in vertical mode.
The text between the start and the end of the link constitutes the visible part of the
link. Depending on the user interface, clicking or tapping or otherwise activating
the link (e.g. pronouncing) will navigate to the destination of the link. The user
interface might provide a visual clue to make the user aware of the available links
but it also may choose to leave the visual clues to the author of the document (e.g.
using a special image or a special font).

The syntax is \HINTstartlink <destination> and \HINTendlink with

<destination> : goto <label> .
<label> : name { <general text> } | num <integer> .

As you can see, the link refers to its destination using a label which is either
a name or a number. The destination can be defined by using the \HINTdest

primitive. Forward and backward links are allowed; the definition of a label can
either precede or follow the use of the label. If at the end of the document a label
is undefined, a warning is given, and the label will reference the beginning of the
document.

The syntax is \HINTdest <label> [<placement>] with

<placement> : top | bot.

The optional placement argument specifies how to build the page containing the
destination location. top demands a page starting with the destination location.
This is useful if the destination is for example the start of a section or chapter
heading. Similarly bot asks for a page that ends with the destination location.
The most common case is to omit the placement argument. In this case, the
viewer will build a “good” page that includes the given destination. In case of a
section heading, for example, it will most probably start the page with the section
heading because section headings are usually preceded by a negative penalty that
will convince the page builder that this is a good place to break the page. But
if the section heading is immediately preceded by a chapter heading, the negative
penalty found there will probably persuade the page builder to start with the
chapter heading instead.

There is a special label that has the form name {HINT.home}. It is used to mark
the “home page” of the document. User interfaces are encouraged to offer a button
or keyboard shortcut to navigate to the document location labeled this way. The
page should be a convenient starting point to explore the document. The typical
place for this label would be the documents table of content.

The labels that identify destinations in a document can also be used to define
document outlines. A document outline is a document summary given as a hi-
erarchical list of headings where each of them refers to a specific location in the
document.

The syntax is \HINToutline <destination> [<depth>] {<horizontal list> }.

4 1 HiTEX primitives

<depth> : depth <integer> .

The user interface can format the <horizontal list> much like a \hbox would
do and displays it to the user. When the user selects this text, the document
will be repositioned to show the destination location in the same way as with a
link. In order to support also simpler user interfaces, the current HINT backend
also extracts the characters (and spaces) from the horizontal list (in top-left to
bottom-right order) and makes this character string available to the user interface.

The order in which outline items are defined is important because this is the
order in which they will be presented to the reader of the document. The optional
depth argument allows to structure the list of outline items as a hierarchy. Outline
items with a higher depth value are considered to be sub-items of items earlier in
the list with lower depth values. If no depth value is given, the depth value is set
to zero. It is not necessary to define depth values strictly consecutive.

1.5 Page Templates and Streams

To produce the final page, TEX uses a special piece of program called the output
routine. Because a HINT file is pure data, it can not contain output routines.
Instead it uses page templates to assemble pages from the main text, footnotes,
floating illustrations, and other material. I start here by describing how HINT’s
page templates work and the special syntax used to specify them in a TEX file that is
about to be processed with HiTEX. For those interested in how the design decision
was made and how page templates relate to TEX’s page building mechanism, a
separate section follows at the end.

The syntax of a page template specification is: \HINTsetpage <integer> [=]
<name> [<priority>] [<width>] [<height>] { <vertical list> <stream
definition list> }

The <integer> specifies the page templates number in the range 1 to 255. The
number 0 is reserved for the build in page template of the HINT file format, which
is used if no other page template has been defined. The page template 0 can not
be redefined. The <name> associates a name with the page template. The name
can be displayed by the HINT viewer to help the user selecting a suitable page
template.

After the name follows an optional priority; it is used to select the “best page
template” if multiple templates are available. The default value is 1. The build-in
template has priority 0.

<priority> : priority <integer> .

After that follows an optional width and height of the full page including the
margins. After subtracting \hsize from the width and \vsize from the height,
the remainder is used for the margins around the displayed text. For example
giving the width as 1.2\hsize will leave 0.1\hsize for the margins on both sides.
In this case the margins will grow together with the available width of the display.
If the width is computed by adding 20pt to \hsize, the margin will be 10pt on
both sides. In this case the margin will not grow with the size of the display, but
it will grow with the magnification factor. Of course both methods can be used

1.5 Page Templates and Streams 5

together. The default is \hsize for the width and \vsize for the height so there
are no margins.

