/************************************************************************* ** PathClipper.cpp ** ** ** ** This file is part of dvisvgm -- a fast DVI to SVG converter ** ** Copyright (C) 2005-2018 Martin Gieseking ** ** ** ** This program is free software; you can redistribute it and/or ** ** modify it under the terms of the GNU General Public License as ** ** published by the Free Software Foundation; either version 3 of ** ** the License, or (at your option) any later version. ** ** ** ** This program is distributed in the hope that it will be useful, but ** ** WITHOUT ANY WARRANTY; without even the implied warranty of ** ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** ** GNU General Public License for more details. ** ** ** ** You should have received a copy of the GNU General Public License ** ** along with this program; if not, see . ** *************************************************************************/ #include "Bezier.hpp" #include "PathClipper.hpp" using namespace std; using namespace ClipperLib; using Polygon = ClipperLib::Path; using Polygons = ClipperLib::Paths; using CurvedPath = PathClipper::CurvedPath; const int SCALE_FACTOR = 1000; inline cInt to_cInt (double x) { if (x < 0) return static_cast(x*SCALE_FACTOR - 0.5); return static_cast(x*SCALE_FACTOR + 0.5); } inline double to_double (cInt x) { return static_cast(x)/SCALE_FACTOR; } inline DPair to_DPair (const IntPoint &p) { return DPair(to_double(p.X), to_double(p.Y)); } /** In order to flatten a curved path, all path segements are processed sequentially. * Depending on the type of the segment, one of the methods provided by this class * is called. */ class FlattenActions : public CurvedPath::Actions { public: FlattenActions (vector &curves, Polygons &polygons, int &numLines) : _polygons(polygons), _curves(curves), _numLines(numLines) {} void moveto (const CurvedPath::Point &p) override { if (p == _currentPoint && !_currentPoly.empty()) return; closepath(); _currentPoly.emplace_back(IntPoint(to_cInt(p.x()), to_cInt(p.y()), 0)); _currentPoint = _startPoint = p; } void lineto (const CurvedPath::Point &p) override { if (p == _currentPoint && !_currentPoly.empty()) return; if (_currentPoly.empty()) // this shouldn't happen but in case it does... _currentPoly.emplace_back(IntPoint(0, 0, 0)); // ...add a start point first _numLines--; _currentPoly.back().Z.label2 = _numLines; _currentPoly.emplace_back(IntPoint(to_cInt(p.x()), to_cInt(p.y()), ZType(_numLines, 0))); _currentPoint = p; } void conicto (const CurvedPath::Point &p1, const CurvedPath::Point &p2) override { Bezier bezier(_currentPoint, p1, p2); addCurvePoints(bezier); } void cubicto (const CurvedPath::Point &p1, const CurvedPath::Point &p2, const CurvedPath::Point &p3) override { Bezier bezier(_currentPoint, p1, p2, p3); addCurvePoints(bezier); } void closepath () override { if (_currentPoly.empty()) return; _numLines--; _currentPoly.back().Z.label2 = ZLabel(_numLines, 0); _currentPoly.front().Z.label1 = ZLabel(_numLines, 0); _polygons.push_back(_currentPoly); _currentPoly.clear(); } void finished () override { closepath(); } protected: void addCurvePoints (const Bezier &bezier) { if (_currentPoly.empty()) // this shouldn't happen but in case it does, ... _currentPoly.emplace_back(IntPoint(0, 0, 0)); // ...add a start point first vector points; // points of flattened curve vector t; // corresponding 'time' parameters bezier.approximate(0.01, points, &t); if (points.size() < 2) return; _curves.push_back(bezier); for (size_t i=1; i < points.size(); i++) { const DPair &p = points[i]; if (p == _currentPoint) continue; _currentPoly.back().Z.label2 = ZLabel(_curves.size(), t[i-1]); ZLabel label(_curves.size(), t[i]); _currentPoly.emplace_back(IntPoint(to_cInt(p.x()), to_cInt(p.y()), ZType(label, label))); _currentPoint = p; } } private: CurvedPath::Point _startPoint, _currentPoint; Polygon _currentPoly; ///< polygon