/* ** SSA IR (Intermediate Representation) format. ** Copyright (C) 2005-2016 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_IR_H #define _LJ_IR_H #include "lj_obj.h" /* -- IR instructions ----------------------------------------------------- */ /* IR instruction definition. Order matters, see below. ORDER IR */ #define IRDEF(_) \ /* Guarded assertions. */ \ /* Must be properly aligned to flip opposites (^1) and (un)ordered (^4). */ \ _(LT, N , ref, ref) \ _(GE, N , ref, ref) \ _(LE, N , ref, ref) \ _(GT, N , ref, ref) \ \ _(ULT, N , ref, ref) \ _(UGE, N , ref, ref) \ _(ULE, N , ref, ref) \ _(UGT, N , ref, ref) \ \ _(EQ, C , ref, ref) \ _(NE, C , ref, ref) \ \ _(ABC, N , ref, ref) \ _(RETF, S , ref, ref) \ \ /* Miscellaneous ops. */ \ _(NOP, N , ___, ___) \ _(BASE, N , lit, lit) \ _(PVAL, N , lit, ___) \ _(GCSTEP, S , ___, ___) \ _(HIOP, S , ref, ref) \ _(LOOP, S , ___, ___) \ _(USE, S , ref, ___) \ _(PHI, S , ref, ref) \ _(RENAME, S , ref, lit) \ _(PROF, S , ___, ___) \ \ /* Constants. */ \ _(KPRI, N , ___, ___) \ _(KINT, N , cst, ___) \ _(KGC, N , cst, ___) \ _(KPTR, N , cst, ___) \ _(KKPTR, N , cst, ___) \ _(KNULL, N , cst, ___) \ _(KNUM, N , cst, ___) \ _(KINT64, N , cst, ___) \ _(KSLOT, N , ref, lit) \ \ /* Bit ops. */ \ _(BNOT, N , ref, ___) \ _(BSWAP, N , ref, ___) \ _(BAND, C , ref, ref) \ _(BOR, C , ref, ref) \ _(BXOR, C , ref, ref) \ _(BSHL, N , ref, ref) \ _(BSHR, N , ref, ref) \ _(BSAR, N , ref, ref) \ _(BROL, N , ref, ref) \ _(BROR, N , ref, ref) \ \ /* Arithmetic ops. ORDER ARITH */ \ _(ADD, C , ref, ref) \ _(SUB, N , ref, ref) \ _(MUL, C , ref, ref) \ _(DIV, N , ref, ref) \ _(MOD, N , ref, ref) \ _(POW, N , ref, ref) \ _(NEG, N , ref, ref) \ \ _(ABS, N , ref, ref) \ _(ATAN2, N , ref, ref) \ _(LDEXP, N , ref, ref) \ _(MIN, C , ref, ref) \ _(MAX, C , ref, ref) \ _(FPMATH, N , ref, lit) \ \ /* Overflow-checking arithmetic ops. */ \ _(ADDOV, CW, ref, ref) \ _(SUBOV, NW, ref, ref) \ _(MULOV, CW, ref, ref) \ \ /* Memory ops. A = array, H = hash, U = upvalue, F = field, S = stack. */ \ \ /* Memory references. */ \ _(AREF, R , ref, ref) \ _(HREFK, R , ref, ref) \ _(HREF, L , ref, ref) \ _(NEWREF, S , ref, ref) \ _(UREFO, LW, ref, lit) \ _(UREFC, LW, ref, lit) \ _(FREF, R , ref, lit) \ _(STRREF, N , ref, ref) \ _(LREF, L , ___, ___) \ \ /* Loads and Stores. These must be in the same order. */ \ _(ALOAD, L , ref, ___) \ _(HLOAD, L , ref, ___) \ _(ULOAD, L , ref, ___) \ _(FLOAD, L , ref, lit) \ _(XLOAD, L , ref, lit) \ _(SLOAD, L , lit, lit) \ _(VLOAD, L , ref, ___) \ \ _(ASTORE, S , ref, ref) \ _(HSTORE, S , ref, ref) \ _(USTORE, S , ref, ref) \ _(FSTORE, S , ref, ref) \ _(XSTORE, S , ref, ref) \ \ /* Allocations. */ \ _(SNEW, N , ref, ref) /* CSE is ok, not marked as A. */ \ _(XSNEW, A , ref, ref) \ _(TNEW, AW, lit, lit) \ _(TDUP, AW, ref, ___) \ _(CNEW, AW, ref, ref) \ _(CNEWI, NW, ref, ref) /* CSE is ok, not marked as A. */ \ \ /* Buffer operations. */ \ _(BUFHDR, L , ref, lit) \ _(BUFPUT, L , ref, ref) \ _(BUFSTR, A , ref, ref) \ \ /* Barriers. */ \ _(TBAR, S , ref, ___) \ _(OBAR, S , ref, ref) \ _(XBAR, S , ___, ___) \ \ /* Type conversions. */ \ _(CONV, NW, ref, lit) \ _(TOBIT, N , ref, ref) \ _(TOSTR, N , ref, lit) \ _(STRTO, N , ref, ___) \ \ /* Calls. */ \ _(CALLN, N , ref, lit) \ _(CALLA, A , ref, lit) \ _(CALLL, L , ref, lit) \ _(CALLS, S , ref, lit) \ _(CALLXS, S , ref, ref) \ _(CARG, N , ref, ref) \ \ /* End of list. */ /* IR opcodes (max. 256). */ typedef enum { #define IRENUM(name, m, m1, m2) IR_##name, IRDEF(IRENUM) #undef IRENUM IR__MAX } IROp; /* Stored opcode. */ typedef uint8_t IROp1; LJ_STATIC_ASSERT(((int)IR_EQ^1) == (int)IR_NE); LJ_STATIC_ASSERT(((int)IR_LT^1) == (int)IR_GE); LJ_STATIC_ASSERT(((int)IR_LE^1) == (int)IR_GT); LJ_STATIC_ASSERT(((int)IR_LT^3) == (int)IR_GT); LJ_STATIC_ASSERT(((int)IR_LT^4) == (int)IR_ULT); /* Delta between xLOAD and xSTORE. */ #define IRDELTA_L2S ((int)IR_ASTORE - (int)IR_ALOAD) LJ_STATIC_ASSERT((int)IR_HLOAD + IRDELTA_L2S == (int)IR_HSTORE); LJ_STATIC_ASSERT((int)IR_ULOAD + IRDELTA_L2S == (int)IR_USTORE); LJ_STATIC_ASSERT((int)IR_FLOAD + IRDELTA_L2S == (int)IR_FSTORE); LJ_STATIC_ASSERT((int)IR_XLOAD + IRDELTA_L2S == (int)IR_XSTORE); /* -- Named IR literals --------------------------------------------------- */ /* FPMATH sub-functions. ORDER FPM. */ #define IRFPMDEF(_) \ _(FLOOR) _(CEIL) _(TRUNC) /* Must be first and in this order. */ \ _(SQRT) _(EXP) _(EXP2) _(LOG) _(LOG2) _(LOG10) \ _(SIN) _(COS) _(TAN) \ _(OTHER) typedef enum { #define FPMENUM(name) IRFPM_##name, IRFPMDEF(FPMENUM) #undef FPMENUM IRFPM__MAX } IRFPMathOp; /* FLOAD fields. */ #define IRFLDEF(_) \ _(STR_LEN, offsetof(GCstr, len)) \ _(FUNC_ENV, offsetof(GCfunc, l.env)) \ _(FUNC_PC, offsetof(GCfunc, l.pc)) \ _(FUNC_FFID, offsetof(GCfunc, l.ffid)) \ _(THREAD_ENV, offsetof(lua_State, env)) \ _(TAB_META, offsetof(GCtab, metatable)) \ _(TAB_ARRAY, offsetof(GCtab, array)) \ _(TAB_NODE, offsetof(GCtab, node)) \ _(TAB_ASIZE, offsetof(GCtab, asize)) \ _(TAB_HMASK, offsetof(GCtab, hmask)) \ _(TAB_NOMM, offsetof(GCtab, nomm)) \ _(UDATA_META, offsetof(GCudata, metatable)) \ _(UDATA_UDTYPE, offsetof(GCudata, udtype)) \ _(UDATA_FILE, sizeof(GCudata)) \ _(CDATA_CTYPEID, offsetof(GCcdata, ctypeid)) \ _(CDATA_PTR, sizeof(GCcdata)) \ _(CDATA_INT, sizeof(GCcdata)) \ _(CDATA_INT64, sizeof(GCcdata)) \ _(CDATA_INT64_4, sizeof(GCcdata) + 4) typedef enum { #define FLENUM(name, ofs) IRFL_##name, IRFLDEF(FLENUM) #undef FLENUM IRFL__MAX } IRFieldID; /* SLOAD mode bits, stored in op2. */ #define IRSLOAD_PARENT 0x01 /* Coalesce with parent trace. */ #define IRSLOAD_FRAME 0x02 /* Load hiword of frame. */ #define IRSLOAD_TYPECHECK 0x04 /* Needs type check. */ #define IRSLOAD_CONVERT 0x08 /* Number to integer conversion. */ #define IRSLOAD_READONLY 0x10 /* Read-only, omit slot store. */ #define IRSLOAD_INHERIT 0x20 /* Inherited by exits/side traces. */ /* XLOAD mode, stored in op2. */ #define IRXLOAD_READONLY 1 /* Load from read-only data. */ #define IRXLOAD_VOLATILE 2 /* Load from volatile data. */ #define IRXLOAD_UNALIGNED 4 /* Unaligned load. */ /* BUFHDR mode, stored in op2. */ #define IRBUFHDR_RESET 0 /* Reset buffer. */ #define IRBUFHDR_APPEND 1 /* Append to buffer. */ /* CONV mode, stored in op2. */ #define IRCONV_SRCMASK 0x001f /* Source IRType. */ #define IRCONV_DSTMASK 0x03e0 /* Dest. IRType (also in ir->t). */ #define IRCONV_DSH 5 #define IRCONV_NUM_INT ((IRT_NUM<>2)&3)) #define irm_iscomm(m) ((m) & IRM_C) #define irm_kind(m) ((m) & IRM_S) #define IRMODE(name, m, m1, m2) (((IRM##m1)|((IRM##m2)<<2)|(IRM_##m))^IRM_W), LJ_DATA const uint8_t lj_ir_mode[IR__MAX+1]; /* -- IR instruction types ------------------------------------------------ */ /* Map of itypes to non-negative numbers. ORDER LJ_T. ** LJ_TUPVAL/LJ_TTRACE never appear in a TValue. Use these itypes for ** IRT_P32 and IRT_P64, which never escape the IR. ** The various integers are only used in the IR and can only escape to ** a TValue after implicit or explicit conversion. Their types must be ** contiguous and next to IRT_NUM (see the typerange macros below). */ #define IRTDEF(_) \ _(NIL, 4) _(FALSE, 4) _(TRUE, 4) _(LIGHTUD, LJ_64 ? 8 : 4) _(STR, 4) \ _(P32, 4) _(THREAD, 4) _(PROTO, 4) _(FUNC, 4) _(P64, 8) _(CDATA, 4) \ _(TAB, 4) _(UDATA, 4) \ _(FLOAT, 4) _(NUM, 8) _(I8, 1) _(U8, 1) _(I16, 2) _(U16, 2) \ _(INT, 4) _(U32, 4) _(I64, 8) _(U64, 8) \ _(SOFTFP, 4) /* There is room for 9 more types. */ /* IR result type and flags (8 bit). */ typedef enum { #define IRTENUM(name, size) IRT_##name, IRTDEF(IRTENUM) #undef IRTENUM IRT__MAX, /* Native pointer type and the corresponding integer type. */ IRT_PTR = LJ_64 ? IRT_P64 : IRT_P32, IRT_INTP = LJ_64 ? IRT_I64 : IRT_INT, IRT_UINTP = LJ_64 ? IRT_U64 : IRT_U32, /* TODO_GC64: major changes required for all uses of IRT_P32. */ /* Additional flags. */ IRT_MARK = 0x20, /* Marker for misc. purposes. */ IRT_ISPHI = 0x40, /* Instruction is left or right PHI operand. */ IRT_GUARD = 0x80, /* Instruction