/* * Copyright © 2021 Google, Inc. * * This is part of HarfBuzz, a text shaping library. * * Permission is hereby granted, without written agreement and without * license or royalty fees, to use, copy, modify, and distribute this * software and its documentation for any purpose, provided that the * above copyright notice and the following two paragraphs appear in * all copies of this software. * * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * */ #ifndef HB_OT_VAR_COMMON_HH #define HB_OT_VAR_COMMON_HH #include "hb-ot-layout-common.hh" #include "hb-priority-queue.hh" #include "hb-subset-instancer-iup.hh" namespace OT { template struct DeltaSetIndexMapFormat01 { friend struct DeltaSetIndexMap; unsigned get_size () const { return min_size + mapCount * get_width (); } private: DeltaSetIndexMapFormat01* copy (hb_serialize_context_t *c) const { TRACE_SERIALIZE (this); return_trace (c->embed (this)); } template bool serialize (hb_serialize_context_t *c, const T &plan) { unsigned int width = plan.get_width (); unsigned int inner_bit_count = plan.get_inner_bit_count (); const hb_array_t output_map = plan.get_output_map (); TRACE_SERIALIZE (this); if (unlikely (output_map.length && ((((inner_bit_count-1)&~0xF)!=0) || (((width-1)&~0x3)!=0)))) return_trace (false); if (unlikely (!c->extend_min (this))) return_trace (false); entryFormat = ((width-1)<<4)|(inner_bit_count-1); mapCount = output_map.length; HBUINT8 *p = c->allocate_size (width * output_map.length); if (unlikely (!p)) return_trace (false); for (unsigned int i = 0; i < output_map.length; i++) { unsigned int v = output_map.arrayZ[i]; if (v) { unsigned int outer = v >> 16; unsigned int inner = v & 0xFFFF; unsigned int u = (outer << inner_bit_count) | inner; for (unsigned int w = width; w > 0;) { p[--w] = u; u >>= 8; } } p += width; } return_trace (true); } uint32_t map (unsigned int v) const /* Returns 16.16 outer.inner. */ { /* If count is zero, pass value unchanged. This takes * care of direct mapping for advance map. */ if (!mapCount) return v; if (v >= mapCount) v = mapCount - 1; unsigned int u = 0; { /* Fetch it. */ unsigned int w = get_width (); const HBUINT8 *p = mapDataZ.arrayZ + w * v; for (; w; w--) u = (u << 8) + *p++; } { /* Repack it. */ unsigned int n = get_inner_bit_count (); unsigned int outer = u >> n; unsigned int inner = u & ((1 << n) - 1); u = (outer<<16) | inner; } return u; } unsigned get_map_count () const { return mapCount; } unsigned get_width () const { return ((entryFormat >> 4) & 3) + 1; } unsigned get_inner_bit_count () const { return (entryFormat & 0xF) + 1; } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this) && hb_barrier () && c->check_range (mapDataZ.arrayZ, mapCount, get_width ())); } protected: HBUINT8 format; /* Format identifier--format = 0 */ HBUINT8 entryFormat; /* A packed field that describes the compressed * representation of delta-set indices. */ MapCountT mapCount; /* The number of mapping entries. */ UnsizedArrayOf mapDataZ; /* The delta-set index mapping data. */ public: DEFINE_SIZE_ARRAY (2+MapCountT::static_size, mapDataZ); }; struct DeltaSetIndexMap { template bool serialize (hb_serialize_context_t *c, const T &plan) { TRACE_SERIALIZE (this); unsigned length = plan.get_output_map ().length; u.format = length <= 0xFFFF ? 0 : 1; switch (u.format) { case 0: return_trace (u.format0.serialize (c, plan)); case 1: return_trace (u.format1.serialize (c, plan)); default:return_trace (false); } } uint32_t map (unsigned v) const { switch (u.format) { case 0: return (u.format0.map (v)); case 1: return (u.format1.map (v)); default:return v; } } unsigned get_map_count () const { switch (u.format) { case 0: return u.format0.get_map_count (); case 1: return u.format1.get_map_count (); default:return 0; } } unsigned get_width () const { switch (u.format) { case 0: return u.format0.get_width (); case 1: return u.format1.get_width (); default:return 0; } } unsigned get_inner_bit_count () const { switch (u.format) { case 0: return u.format0.get_inner_bit_count (); case 1: return u.format1.get_inner_bit_count (); default:return 0; } } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); if (!u.format.sanitize (c)) return_trace (false); hb_barrier (); switch (u.format) { case 0: return_trace (u.format0.sanitize (c)); case 1: return_trace (u.format1.sanitize (c)); default:return_trace (true); } } DeltaSetIndexMap* copy (hb_serialize_context_t *c) const { TRACE_SERIALIZE (this); switch (u.format) { case 0: return_trace (reinterpret_cast (u.format0.copy (c))); case 1: return_trace (reinterpret_cast (u.format1.copy (c))); default:return_trace (nullptr); } } protected: union { HBUINT8 format; /* Format identifier */ DeltaSetIndexMapFormat01 format0; DeltaSetIndexMapFormat01 format1; } u; public: DEFINE_SIZE_UNION (1, format); }; struct ItemVarStoreInstancer { ItemVarStoreInstancer (const ItemVariationStore *varStore, const DeltaSetIndexMap *varIdxMap, hb_array_t coords) : varStore (varStore), varIdxMap (varIdxMap), coords (coords) {} operator bool () const { return varStore && bool (coords); } /* according to the spec, if colr table has varStore but does not have * varIdxMap, then an implicit identity mapping is used */ float operator() (uint32_t varIdx, unsigned short offset = 0) const { return coords ? varStore->get_delta (varIdxMap ? varIdxMap->map (VarIdx::add (varIdx, offset)) : varIdx + offset, coords) : 0; } const ItemVariationStore *varStore; const DeltaSetIndexMap *varIdxMap; hb_array_t coords; }; /* https://docs.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#tuplevariationheader */ struct TupleVariationHeader { friend struct tuple_delta_t; unsigned get_size (unsigned axis_count) const { return min_size + get_all_tuples (axis_count).get_size (); } unsigned get_data_size () const { return varDataSize; } const TupleVariationHeader &get_next (unsigned axis_count) const { return StructAtOffset (this, get_size (axis_count)); } bool unpack_axis_tuples (unsigned axis_count, const hb_array_t shared_tuples, const hb_map_t *axes_old_index_tag_map, hb_hashmap_t& axis_tuples /* OUT */) const { const F2DOT14 *peak_tuple = nullptr; if (has_peak ()) peak_tuple = get_peak_tuple (axis_count).arrayZ; else { unsigned int index = get_index (); if (unlikely ((index + 1) * axis_count > shared_tuples.length)) return false; peak_tuple = shared_tuples.sub_array (axis_count * index, axis_count).arrayZ; } const F2DOT14 *start_tuple = nullptr; const F2DOT14 *end_tuple = nullptr; bool has_interm = has_intermediate (); if (has_interm) { start_tuple = get_start_tuple (axis_count).arrayZ; end_tuple = get_end_tuple (axis_count).arrayZ; } for (unsigned i = 0; i < axis_count; i++) { float peak = peak_tuple[i].to_float (); if (peak == 0.f) continue; hb_tag_t *axis_tag; if (!axes_old_index_tag_map->has (i, &axis_tag)) return false; float start, end; if (has_interm) { start = start_tuple[i].to_float (); end = end_tuple[i].to_float (); } else { start = hb_min (peak, 0.f); end = hb_max (peak, 0.f); } axis_tuples.set (*axis_tag, Triple ((double) start, (double) peak, (double) end)); } return true; } double calculate_scalar (hb_array_t coords, unsigned int coord_count, const hb_array_t shared_tuples, const hb_vector_t> *shared_tuple_active_idx = nullptr) const { const F2DOT14 *peak_tuple; unsigned start_idx = 0; unsigned end_idx = coord_count; unsigned step = 1; if (has_peak ()) peak_tuple = get_peak_tuple (coord_count).arrayZ; else { unsigned int index = get_index (); if (unlikely ((index + 1) * coord_count > shared_tuples.length)) return 0.0; peak_tuple = shared_tuples.sub_array (coord_count * index, coord_count).arrayZ; if (shared_tuple_active_idx) { if (unlikely (index >= shared_tuple_active_idx->length)) return 0.0; auto _ = (*shared_tuple_active_idx).arrayZ[index]; if (_.second != -1) { start_idx = _.first; end_idx = _.second + 1; step = _.second - _.first; } else if (_.first != -1) { start_idx = _.first; end_idx = start_idx + 1; } } } const F2DOT14 *start_tuple = nullptr; const F2DOT14 *end_tuple = nullptr; bool has_interm = has_intermediate (); if (has_interm) { start_tuple = get_start_tuple (coord_count).arrayZ; end_tuple = get_end_tuple (coord_count).arrayZ; } double scalar = 1.0; for (unsigned int i = start_idx; i < end_idx; i += step) { int peak = peak_tuple[i].to_int (); if (!peak) continue; int v = coords[i]; if (v == peak) continue; if (has_interm) { int start = start_tuple[i].to_int (); int end = end_tuple[i].to_int (); if (unlikely (start > peak || peak > end || (start < 0 && end > 0 && peak))) continue; if (v < start || v > end) return 0.0; if (v < peak) { if (peak != start) scalar *= (double) (v - start) / (peak - start); } else { if (peak != end) scalar *= (double) (end - v) / (end - peak); } } else if (!v || v < hb_min (0, peak) || v > hb_max (0, peak)) return 0.0; else scalar *= (double) v / peak; } return