/************************************************************************* ** RangeMap.cpp ** ** ** ** This file is part of dvisvgm -- a fast DVI to SVG converter ** ** Copyright (C) 2005-2018 Martin Gieseking ** ** ** ** This program is free software; you can redistribute it and/or ** ** modify it under the terms of the GNU General Public License as ** ** published by the Free Software Foundation; either version 3 of ** ** the License, or (at your option) any later version. ** ** ** ** This program is distributed in the hope that it will be useful, but ** ** WITHOUT ANY WARRANTY; without even the implied warranty of ** ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** ** GNU General Public License for more details. ** ** ** ** You should have received a copy of the GNU General Public License ** ** along with this program; if not, see . ** *************************************************************************/ #include "RangeMap.hpp" using namespace std; /** Tries to merge range r into this one. This is only possible if the ranges * touch or overlap and if the assigned values match at the junction points. * @param[in] r range to join * @return true if join was successful */ bool RangeMap::Range::join (const Range &r) { // check most common cases first if (_max+1 < r._min || _min-1 > r._max) // disjoint ranges? return false; if (r._min-1 == _max) { // does r touch *this on the right? if (valueAt(r._min) == r._minval) { _max = r._max; return true; } return false; } if (r._max+1 == _min) { // does r touch *this on the left if (r.valueAt(_min) == _minval) { setMinAndAdaptValue(r._min); return true; } return false; } // the following cases should be pretty rare if (r._min <= _min && r._max >= _max) { // does r overlap *this on both sides? *this = r; return true; } if (r._min < _min) { // left overlap only? if (r.valueAt(_min) == _minval) { _min = r._min; _minval = r._minval; return true; } return false; } if (r._max > _max) { // right overlap only? if (valueAt(r._min) == r._minval) { _max = r._max; return true; } return false; } // r completely inside *this return valueAt(r._min) == r._minval; } /** Adds a new number range. The range describes a mapping from c to v(c), where * \f$c \in [cmin,cmax]\f$ and \f$v(cmin):=vmin, v(c):=vmin+c-cmin\f$. * @param[in] cmin smallest number in the range * @param[in] cmax largest number in the range * @param[in] vmin map value of cmin */ void RangeMap::addRange (uint32_t cmin, uint32_t cmax, uint32_t vmin) { if (cmin > cmax) swap(cmin, cmax); Range range(cmin, cmax, vmin); if (_ranges.empty()) _ranges.emplace_back(std::move(range)); else { // check for simple cases that can be handled pretty fast Range &lrange = *_ranges.begin(); Range &rrange = *_ranges.rbegin(); if (cmin > rrange.max()) { // non-overlapping range at end of vector? if (!rrange.join(range)) _ranges.emplace_back(std::move(range)); } else if (cmax < lrange.min()) { // non-overlapping range at begin of vector? if (!lrange.join(range)) _ranges.emplace(_ranges.begin(), std::move(range)); } else { // ranges overlap and/or must be inserted somewhere inside the vector Ranges::iterator it = lower_bound(_ranges.begin(), _ranges.end(), range); const bool at_end = (it == _ranges.end()); if (at_end) --it; if (!it->join(range) && (it == _ranges.begin() || !(it-1)->join(range))) { if (it->min() < cmin && it->max() > cmax) { // new range completely inside an existing range? //split existing range uint32_t itmax = it->max(); it->max(cmin-1); it = _ranges.emplace(it+1, Range(cmax+1, itmax, it->valueAt(cmax+1))); } else if (at_end) // does new range overlap right side of last range in vector? it = _ranges.end(); // => append new range at end of vector it = _ranges.emplace(it, std::move(range)); } adaptNeighbors(it); // resolve overlaps } } } /** Adapts the left and right neighbor elements of a newly inserted range. * The new range could overlap ranges in the neighborhood so that those must be * adapted or removed. All ranges in the range vector are ordered ascendingly, i.e. * [min_1, max_1],...,[min_n, max_n] where min_i < min_j for all i < j. * @param[in] it pointer to the newly inserted range */ void RangeMap::adaptNeighbors (Ranges::iterator it) { if (it != _ranges.end()) { // adapt left neighbor if (it != _ranges.begin() && it->min() <= (it-1)->max()) { Ranges::iterator lit = it-1; // points to left neighbor bool left_neighbor_valid = (it->min() > 0 && it->min()-1 >= lit->min()); if (left_neighbor_valid) // is adapted left neighbor valid? lit->max(it->min()-1); // => assign new max value if (!left_neighbor_valid || it->join(*lit)) it = _ranges.erase(lit); } // remove right neighbors completely overlapped by *it Ranges::iterator rit = it+1; // points to right neighbor while (rit != _ranges.end() && it->max() >= rit->max()) { // complete overlap? _ranges.erase(rit); rit = it+1; } // adapt rightmost range partially overlapped by *it if (rit != _ranges.end()) { if (it->max() >= rit->min()) rit->setMinAndAdaptValue(it->max()+1); // try to merge right neighbor into *this if (it->join(*rit)) _ranges.erase(rit); // remove merged neighbor } } } /** Finds the index of the range that contains a given value c. * @param[in] c find range that contains this value * @return index of the range found, or -1 if range was not found */ int RangeMap::lookup (uint32_t c) const { // simple binary search int left=0, right=_ranges.size()-1; while (left <= right) { int mid = (left+right)/2; if (c < _ranges[mid].min()) right = mid-1; else if (c > _ranges[mid].max()) left = mid+1; else return mid; } return -1; } uint32_t RangeMap::valueAt (uint32_t c) const { int pos = lookup(c); return pos < 0 ? 0 : _ranges[pos].valueAt(c); } /** Returns the number of values mapped. */ size_t RangeMap::numValues () const { size_t count=0; for (const Range &range : _ranges) count += range.max()-range.min()+1; return count; } ostream& RangeMap::Range::write (ostream& os) const { return os << '[' << _min << ',' << _max << "] => " << _minval; } ostream& RangeMap::write (ostream& os) const { for (size_t i=0; i < _ranges.size(); i++) _ranges[i].write(os) << '\n'; return os; }