is a guard. */ /* Masks. */ IRT_TYPE = 0x1f, IRT_T = 0xff } IRType; #define irtype_ispri(irt) ((uint32_t)(irt) <= IRT_TRUE) /* Stored IRType. */ typedef struct IRType1 { uint8_t irt; } IRType1; #define IRT(o, t) ((uint32_t)(((o)<<8) | (t))) #define IRTI(o) (IRT((o), IRT_INT)) #define IRTN(o) (IRT((o), IRT_NUM)) #define IRTG(o, t) (IRT((o), IRT_GUARD|(t))) #define IRTGI(o) (IRT((o), IRT_GUARD|IRT_INT)) #define irt_t(t) ((IRType)(t).irt) #define irt_type(t) ((IRType)((t).irt & IRT_TYPE)) #define irt_sametype(t1, t2) ((((t1).irt ^ (t2).irt) & IRT_TYPE) == 0) #define irt_typerange(t, first, last) \ ((uint32_t)((t).irt & IRT_TYPE) - (uint32_t)(first) <= (uint32_t)(last-first)) #define irt_isnil(t) (irt_type(t) == IRT_NIL) #define irt_ispri(t) ((uint32_t)irt_type(t) <= IRT_TRUE) #define irt_islightud(t) (irt_type(t) == IRT_LIGHTUD) #define irt_isstr(t) (irt_type(t) == IRT_STR) #define irt_istab(t) (irt_type(t) == IRT_TAB) #define irt_iscdata(t) (irt_type(t) == IRT_CDATA) #define irt_isfloat(t) (irt_type(t) == IRT_FLOAT) #define irt_isnum(t) (irt_type(t) == IRT_NUM) #define irt_isint(t) (irt_type(t) == IRT_INT) #define irt_isi8(t) (irt_type(t) == IRT_I8) #define irt_isu8(t) (irt_type(t) == IRT_U8) #define irt_isi16(t) (irt_type(t) == IRT_I16) #define irt_isu16(t) (irt_type(t) == IRT_U16) #define irt_isu32(t) (irt_type(t) == IRT_U32) #define irt_isi64(t) (irt_type(t) == IRT_I64) #define irt_isu64(t) (irt_type(t) == IRT_U64) #define irt_isfp(t) (irt_isnum(t) || irt_isfloat(t)) #define irt_isinteger(t) (irt_typerange((t), IRT_I8, IRT_INT)) #define irt_isgcv(t) (irt_typerange((t), IRT_STR, IRT_UDATA)) #define irt_isaddr(t) (irt_typerange((t), IRT_LIGHTUD, IRT_UDATA)) #define irt_isint64(t) (irt_typerange((t), IRT_I64, IRT_U64)) #if LJ_GC64 #define IRT_IS64 \ ((1u<> irt_type(t)) & 1) #define irt_is64orfp(t) (((IRT_IS64|(1u<>irt_type(t)) & 1) #define irt_size(t) (lj_ir_type_size[irt_t((t))]) LJ_DATA const uint8_t lj_ir_type_size[]; static LJ_AINLINE IRType itype2irt(const TValue *tv) { if (tvisint(tv)) return IRT_INT; else if (tvisnum(tv)) return IRT_NUM; #if LJ_64 && !LJ_GC64 else if (tvislightud(tv)) return IRT_LIGHTUD; #endif else return (IRType)~itype(tv); } static LJ_AINLINE uint32_t irt_toitype_(IRType t) { lua_assert(!LJ_64 || t != IRT_LIGHTUD); if (LJ_DUALNUM && t > IRT_NUM) { return LJ_TISNUM; } else { lua_assert(t <= IRT_NUM); return ~(uint32_t)t; } } #define irt_toitype(t) irt_toitype_(irt_type((t))) #define irt_isguard(t) ((t).irt & IRT_GUARD) #define irt_ismarked(t) ((t).irt & IRT_MARK) #define irt_setmark(t) ((t).irt |= IRT_MARK) #define irt_clearmark(t) ((t).irt &= ~IRT_MARK) #define