The following <vertical list> defines the page itself. It should assign suitable
values to \topskip and \maxdepth because the values valid at the end of the
vertical list are stored in the page template and are used in the page building
process. The vertical list usually also specifies the insertion of content streams
using a <stream insert point> .

<stream insert point> : \HINTstream <integer> .

Here the <integer> must be in the range 0 to 254. The value 255 is invalid; the
value 0 indicates the main body of text (what TEX’s page builder would normally
put into box 255 before calling the output routine). Otherwise, the <integer> is
TeX’s insertion number, that is the number of TEX’s box containing the insertions.
As usual, this box is filled using TEX’s \insert primitive. So after plain TEX
has defined \footins, the footnotes for the current page can be inserted after the
main body of text in the <vertical list> by saying \HINTstream0 followed by
\HINTstream\footins. Of course you might want to have a footnote rule and a
small skip to separate the footnotes —if there are any—from the main text. This
can be achieved by a suitable <stream definition> in the <stream definition list>
.

<stream definition list> : | <stream definition list> <stream definition> .
<stream definition> : \HINTsetstream <integer> [=] [preferred <integer>

] [next <integer>] [ratio <integer>] { <vertical list> }.

The first <integer> is the streams insertion number i, and it must match
the <integer> previously used in the <stream insert point> . Then follows the
optional specification of a preferred stream with insertion number p, a next stream
with insertion number n, and a split ratio r. If r > 0, the contributions to stream
i are split between stream p and n in the ratio r/1000 for p and 1 − r/1000 for
n before contributing streams p and r to the page. Else if p ≥ 0 any insertion to
stream i is moved to stream p as long as possible, and if n ≥ 0 we move an insert to
stream n if there is “no room left” in p nor in i. How much “room” is available for
the insertions is specified inside the vertical list that follows. Here \dimeni should
be set to the maximum total height of the insertions in class i per page. \counti
should be set to the magnification factor f , such that inserting a box of height h
will contribute h ∗ f/1000 to the main page; and \skipi should be set to the extra
space needed if an insertion in class i is present.

This extra space is usually taken up by material that is inserted before and after
the insertions, such as for example the footnote rule. This material can be defined
by a <before list> and an <after list> .

<before list> : \HINTbefore [=] { <vertical list> }.
<after list> : \HINTafter [=] { <vertical list> }.

If you are interested in the design decision that motivate the definitions that
have be given in this section, you should read section 3.

7

2 Other Primitives

When I started the HINT project in 2017, I tried to keep the project as small as
possible to increase the chances that I would be able to complete it. So one design
decision was to keep things simple—or to quote Albert Einstein: “Make things as
simple as possible, but not simpler”. The other imperative was: keep things out of
the viewer if possible because I do not know how much processing power or battery
power is available. As a consequence, I focused on Donald Knuth’ original TEX,
disregarding all later extensions like ε-TEX or LATEX, and I decided that the TEX
interpreter would not need to run in the viewer.

By now, the state of the HINT project is far beyond of what I had expected
then, and the processing power of even low-cost mobile devices is far better than
expected especially when programming the graphics card directly using OpenEGL.

But the line breaking routine, which is running in the viewer, and the HINT file
format, which specifies all the parameters for the line breaking algorithm, covers
just the line breaking of Donald Knuth’s original TEX. Therefore the viewer will
also do just that, and HiTEX can not produce files doing more than that. Of course
that might not be so for ever. Similarly, the decision to keep the TeX interpreter
out of the HINT viewer implies that HINT files do not contain token lists. This
means that there are no output routines and no marks. To replace them, the HINT
file format includes page templates. I have described the technical means to specify
page templates above and try to explain the rationale behind it below, but HINT’s
page templates are at the time of this writing a largely untested area.

Since I consider the support for LATEX to be crucial for the success of the HINT
project, quite a few primitives have been added to HiTEX that go beyond TEX’s
original specification.