being created Polygons &_polygons; ///< all polygons created vector &_curves; int &_numLines; }; /** Removes adjacent polygon vertices that equal their predecessor. */ static void remove_redundant_vertices (Polygon &polygon) { Polygon::iterator it1=polygon.begin(); while (it1 != polygon.end()) { Polygon::iterator it2 = it1+1; if (it2 == polygon.end()) it2 = polygon.begin(); if (it1 == it2) return; if (*it1 != *it2) ++it1; else { it1->Z.label2 = it2->Z.label2; polygon.erase(it2); } } } /** Approximates a curved path by a set of polygons and stores information * to reconstruct the curved segments later. The z component of each * polygon vertex holds two integers representing information about the two * adjacent edges the vertex belongs to. This is required to identify the * affected edges and thus the former (curve/line) segment of the path during * the intersection process. * @param[in] curvedPath curved path to be flattened * @param[out] polygons the flattened path (set of polygons) */ void PathClipper::flatten (const CurvedPath &curvedPath, Polygons &polygons) { FlattenActions flattenActions(_curves, polygons, _numLines); curvedPath.iterate(flattenActions, false); for (size_t i=0; i < polygons.size(); i++) remove_redundant_vertices(polygons[i]); } /** Returns the ID of the path segment the polygon edge defined by its start * and end point belongs to. The z component of a polygon vertex holds a pair * of labels that allows to identify the original path segments the point belongs to. * Since always two adjacent segments share a point, each point gets two values assigned. * Negative numbers denote line segments, positive ones Bézier curves. * There are only these two segment types, so we don't need further flags in * order to distinguish them. By comparing the labels of two adjacent polygon * vertexes it's possible to identify the original path segment the corresponding * edge belongs to. * @param[in] p1 first of two adjacent vertices * @param[in] p2 second of two adjacent vertices * @param[out] t1 time parameter of p1 * @param[out] t2 time parameter of p2 * @return id of edge between p1 and p2, or 0 if it's not possible to identify the segment */ static int32_t segment_id (const IntPoint &p1, const IntPoint &p2, double &t1, double &t2) { const ZType &z1=p1.Z, &z2=p2.Z; if (z1 == z2 && z1.minLabel().id < 0) return z1.minLabel().id; if (z1.label1 == z2.label2) {t1=z1.label1.t; t2=z2.label2.t; return z1.label1.id;} if (z1.label2 == z2.label1) {t1=z1.label2.t; t2=z2.label1.t; return z1.label2.id;} if (z1.label1 == z2.label1) {t1=z1.label1.t; t2=z2.label1.t; return z1.label1.id;} if (z1.label2 == z2.label2) {t1=z1.label2.t; t2=z2.label2.t; return z1.label2.id;} // if we get here, it's not possible to identify the segment // => the edge is going to be handled as line segment return 0; } /** This function expects 3 colinear points p1, p2, and q, where q lies between p1 and p2, * i.e. q divides the line \f$ \overline{p_1 p_2} \f$ somewhere. The function returns * the corresponding division ratio. */ static double division_ratio (const IntPoint &p1, const IntPoint &p2, const IntPoint &q) { if (p1 == p2 || q == p1) return 0; if (q == p2) return 1; if (p1.X == p2.X) return double(q.Y-p1.Y)/(p2.Y-p1.Y); return double(q.X-p1.X)/(p2.X-p1.X); } /** Returns the label of point q that lies on the line between points p1 and p2. */ inline ZLabel division_label (const IntPoint &p1, const IntPoint &p2, const IntPoint &q) { double t1, t2; double s=0; int32_t id = segment_id(p1, p2, t1, t2); if (id > 0) s = t1+(t2-t1)*division_ratio(p1, p2, q); return ZLabel(id, s); } /** This method is called if the clipper library finds an intersection between two polygon edges. * It populates the z coordinate of the intersection point with the idexes of the two edges. * @param[in] e1bot first endpoint of edge 1 * @param[in] e1top second endpoint of edge 1 * @param[in] e2bot first