scalar; } bool has_peak () const { return tupleIndex & TuppleIndex::EmbeddedPeakTuple; } bool has_intermediate () const { return tupleIndex & TuppleIndex::IntermediateRegion; } bool has_private_points () const { return tupleIndex & TuppleIndex::PrivatePointNumbers; } unsigned get_index () const { return tupleIndex & TuppleIndex::TupleIndexMask; } protected: struct TuppleIndex : HBUINT16 { enum Flags { EmbeddedPeakTuple = 0x8000u, IntermediateRegion = 0x4000u, PrivatePointNumbers = 0x2000u, TupleIndexMask = 0x0FFFu }; TuppleIndex& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; } DEFINE_SIZE_STATIC (2); }; hb_array_t get_all_tuples (unsigned axis_count) const { return StructAfter> (tupleIndex).as_array ((has_peak () + has_intermediate () * 2) * axis_count); } hb_array_t get_peak_tuple (unsigned axis_count) const { return get_all_tuples (axis_count).sub_array (0, axis_count); } hb_array_t get_start_tuple (unsigned axis_count) const { return get_all_tuples (axis_count).sub_array (has_peak () * axis_count, axis_count); } hb_array_t get_end_tuple (unsigned axis_count) const { return get_all_tuples (axis_count).sub_array (has_peak () * axis_count + axis_count, axis_count); } HBUINT16 varDataSize; /* The size in bytes of the serialized * data for this tuple variation table. */ TuppleIndex tupleIndex; /* A packed field. The high 4 bits are flags (see below). The low 12 bits are an index into a shared tuple records array. */ /* UnsizedArrayOf peakTuple - optional */ /* Peak tuple record for this tuple variation table — optional, * determined by flags in the tupleIndex value. * * Note that this must always be included in the 'cvar' table. */ /* UnsizedArrayOf intermediateStartTuple - optional */ /* Intermediate start tuple record for this tuple variation table — optional, determined by flags in the tupleIndex value. */ /* UnsizedArrayOf intermediateEndTuple - optional */ /* Intermediate end tuple record for this tuple variation table — optional, * determined by flags in the tupleIndex value. */ public: DEFINE_SIZE_MIN (4); }; enum packed_delta_flag_t { DELTAS_ARE_ZERO = 0x80, DELTAS_ARE_WORDS = 0x40, DELTA_RUN_COUNT_MASK = 0x3F }; struct tuple_delta_t { static constexpr bool realloc_move = true; // Watch out when adding new members! public: hb_hashmap_t axis_tuples; /* indices_length = point_count, indice[i] = 1 means point i is referenced */ hb_vector_t indices; hb_vector_t deltas_x; /* empty for cvar tuples */ hb_vector_t deltas_y; /* compiled data: header and deltas * compiled point data is saved in a hashmap within tuple_variations_t cause * some point sets might be reused by different tuple variations */ hb_vector_t compiled_tuple_header; hb_vector_t compiled_deltas; /* compiled peak coords, empty for non-gvar tuples */ hb_vector_t compiled_peak_coords; tuple_delta_t () = default; tuple_delta_t (const tuple_delta_t& o) = default; friend void swap (tuple_delta_t& a, tuple_delta_t& b) noexcept { hb_swap (a.axis_tuples, b.axis_tuples); hb_swap (a.indices, b.indices); hb_swap (a.deltas_x, b.deltas_x); hb_swap (a.deltas_y, b.deltas_y); hb_swap (a.compiled_tuple_header, b.compiled_tuple_header); hb_swap (a.compiled_deltas, b.compiled_deltas); hb_swap (a.compiled_peak_coords, b.compiled_peak_coords); } tuple_delta_t (tuple_delta_t&& o) noexcept : tuple_delta_t () { hb_swap (*this, o); } tuple_delta_t& operator = (tuple_delta_t&& o) noexcept { hb_swap (*this, o); return *this; } void remove_axis (hb_tag_t axis_tag) { axis_tuples.del (axis_tag); } bool set_tent (hb_tag_t axis_tag, Triple tent) { return axis_tuples.set (axis_tag, tent); } tuple_delta_t& operator += (const tuple_delta_t& o) { unsigned num = indices.length; for (unsigned i = 0; i < num; i++) { if (indices.arrayZ[i]) { if (o.indices.arrayZ[i]) { deltas_x[i] += o.deltas_x[i]; if (deltas_y && o.deltas_y) deltas_y[i] += o.deltas_y[i]; } } else { if (!o.indices.arrayZ[i]) continue; indices.arrayZ[i] = true; deltas_x[i] = o.deltas_x[i]; if (deltas_y && o.deltas_y) deltas_y[i] = o.deltas_y[i]; } } return *this; } tuple_delta_t& operator *= (double scalar) { if (scalar == 1.0) return *this; unsigned num = indices.length; if (deltas_y) for (unsigned i = 0; i < num; i++) { if (!indices.arrayZ[i]) continue; deltas_x[i] *= scalar; deltas_y[i] *= scalar; } else for (unsigned i = 0; i < num; i++) { if (!indices.arrayZ[i]) continue; deltas_x[i] *= scalar; } return *this; } hb_vector_t change_tuple_var_axis_limit (hb_tag_t axis_tag, Triple axis_limit, TripleDistances axis_triple_distances) const { hb_vector_t out; Triple *tent; if (!axis_tuples.has (axis_tag, &tent)) { out.push (*this); return out; } if ((tent->minimum < 0.0 && tent->maximum > 0.0) || !