irt_isphi(t) ((t).irt & IRT_ISPHI) #define irt_setphi(t) ((t).irt |= IRT_ISPHI) #define irt_clearphi(t) ((t).irt &= ~IRT_ISPHI) /* Stored combined IR opcode and type. */ typedef uint16_t IROpT; /* -- IR references ------------------------------------------------------- */ /* IR references. */ typedef uint16_t IRRef1; /* One stored reference. */ typedef uint32_t IRRef2; /* Two stored references. */ typedef uint32_t IRRef; /* Used to pass around references. */ /* Fixed references. */ enum { REF_BIAS = 0x8000, REF_TRUE = REF_BIAS-3, REF_FALSE = REF_BIAS-2, REF_NIL = REF_BIAS-1, /* \--- Constants grow downwards. */ REF_BASE = REF_BIAS, /* /--- IR grows upwards. */ REF_FIRST = REF_BIAS+1, REF_DROP = 0xffff }; /* Note: IRMlit operands must be < REF_BIAS, too! ** This allows for fast and uniform manipulation of all operands ** without looking up the operand mode in lj_ir_mode: ** - CSE calculates the maximum reference of two operands. ** This must work with mixed reference/literal operands, too. ** - DCE marking only checks for operand >= REF_BIAS. ** - LOOP needs to substitute reference operands. ** Constant references and literals must not be modified. */ #define IRREF2(lo, hi) ((IRRef2)(lo) | ((IRRef2)(hi) << 16)) #define irref_isk(ref) ((ref) < REF_BIAS) /* Tagged IR references (32 bit). ** ** +-------+-------+---------------+ ** | irt | flags | ref | ** +-------+-------+---------------+ ** ** The tag holds a copy of the IRType and speeds up IR type checks. */ typedef uint32_t TRef; #define TREF_REFMASK 0x0000ffff #define TREF_FRAME 0x00010000 #define TREF_CONT 0x00020000 #define TREF(ref, t) ((TRef)((ref) + ((t)<<24))) #define tref_ref(tr) ((IRRef1)(tr)) #define tref_t(tr) ((IRType)((tr)>>24)) #define tref_type(tr) ((IRType)(((tr)>>24) & IRT_TYPE)) #define tref_typerange(tr, first, last) \ ((((tr)>>24) & IRT_TYPE) - (TRef)(first) <= (TRef)(last-first)) #define tref_istype(tr, t) (((tr) & (IRT_TYPE<<24)) == ((t)<<24)) #define tref_isnil(tr) (tref_istype((tr), IRT_NIL)) #define tref_isfalse(tr) (tref_istype((tr), IRT_FALSE)) #define tref_istrue(tr) (tref_istype((tr), IRT_TRUE)) #define tref_islightud(tr) (tref_istype((tr), IRT_LIGHTUD)) #define tref_isstr(tr) (tref_istype((tr), IRT_STR)) #define tref_isfunc(tr) (tref_istype((tr), IRT_FUNC)) #define tref_iscdata(tr) (tref_istype((tr), IRT_CDATA)) #define tref_istab(tr) (tref_istype((tr), IRT_TAB)) #define tref_isudata(tr) (tref_istype((tr), IRT_UDATA)) #define tref_isnum(tr) (tref_istype((tr), IRT_NUM)) #define tref_isint(tr) (tref_istype((tr), IRT_INT)) #define tref_isbool(tr) (tref_typerange((tr), IRT_FALSE, IRT_TRUE)) #define