First, the primitives of ε-TEX have been added with the exception of those prim-
itives that deal with line breaking, with right to left reading, and with marks. Here
is a list of ε-TEX primitives that are missing in HiTEX:

• \TeXXeTstate (current reading direction)

• \beginL, \endL (switching reading direction)

• \beginR, \endR (switching reading direction)

• \predisplaydirection (reading direction)

• \lastlinefit (line breaking)

• \marks (multiple marks)

• \botmarks, \splitbotmarks (multiple marks)

8 2 Other Primitives

• \firstmarks, \splitfirstmarks (multiple marks)

• \topmarks (multiple marks)

Second, the primitives required to support LATEX were added using Thierry
Larondes implementation of PRoTE.

• \Proteversion, \Proterevision (version information)

• \resettimer, \elapsedtime (timing information)

• \creationdate, \filemoddate, \filesize, \filedump, \mdfivesum (file infor-
mation)

• \shellescape (Currently only a dummy implementation.)

• \setrandomseed, \randomseed, \normaldeviate, \uniformdeviate (random
numbers)

• \expanddepth, \expanded (programming)

• \ifincsname, \ifprimitive \primitive (programming)

• \savepos, \lastxpos, \lastypos, \pageheight, \pagewidth (Only dummy im-
plementations since this information is not available to HiTEX at runtime.)

• \strcmp (comparing strings)

9

3 Replacing TEX’s Page Builder
TEX uses an output routine to finalize the page. The output outline takes the
material which the page builder had accumulated in box255 and attaches headers,
footers, and floating material like figures, tables, and footnotes. The latter material
is specified by insert nodes while headers and footers are often constructed using
mark nodes. Running an output routine requires the full power of the TEX engine
and is not part of the HINT viewer. Therefore, HINT replaces output routines
by page templates. TEX can use different output routines for different parts of a
book—for example the index might use a different output routine than the main
body of text.

TEX uses insertions to describe floating content that is not necessarily displayed
where it is specified. Three examples may illustrate this:

• Footnotes* are specified in the middle of the text but are displayed at the bottom
of the page. Several footnotes on the same page are collected and displayed
together. The page layout may specify a short rule to separate footnotes from
the main text, and if there are many short footnotes, it may use two columns to
display them. In extreme cases, the page layout may demand a long footnote to
be split and continued on the next page.

• Illustrations may be displayed exactly where specified if there is enough room
on the page, but may move to the top of the page, the bottom of the page, the
top of next page, or a separate page at the end of the chapter.

• Margin notes are displayed in the margin on the same page starting at the top
of the margin.

HINT uses page templates and content streams to achieve similar effects. But
before I describe the page building mechanisms of HINT, let me summarize TEX’s
page builder.

3.1 TEX’s page building mechanism

TEX’s page builder ignores leading glue, kern, and penalty nodes until the first
box or rule node is encountered; whatsit nodes do not really contribute anything
to a page; mark nodes are recorded for later use. Once the first box, rule, or
insert arrives, TEX makes copies of all parameters that influence the page build-
ing process and uses these copies. These parameters are the page_goal and the
page_max_depth. Further, the variables page total, page shrink, page stretch,

* Like this one.

10 3 Replacing TEX’s Page Builder

page depth, and insert penalties are initialized to zero. The top skip adjust-
ment is made when the first box or rule arrives—possibly after an insert. Now
the page builder accumulates material: normal material goes into box255 and will
change page total, page shrink, page stretch, and page depth. The latter is
adjusted so that is does not exceed page max depth.

The handling of inserts is more complex. TEX creates an insert class using
newinsert. This reserves a number i and four registers: boxi for the inserted
material, counti for the magnification factor f , dimeni for the maximum size per
page d, and skipi for the extra space needed on a page if there are any insertions
of class i.

For example plain TEX allocates n = 254 for footnotes and sets count254 to 1000,
dimen254 to 8in, and skip254 to \bigskipamount.

An insertion node will specify the insertion class i, some vertical material, its
natural height plus depth x, a split top skip, a split max depth, and a floa-

ting penalty.
Now assume that an insert node with subtype 254 arrives at the page builder.

If this is the first such insert, TEX will decrease the page goal by the width of
skip254 and adds its stretchability and shrinkability to the total stretchability
and shrinkability of the page. Later, the output routine will add some space and
the footnote rule to fill just that much space and add just that much shrinkability
and stretchability to the page. Then TEX will normally add the vertical material
in the insert node to box254 and decrease the page goal by x× f/1000.