(tent->minimum <= tent->middle && tent->middle <= tent->maximum)) return out; if (tent->middle == 0.0) { out.push (*this); return out; } rebase_tent_result_t solutions = rebase_tent (*tent, axis_limit, axis_triple_distances); for (auto &t : solutions) { tuple_delta_t new_var = *this; if (t.second == Triple ()) new_var.remove_axis (axis_tag); else new_var.set_tent (axis_tag, t.second); new_var *= t.first; out.push (std::move (new_var)); } return out; } bool compile_peak_coords (const hb_map_t& axes_index_map, const hb_map_t& axes_old_index_tag_map) { unsigned axis_count = axes_index_map.get_population (); if (unlikely (!compiled_peak_coords.alloc (axis_count * F2DOT14::static_size))) return false; unsigned orig_axis_count = axes_old_index_tag_map.get_population (); for (unsigned i = 0; i < orig_axis_count; i++) { if (!axes_index_map.has (i)) continue; hb_tag_t axis_tag = axes_old_index_tag_map.get (i); Triple *coords; F2DOT14 peak_coord; if (axis_tuples.has (axis_tag, &coords)) peak_coord.set_float (coords->middle); else peak_coord.set_int (0); /* push F2DOT14 value into char vector */ int16_t val = peak_coord.to_int (); compiled_peak_coords.push (static_cast (val >> 8)); compiled_peak_coords.push (static_cast (val & 0xFF)); } return !compiled_peak_coords.in_error (); } /* deltas should be compiled already before we compile tuple * variation header cause we need to fill in the size of the * serialized data for this tuple variation */ bool compile_tuple_var_header (const hb_map_t& axes_index_map, unsigned points_data_length, const hb_map_t& axes_old_index_tag_map, const hb_hashmap_t*, unsigned>* shared_tuples_idx_map) { /* compiled_deltas could be empty after iup delta optimization, we can skip * compiling this tuple and return true */ if (!compiled_deltas) return true; unsigned cur_axis_count = axes_index_map.get_population (); /* allocate enough memory: 1 peak + 2 intermediate coords + fixed header size */ unsigned alloc_len = 3 * cur_axis_count * (F2DOT14::static_size) + 4; if (unlikely (!compiled_tuple_header.resize (alloc_len))) return false; unsigned flag = 0; /* skip the first 4 header bytes: variationDataSize+tupleIndex */ F2DOT14* p = reinterpret_cast (compiled_tuple_header.begin () + 4); F2DOT14* end = reinterpret_cast (compiled_tuple_header.end ()); hb_array_t coords (p, end - p); /* encode peak coords */ unsigned peak_count = 0; unsigned *shared_tuple_idx; if (shared_tuples_idx_map && shared_tuples_idx_map->has (&compiled_peak_coords, &shared_tuple_idx)) { flag = *shared_tuple_idx; } else { peak_count = encode_peak_coords(coords, flag, axes_index_map, axes_old_index_tag_map); if (!peak_count) return false; } /* encode interim coords, it's optional so returned num could be 0 */ unsigned interim_count = encode_interm_coords (coords.sub_array (peak_count), flag, axes_index_map, axes_old_index_tag_map); /* pointdata length = 0 implies "use shared points" */ if (points_data_length) flag |= TupleVariationHeader::TuppleIndex::PrivatePointNumbers; unsigned serialized_data_size = points_data_length + compiled_deltas.length; TupleVariationHeader *o = reinterpret_cast (compiled_tuple_header.begin ()); o->varDataSize = serialized_data_size; o->tupleIndex = flag; unsigned total_header_len = 4 + (peak_count + interim_count) * (F2DOT14::static_size); return compiled_tuple_header.resize (total_header_len); } unsigned encode_peak_coords (hb_array_t peak_coords, unsigned& flag, const hb_map_t& axes_index_map, const hb_map_t& axes_old_index_tag_map) const { unsigned orig_axis_count = axes_old_index_tag_map.get_population (); auto it = peak_coords.iter (); unsigned count = 0; for (unsigned i = 0; i < orig_axis_count; i++) { if (!axes_index_map.has (i)) /* axis pinned */ continue; hb_tag_t axis_tag = axes_old_index_tag_map.get (i); Triple *coords; if (!axis_tuples.has (axis_tag, &coords)) (*it).set_int (0); else (*it).set_float (coords->middle); it++; count++; } flag |= TupleVariationHeader::TuppleIndex::EmbeddedPeakTuple; return count; } /* if no need to encode intermediate coords, then just return p */ unsigned encode_interm_coords (hb_array_t coords, unsigned& flag, const hb_map_t& axes_index_map, const