tref_ispri(tr) (tref_typerange((tr), IRT_NIL, IRT_TRUE)) #define tref_istruecond(tr) (!tref_typerange((tr), IRT_NIL, IRT_FALSE)) #define tref_isinteger(tr) (tref_typerange((tr), IRT_I8, IRT_INT)) #define tref_isnumber(tr) (tref_typerange((tr), IRT_NUM, IRT_INT)) #define tref_isnumber_str(tr) (tref_isnumber((tr)) || tref_isstr((tr))) #define tref_isgcv(tr) (tref_typerange((tr), IRT_STR, IRT_UDATA)) #define tref_isk(tr) (irref_isk(tref_ref((tr)))) #define tref_isk2(tr1, tr2) (irref_isk(tref_ref((tr1) | (tr2)))) #define TREF_PRI(t) (TREF(REF_NIL-(t), (t))) #define TREF_NIL (TREF_PRI(IRT_NIL)) #define TREF_FALSE (TREF_PRI(IRT_FALSE)) #define TREF_TRUE (TREF_PRI(IRT_TRUE)) /* -- IR format ----------------------------------------------------------- */ /* IR instruction format (64 bit). ** ** 16 16 8 8 8 8 ** +-------+-------+---+---+---+---+ ** | op1 | op2 | t | o | r | s | ** +-------+-------+---+---+---+---+ ** | op12/i/gco | ot | prev | (alternative fields in union) ** +---------------+-------+-------+ ** 32 16 16 ** ** prev is only valid prior to register allocation and then reused for r + s. */ typedef union IRIns { struct { LJ_ENDIAN_LOHI( IRRef1 op1; /* IR operand 1. */ , IRRef1 op2; /* IR operand 2. */ ) IROpT ot; /* IR opcode and type (overlaps t and o). */ IRRef1 prev; /* Previous ins in same chain (overlaps r and s). */ }; struct { IRRef2 op12; /* IR operand 1 and 2 (overlaps op1 and op2). */ LJ_ENDIAN_LOHI( IRType1 t; /* IR type. */ , IROp1 o; /* IR opcode. */ ) LJ_ENDIAN_LOHI( uint8_t r; /* Register allocation (overlaps prev). */ , uint8_t s; /* Spill slot allocation (overlaps prev). */ ) }; int32_t i; /* 32 bit signed integer literal (overlaps op12). */ GCRef gcr; /* GCobj constant (overlaps op12). */ MRef ptr; /* Pointer constant (overlaps op12). */ } IRIns; /* TODO_GC64: major changes required. */ #define ir_kgc(ir) check_exp((ir)->o == IR_KGC, gcref((ir)->gcr)) #define ir_kstr(ir) (gco2str(ir_kgc((ir)))) #define ir_ktab(ir) (gco2tab(ir_kgc((ir)))) #define ir_kfunc(ir) (gco2func(ir_kgc((ir)))) #define ir_kcdata(ir) (gco2cd(ir_kgc((ir)))) #define ir_knum(ir) check_exp((ir)->o == IR_KNUM, mref((ir)->ptr, cTValue)) #define ir_kint64(ir) check_exp((ir)->o == IR_KINT64, mref((ir)->ptr,cTValue)) #define ir_k64(ir) \ check_exp((ir)->o == IR_KNUM || (ir)->o == IR_KINT64, mref((ir)->ptr,cTValue)) #define ir_kptr(ir) \ check_exp((ir)->o == IR_KPTR || (ir)->o == IR_KKPTR, mref((ir)->ptr, void)) /* A store or any other op with a non-weak guard has a side-effect. */ static LJ_AINLINE int ir_sideeff(IRIns *ir) { return (((ir->t.irt | ~IRT_GUARD) & lj_ir_mode[ir->o]) >= IRM_S); } LJ_STATIC_ASSERT((int)IRT_GUARD == (int)IRM_W); #endif