Special processing is required if TEX detects that there is not enough space on the
current page to accommodate the complete insertion. If already a previous insert
did not fit on the page, simply the floating penalty as given in the insert node
is added to the total insert penalties. Otherwise TEX will test that the total
natural height plus depth of box254 including x does not exceed the maximum size
d and that the page total+page depth+x×f/1000−page shrink ≤ page goal.
If one of these tests fails, the current insertion is split in such a way as to make the
size of the remaining insertions just pass the tests just stated.

Whenever a glue node, or penalty node, or a kern node that is followed by glue
arrives at the page builder, it rates the current position as a possible end of the
page based on the shrinkability of the page and the difference between page total

and page goal. As the page fills, the page breaks tend to become better and better
until the page starts to get overfull and the page breaks get worse and worse until
they reach the point where they become awful bad. At that point, the page builder
returns to the best page break found so far and fires up the output routine.

3.2 HINT Page Templates

Let’s look at the problems that show up when implementing a replacement for
TEX’s page building mechanism.

1. An insertion node can not always specify its height x because insertions may
contain paragraphs that need to be broken in lines and the height of a paragraph
depends in some non obvious way on its width.

2. Before the viewer can compute the height x, it needs to know the width of the

3.2 HINT Page Templates 11

insertion. Just imagine displaying footnotes in two columns or setting notes in
the margin. Knowing the width, it can pack the vertical material and derive its
height and depth.

3. TEX’s plain format provides an insert macro that checks whether there is still
space on the current page, and if so, it creates a contribution to the main text
body, otherwise it creates a topinsert. Such a decision needs to be postponed
to the HINT viewer.

4. HINT has no output routines that would specify something like the space and
the rule preceding the footnote.

5. TEX’s output routines have the ability to inspect the content of the boxes, split
them, and distribute the content over the page. For example, the output routine
for an index set in two column format might expect a box containing index entries
up to a height of 2× vsize. It will split this box in the middle and display the
top part in the left column and the bottom part in the right column. With this
approach, the last page will show two partly filled columns of about equal size.

6. HINT has no mark nodes that could be used to create page headers or footers.
Marks, like output routines, contain token lists and need the full TEX interpreter
for processing them. Hence, HINT does not support mark nodes.

Instead of output routines, HINT uses page templates. Page templates are basi-
cally vertical boxes with <stream insert points> marking the positions where the
content of the box registers, filled by the page builder, should appear. To output
the page, the viewer traverses the page template, replaces the placeholders by the
appropriate box content, and sets the glue.

It is only natural to treat the page’s main body, inserts, and marks using the
same mechanism. We call this mechanism a content stream. Content streams are
identified by a stream number in the range 0 to 254; the number 255 is used to
indicate an invalid stream number. The stream number 0 is reserved for the main
content stream; it is always defined.

It is planed to implement a replacement for TEX’s mark nodes using

different types of streams:

• normal streams correspond to TEX’s inserts and accumulate content on

the page,

• first streams correspond to TEX’s first marks and will contain only the

first insertion of the page,

• last streams correspond to TEX’s bottom marks and will contain only

the last insertion of the page, and

• top streams correspond to TEX’s top marks. Top streams are not yet

implemented.

Nodes from the content section are considered contributions to stream 0 except
for insert nodes which will specify the stream number explicitly. If the stream is not
defined or is not used in the current page template, its content is simply ignored.

12 3 Replacing TEX’s Page Builder

The page builder needs a mechanism to redirect contributions from one content
stream to another content stream based on the availability of space. Hence a HINT
content stream can optionally specify a preferred stream number, where content
should go if there is still space available, a next stream number, where content
should go if the present stream has no more space available, and a split ratio if the
content is to be split between these two streams before filling in the template.

Various stream parameters govern the treatment of contributions to the stream
and the page building process.

• The magnification factor f : Inserting a box of height h to this stream will
contribute h×f/1000 to the height of the page under construction. For example,
a stream that uses a two column format will have an f value of 500; a stream
that specifies notes that will be displayed in the page margin will have an f value
of zero.

• The height h: The extended dimension h gives the maximum height this stream
is allowed to occupy on the current page. To continue the previous example,
a stream that will be split into two columns will have h = 2 · vsize , and a
stream that specifies notes that will be displayed in the page margin will have
h = 1 · vsize. You can restrict the amount of space occupied by footnotes to
the bottom quarter by setting the corresponding h value to h = 0.25 · vsize.

• The depth d: The dimension d gives the maximum depth this stream is allowed
to have after formatting.