hb_map_t& axes_old_index_tag_map) const { unsigned orig_axis_count = axes_old_index_tag_map.get_population (); unsigned cur_axis_count = axes_index_map.get_population (); auto start_coords_iter = coords.sub_array (0, cur_axis_count).iter (); auto end_coords_iter = coords.sub_array (cur_axis_count).iter (); bool encode_needed = false; unsigned count = 0; for (unsigned i = 0; i < orig_axis_count; i++) { if (!axes_index_map.has (i)) /* axis pinned */ continue; hb_tag_t axis_tag = axes_old_index_tag_map.get (i); Triple *coords; float min_val = 0.f, val = 0.f, max_val = 0.f; if (axis_tuples.has (axis_tag, &coords)) { min_val = coords->minimum; val = coords->middle; max_val = coords->maximum; } (*start_coords_iter).set_float (min_val); (*end_coords_iter).set_float (max_val); start_coords_iter++; end_coords_iter++; count += 2; if (min_val != hb_min (val, 0.f) || max_val != hb_max (val, 0.f)) encode_needed = true; } if (encode_needed) { flag |= TupleVariationHeader::TuppleIndex::IntermediateRegion; return count; } return 0; } bool compile_deltas () { return compile_deltas (indices, deltas_x, deltas_y, compiled_deltas); } bool compile_deltas (const hb_vector_t &point_indices, const hb_vector_t &x_deltas, const hb_vector_t &y_deltas, hb_vector_t &compiled_deltas /* OUT */) { hb_vector_t rounded_deltas; if (unlikely (!rounded_deltas.alloc (point_indices.length))) return false; for (unsigned i = 0; i < point_indices.length; i++) { if (!point_indices[i]) continue; int rounded_delta = (int) roundf (x_deltas.arrayZ[i]); rounded_deltas.push (rounded_delta); } if (!rounded_deltas) return true; /* allocate enough memories 3 * num_deltas */ unsigned alloc_len = 3 * rounded_deltas.length; if (y_deltas) alloc_len *= 2; if (unlikely (!compiled_deltas.resize (alloc_len))) return false; unsigned i = 0; unsigned encoded_len = encode_delta_run (i, compiled_deltas.as_array (), rounded_deltas); if (y_deltas) { /* reuse the rounded_deltas vector, check that y_deltas have the same num of deltas as x_deltas */ unsigned j = 0; for (unsigned idx = 0; idx < point_indices.length; idx++) { if (!point_indices[idx]) continue; int rounded_delta = (int) roundf (y_deltas.arrayZ[idx]); if (j >= rounded_deltas.length) return false; rounded_deltas[j++] = rounded_delta; } if (j != rounded_deltas.length) return false; /* reset i because we reuse rounded_deltas for y_deltas */ i = 0; encoded_len += encode_delta_run (i, compiled_deltas.as_array ().sub_array (encoded_len), rounded_deltas); } return compiled_deltas.resize (encoded_len); } unsigned encode_delta_run (unsigned& i, hb_array_t encoded_bytes, const hb_vector_t& deltas) const { unsigned num_deltas = deltas.length; unsigned encoded_len = 0; while (i < num_deltas) { int val = deltas.arrayZ[i]; if (val == 0) encoded_len += encode_delta_run_as_zeroes (i, encoded_bytes.sub_array (encoded_len), deltas); else if (val >= -128 && val <= 127) encoded_len += encode_delta_run_as_bytes (i, encoded_bytes.sub_array (encoded_len), deltas); else encoded_len += encode_delta_run_as_words (i, encoded_bytes.sub_array (encoded_len), deltas); } return encoded_len; } unsigned encode_delta_run_as_zeroes (unsigned& i, hb_array_t encoded_bytes, const hb_vector_t& deltas) const { unsigned num_deltas = deltas.length; unsigned run_length = 0; auto it = encoded_bytes.iter (); unsigned encoded_len = 0; while (i < num_deltas && deltas.arrayZ[i] == 0) { i++; run_length++; } while (run_length >= 64) { *it++ = char (DELTAS_ARE_ZERO | 63); run_length -= 64; encoded_len++; } if (run_length) { *it++ = char (DELTAS_ARE_ZERO | (run_length - 1)); encoded_len++; } return encoded_len; } unsigned encode_delta_run_as_bytes (unsigned &i, hb_array_t encoded_bytes, const hb_vector_t& deltas) const { unsigned start = i; unsigned num_deltas = deltas.length; while (i < num_deltas) { int val = deltas.arrayZ[i]; if (val > 127 || val < -128) break; /* from fonttools: if there're 2 or more zeros in a sequence, * it is better to start a new run to save bytes. */ if (val == 0 && i + 1 < num_deltas && deltas.arrayZ[i+1] == 0) break; i++; } unsigned run_length = i - start; unsigned encoded_len = 0; auto it = encoded_bytes.iter (); while (run_length >= 64) { *it++ = 63; encoded_len++; for (unsigned j = 0; j < 64; j++) { *it++ = static_cast (deltas.arrayZ[start + j]); encoded_len++; } start += 64; run_length -= 64; } if (run_length) { *it++ = run_length - 1; encoded_len++; while (start < i) { *it++ = static_cast (deltas.arrayZ[start++]); encoded_len++; } } return encoded_len; } unsigned encode_delta_run_as_words (unsigned &i, hb_array_t encoded_bytes, const hb_vector_t& deltas) const { unsigned start = i; unsigned num_deltas = deltas.length; while (i < num_deltas) { int val = deltas.arrayZ[i]; /* start a new run for a single zero value*/ if (val == 0) break; /* from fonttools: continue word-encoded run if there's only one * single value in the range [-128, 127] because it is more compact. * Only start a new run when there're 2 continuous such values. */ if (val >= -128 && val <= 127 && i + 1 < num_deltas && deltas.arrayZ[i+1] >= -128 && deltas.arrayZ[i+1] <= 127) break; i++; } unsigned run_length = i - start; auto it = encoded_bytes.iter (); unsigned encoded_len = 0; while (run_length >= 64) { *it++ = (DELTAS_ARE_WORDS | 63); encoded_len++; for (unsigned j = 0; j < 64; j++) { int16_t delta_val = deltas.arrayZ[start + j]; *it++ = static_cast (delta_val >> 8); *it++ = static_cast (delta_val & 0xFF); encoded_len += 2; } start += 64; run_length -= 64; } if (run_length) { *it++ = (DELTAS_ARE_WORDS | (run_length - 1)); encoded_len++; while (start < i) { int16_t delta_val = deltas.arrayZ[start++]; *it++ = static_cast (delta_val >> 8); *it++ = static_cast (delta_val & 0xFF); encoded_len += 2; } } return encoded_len; } bool calc_inferred_deltas (const contour_point_vector_t& orig_points) { unsigned point_count = orig_points.length; if (point_count != indices.length) return false; unsigned ref_count = 0; hb_vector_t end_points; for (unsigned i = 0; i < point_count; i++) { if (indices.arrayZ[i]) ref_count++; if (orig_points.arrayZ[i].is_end_point) end_points.push (i); } /* all points are referenced, nothing to do */ if (ref_count == point_count) return true; if (unlikely (end_points.in_error ())) return false; hb_set_t inferred_idxes; unsigned start_point = 0; for (unsigned end_point : end_points) { /* Check the number of unreferenced points in a contour. If no unref points or no ref points, nothing to do. */ unsigned unref_count = 0; for (unsigned i = start_point; i < end_point + 1; i++) unref_count += indices.arrayZ[i]; unref_count = (end_point - start_point + 1) - unref_count; unsigned j = start_point; if (unref_count == 0 || unref_count > end_point - start_point) goto no_more_gaps; for (;;) { /* Locate the next gap of unreferenced points between two referenced points prev and next. * Note that a gap may wrap around at left (start_point) and/or at right (end_point). */ unsigned int prev, next, i; for (;;) { i = j; j = next_index (i, start_point, end_point); if (indices.arrayZ[i] && !indices.arrayZ[j]) break; } prev = j = i; for (;;) { i = j; j = next_index (i, start_point, end_point); if (!indices.arrayZ[i] && indices.arrayZ[j]) break; } next = j; /* Infer deltas for all unref points in the gap between prev and next */ i = prev; for (;;) { i = next_index (i, start_point, end_point); if (i == next) break; deltas_x.arrayZ[i] = infer_delta ((double) orig_points.arrayZ[i].x, (double) orig_points.arrayZ[prev].x, (double) orig_points.arrayZ[next].x, deltas_x.arrayZ[prev], deltas_x.arrayZ[next]); deltas_y.arrayZ[i] = infer_delta ((double) orig_points.arrayZ[i].y, (double) orig_points.arrayZ[prev].y, (double) orig_points.arrayZ[next].y, deltas_y.arrayZ[prev], deltas_y.arrayZ[next]); inferred_idxes.add (i); if (--unref_count == 0) goto no_more_gaps; } } no_more_gaps: start_point = end_point + 1; } for (unsigned i = 0; i < point_count; i++) { /* if points are not referenced and deltas are not inferred, set to 0. * reference all points for gvar */ if ( !indices[i]) { if (!inferred_idxes.has (i)) { deltas_x.arrayZ[i] = 0.0; deltas_y.arrayZ[i] = 0.0; } indices[i] = true; } } return true; } bool optimize (const contour_point_vector_t& contour_points, bool is_composite, double tolerance = 0.5 + 1e-10) { unsigned count = contour_points.length; if (deltas_x.length != count || deltas_y.length != count) return false; hb_vector_t opt_indices; hb_vector_t rounded_x_deltas, rounded_y_deltas; if (unlikely (!rounded_x_deltas.alloc (count) || !rounded_y_deltas.alloc (count))) return false; for (unsigned i = 0; i < count; i++) { int rounded_x_delta = (int) roundf (deltas_x.arrayZ[i]); int rounded_y_delta = (int) roundf (deltas_y.arrayZ[i]); rounded_x_deltas.push (rounded_x_delta); rounded_y_deltas.push (rounded_y_delta); } if (!iup_delta_optimize (contour_points, rounded_x_deltas, rounded_y_deltas, opt_indices, tolerance)) return false; unsigned ref_count = 0; for (bool ref_flag : opt_indices) ref_count += ref_flag; if (ref_count == count) return true; hb_vector_t opt_deltas_x, opt_deltas_y; bool is_comp_glyph_wo_deltas = (is_composite && ref_count == 0); if (is_comp_glyph_wo_deltas) { if (unlikely (!opt_deltas_x.resize (count) || !opt_deltas_y.resize (count))) return false; opt_indices.arrayZ[0] = true; for (unsigned i = 1; i < count; i++) opt_indices.arrayZ[i] = false; } hb_vector_t opt_point_data; if (!compile_point_set (opt_indices, opt_point_data)) return false; hb_vector_t opt_deltas_data; if (!compile_deltas (opt_indices, is_comp_glyph_wo_deltas ? opt_deltas_x : deltas_x, is_comp_glyph_wo_deltas ? opt_deltas_y : deltas_y, opt_deltas_data)) return false; hb_vector_t point_data; if (!compile_point_set (indices, point_data)) return false; hb_vector_t deltas_data; if (!compile_deltas (indices, deltas_x, deltas_y, deltas_data)) return false; if (opt_point_data.length + opt_deltas_data.length < point_data.length + deltas_data.length) { indices.fini (); indices = std::move (opt_indices); if (is_comp_glyph_wo_deltas) { deltas_x.fini (); deltas_x = std::move (opt_deltas_x); deltas_y.fini (); deltas_y = std::move (opt_deltas_y); } } return !indices.in_error () && !deltas_x.in_error () && !deltas_y.in_error (); } static bool compile_point_set (const hb_vector_t &point_indices, hb_vector_t& compiled_points /* OUT */) { unsigned num_points = 0; for (bool i : point_indices) if (i) num_points++; /* when iup optimization is enabled, num of referenced points could be 0 */ if (!num_points) return true; unsigned indices_length = point_indices.length; /* If the points set consists of all points in the glyph, it's encoded with a * single zero byte */ if (num_points == indices_length) return compiled_points.resize (1); /* allocate enough memories: 2 bytes for count + 3 bytes for each point */ unsigned num_bytes = 2 + 3 *num_points; if (unlikely (!compiled_points.resize (num_bytes, false))) return false; unsigned pos = 0; /* binary data starts with the total number of reference points */ if (num_points < 0x80) compiled_points.arrayZ[pos++] = num_points; else { compiled_points.arrayZ[pos++] = ((num_points >> 8) | 0x80); compiled_points.arrayZ[pos++] = num_points & 0xFF; } const unsigned max_run_length = 0x7F; unsigned i = 0; unsigned last_value = 0; unsigned num_encoded = 0; while (i < indices_length && num_encoded < num_points) { unsigned run_length = 0; unsigned header_pos = pos; compiled_points.arrayZ[pos++] = 0; bool use_byte_encoding = false; bool new_run = true; while (i < indices_length && num_encoded < num_points && run_length <= max_run_length) { // find out next referenced point index while (i < indices_length && !point_indices[i]) i++; if (i >= indices_length) break; unsigned cur_value = i; unsigned delta = cur_value - last_value; if (new_run) { use_byte_encoding = (delta <= 0xFF); new_run = false; } if (use_byte_encoding && delta > 0xFF) break; if (use_byte_encoding) compiled_points.arrayZ[pos++] = delta; else { compiled_points.arrayZ[pos++] = delta >> 8; compiled_points.arrayZ[pos++] = delta & 0xFF; } i++; last_value = cur_value; run_length++; num_encoded++; } if (use_byte_encoding) compiled_points.arrayZ[header_pos] = run_length - 1; else compiled_points.arrayZ[header_pos] = (run_length - 1) | 0x80; } return compiled_points.resize (pos, false); } static double infer_delta (double target_val, double prev_val, double next_val, double prev_delta, double next_delta) { if (prev_val == next_val) return (prev_delta == next_delta) ? prev_delta : 0.0; else if (target_val <= hb_min (prev_val, next_val)) return (prev_val < next_val) ? prev_delta : next_delta; else if (target_val >= hb_max (prev_val, next_val)) return (prev_val > next_val) ? prev_delta : next_delta; double r = (target_val - prev_val) / (next_val - prev_val); return prev_delta + r * (next_delta - prev_delta); } static unsigned int next_index (unsigned int i, unsigned int start, unsigned int end) { return (i >= end) ? start : (i + 1); } }; struct TupleVariationData { bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); // here check on min_size only, TupleVariationHeader and var data will be // checked while accessing through iterator. return_trace (c->check_struct (this)); } unsigned get_size (unsigned axis_count) const { unsigned