endpoint of edge 2 * @param[in] e2top second endpoint of edge 2 * @param[in] ip intersection point of edge 1 and 2 */ void PathClipper::callback (IntPoint &e1bot, IntPoint &e1top, IntPoint &e2bot, IntPoint &e2top, IntPoint &ip) { ZLabel label1 = division_label(e1bot, e1top, ip); ZLabel label2 = division_label(e2bot, e2top, ip); ip.Z = ZType(label1, label2); } /** Iterates along the polygon edges until the endpoint of the current * path segment is found and returns its vector index afterwards. * @param[in] polygon the polygon to be processed * @param[in] start index of the vertex where the iteration starts * @param[out] label if not 0, retrieves the label of the endpoint * @param[in] startLabel if true, the found endpoint is treated as start point and * parameter 'label' gets the corresponding value */ static size_t find_segment_endpoint (const Polygon &polygon, size_t start, ZLabel *label=0, bool startLabel=false) { if (polygon.empty()) return 0; const size_t num_points = polygon.size(); int i = start%num_points; double t1=0, t2=0; // time parameters of start and endpoint of current edge int32_t id1 = segment_id(polygon[i], polygon[(i+1)%num_points], t1, t2); int32_t id2 = id1; double t = t2; // time parameter of resulting endpoint for (size_t j=1; id1 == id2 && j < num_points; j++) { t = t2; i = (i+1)%num_points; if (id1 == 0) break; id2 = segment_id(polygon[i], polygon[(i+1)%num_points], t1, t2); } if (label) { *label = ZLabel(id1, id1 < 0 ? 0 : t); if (startLabel && id1 != 0) *label = polygon[i].Z.otherLabel(*label); } return i; } /** Reconstructs a curved path from the set of polygons. * @param[in] polygons set of polygons to reconstruct * @param[out] path the reconstructed curved path */ void PathClipper::reconstruct (const Polygons &polygons, CurvedPath &path) { for (const Polygon &polygon : polygons) reconstruct(polygon, path); } /** Reconstructs a curved path from a single polygon. * @param[in] polygon polygon to reconstruct * @param[out] path the reconstructed curved path */ void PathClipper::reconstruct (const Polygon &polygon, CurvedPath &path) { size_t num_points = polygon.size(); if (num_points < 2) return; ZLabel label1, label2; // labels of the current segment's start and endpoint int index1 = find_segment_endpoint(polygon, 0, &label1, true); int index2 = find_segment_endpoint(polygon, index1, &label2); int diff = (num_points+index2-index1)%num_points; path.moveto(to_DPair(polygon[index1])); for (size_t count = diff; count <= num_points; count += diff) { if (diff == 1 || label1.id <= 0) // line segment? path.lineto(to_DPair(polygon[index2])); else { // Bézier curve segment Bezier bezier(_curves[label1.id-1], label1.t, label2.t); if (label1.t > label2.t) bezier.reverse(); path.cubicto(bezier.point(1), bezier.point(2), bezier.point(3)); } if (label1.id == 0) find_segment_endpoint(polygon, index2, &label1, true); else label1 = polygon[index2].Z.otherLabel(label2); index1 = index2; index2 = find_segment_endpoint(polygon, index1, &label2); diff = (num_points+index2-index1)%num_points; } path.closepath(); } inline PolyFillType polyFillType (CurvedPath::WindingRule wr) { return (wr == CurvedPath::WindingRule::NON_ZERO) ? pftNonZero : pftEvenOdd; } /** Computes the intersection of to curved paths. * @param[in] p1 first curved path * @param[in] p2 second curved path * @param[out] result intersection of p1 and p2 */ void PathClipper::intersect (const CurvedPath &p1, const CurvedPath &p2, CurvedPath &result) { if (p1.size() < 2 || p2.size() < 2) return; Clipper clipper; Polygons polygons; flatten(p1, polygons); clipper.AddPaths(polygons, ptSubject, true); polygons.clear(); flatten(p2, polygons); clipper.AddPaths(polygons, ptClip, true); clipper.ZFillFunction(callback); Polygons flattenedPath; clipper.Execute(ctIntersection, flattenedPath, polyFillType(p1.windingRule()), polyFillType(p2.windingRule())); reconstruct(flattenedPath, result); }