• The width w: The extended dimension w gives the width of this stream when
formatting its content. For example margin notes should have the width of the
margin less some surrounding space.

• The “before” list b: If there are any contributions to this stream on the current
page, the material in list b is inserted before the material from the stream itself.
For example, the short line that separates the footnotes from the main page will
go, together with some surrounding space, into the list b.

• The top skip glue g: This glue is inserted between the material from list b and
the first box of the stream, reduced by the height of the first box. Hence it
specifies the distance between the material in b and the first baseline of the
stream content.

• The “after” list a: The list a is treated like list b but its material is placed after
the material from the stream itself.

• The “preferred” stream number p: If p 6= 255, it is the number of the preferred
stream. If stream p has still enough room to accommodate the current contribu-
tion, move the contribution to stream p, otherwise keep it. For example, you can
move an illustration to the main content stream, provided there is still enough
space for it on the current page, by setting p = 0.

• The “next” stream number n: If n 6= 255, it is the number of the next stream. If
a contribution can not be accommodated in stream p nor in the current stream,
treat it as an insertion to stream n. For example, you can move contributions to
the next column after the first column is full, or move illustrations to a separate
page at the end of the chapter.

3.2 HINT Page Templates 13

• The split ratio r: If r is positive, both p and n must be valid stream numbers
and contents is not immediately moved to stream p or n as described before.
Instead the content is kept in the stream itself until the current page is complete.
Then, before inserting the streams into the page template, the content of this
stream is formatted as a vertical box, the vertical box is split into a top fraction
and a bottom fraction in the ratio r/1000 for the top and (1000 − r)/1000 for
the bottom, and finally the top fraction is moved to stream p and the bottom
fraction to stream n. You can use this feature for example to implement footnotes
arranged in two columns of about equal size. By collecting all the footnotes in
one stream and then splitting the footnotes with r = 500 before placing them
on the page into a right and left column. Even three or more columns can be
implemented by cascades of streams using this mechanism.

HINT allows multiple page templates but HiTEX currently does not implement
restricting them to individual page ranges and the viewer selects the page template
with the highest priority. To support different output media, the page templates are
named and a suitable user interface may offer the user a selection of possible page
layouts. In this way, the page layout remains in the hands of the book designer,
and the user has still the opportunity to pick a layout that best fits the display
device.

The build-in page template with number 0 is always defined and has priority 0. It
will display just the main content stream. It puts a small margin of hsize/8−4.5pt
all around it. Given a letter size page, 8.5 inch wide, this formula yields a margin
of 1 inch, matching TEX’s plain format. The margin will be positive as long as the
page is wider than 1/2 inch. For narrower pages, there will be no margin at all.
In general, the HINT viewer will never set hsize larger than the width of the page
and vsize larger than its height.

15

Index

Symbols

| 1

A

<after list> 5
alternative 1
aspect ratio 2

B

<before list> 5
bot 3
box 255 10
box node 9

D

<depth> 4
<destination> 3
<dimension> 1

F

first stream 11
footnote 9

G

<general text> 2
glue 9

H

<height> 2
HINT.home 3
\HINTafter 5
\HINTbefore 5
\HINTdest 3
\HINTendlink 3
\HINTimage 2
\HINToutline 3
\HINTsetpage 4

\HINTstartlink 3

\HINTsubversion 2

\HINTversion 2

home page 3

<horizontal list> 1

I

ifhint.tex 2

illustration 9

image 2

insert node 9

<integer> 1

K

kern 9

L

<label> 3

last stream 11

link 3

M

margin note 9

mark node 9

N

<normal dimension> 1

O

[optional] 1

outline 3

output routine 4, 9

16 Index

P

page building 9
page template 4
penalty 9
<placement> 3
<priority> 4

R

rule 1
rule node 9

S

split ratio 13
stream 4, 11
<stream definition> 5
<stream definition list> 5
<stream insert point> 5
<symbol> 1

T

template 9
top 3
top skip 10
top stream 11
typewriter font 1

V

verbatim 1
<vertical list> 1

W

whatsit node 9

<width> 2

17

	Contents
	HiTkern -.1667emlower .5exhbox {E}kern -.125emX primitives
	Other Primitives
	Replacing Tkern -.1667emlower .5exhbox {E}kern -.125emX's Page Builder
	Index