total_size = min_size; unsigned count = tupleVarCount.get_count (); const TupleVariationHeader *tuple_var_header = &(get_tuple_var_header()); for (unsigned i = 0; i < count; i++) { total_size += tuple_var_header->get_size (axis_count) + tuple_var_header->get_data_size (); tuple_var_header = &tuple_var_header->get_next (axis_count); } return total_size; } const TupleVariationHeader &get_tuple_var_header (void) const { return StructAfter (data); } struct tuple_iterator_t; struct tuple_variations_t { hb_vector_t tuple_vars; private: /* referenced point set->compiled point data map */ hb_hashmap_t*, hb_vector_t> point_data_map; /* referenced point set-> count map, used in finding shared points */ hb_hashmap_t*, unsigned> point_set_count_map; /* empty for non-gvar tuples. * shared_points_bytes is a pointer to some value in the point_data_map, * which will be freed during map destruction. Save it for serialization, so * no need to do find_shared_points () again */ hb_vector_t *shared_points_bytes = nullptr; /* total compiled byte size as TupleVariationData format, initialized to its * min_size: 4 */ unsigned compiled_byte_size = 4; /* for gvar iup delta optimization: whether this is a composite glyph */ bool is_composite = false; public: tuple_variations_t () = default; tuple_variations_t (const tuple_variations_t&) = delete; tuple_variations_t& operator=(const tuple_variations_t&) = delete; tuple_variations_t (tuple_variations_t&&) = default; tuple_variations_t& operator=(tuple_variations_t&&) = default; ~tuple_variations_t () = default; explicit operator bool () const { return bool (tuple_vars); } unsigned get_var_count () const { unsigned count = 0; /* when iup delta opt is enabled, compiled_deltas could be empty and we * should skip this tuple */ for (auto& tuple: tuple_vars) if (tuple.compiled_deltas) count++; if (shared_points_bytes && shared_points_bytes->length) count |= TupleVarCount::SharedPointNumbers; return count; } unsigned get_compiled_byte_size () const { return compiled_byte_size; } bool create_from_tuple_var_data (tuple_iterator_t iterator, unsigned tuple_var_count, unsigned point_count, bool is_gvar, const hb_map_t *axes_old_index_tag_map, const hb_vector_t &shared_indices, const hb_array_t shared_tuples, bool is_composite_glyph) { do { const HBUINT8 *p = iterator.get_serialized_data (); unsigned int length = iterator.current_tuple->get_data_size (); if (unlikely (!iterator.var_data_bytes.check_range (p, length))) return false; hb_hashmap_t axis_tuples; if (!iterator.current_tuple->unpack_axis_tuples (iterator.get_axis_count (), shared_tuples, axes_old_index_tag_map, axis_tuples) || axis_tuples.is_empty ()) return false; hb_vector_t private_indices; bool has_private_points = iterator.current_tuple->has_private_points (); const HBUINT8 *end = p + length; if (has_private_points && !TupleVariationData::unpack_points (p, private_indices, end)) return false; const hb_vector_t &indices = has_private_points ? private_indices : shared_indices; bool apply_to_all = (indices.length == 0); unsigned num_deltas = apply_to_all ? point_count : indices.length; hb_vector_t deltas_x; if (unlikely (!deltas_x.resize (num_deltas, false) || !TupleVariationData::unpack_deltas (p, deltas_x, end))) return false; hb_vector_t deltas_y; if (is_gvar) { if (unlikely (!deltas_y.resize (num_deltas, false) || !TupleVariationData::unpack_deltas (p, deltas_y, end))) return false; } tuple_delta_t var; var.axis_tuples = std::move (axis_tuples); if (unlikely (!var.indices.resize (point_count) || !var.deltas_x.resize (point_count, false))) return false; if (is_gvar && unlikely (!var.deltas_y.resize (point_count, false))) return false; for (unsigned i = 0; i < num_deltas; i++) { unsigned idx = apply_to_all ? i : indices[i]; if (idx >= point_count) continue; var.indices[idx] = true; var.deltas_x[idx] = deltas_x[i]; if (is_gvar) var.deltas_y[idx] = deltas_y[i]; } tuple_vars.push (std::move (var)); } while (iterator.move_to_next ()); is_composite = is_composite_glyph; return true; } bool create_from_item_var_data (const VarData &var_data, const hb_vector_t>& regions, const hb_map_t& axes_old_index_tag_map, unsigned& item_count, const hb_inc_bimap_t* inner_map = nullptr) { /* NULL offset, to keep original varidx valid, just return */ if (&var_data == &Null (VarData)) return true; unsigned num_regions = var_data.get_region_index_count (); if (!tuple_vars.alloc (num_regions)) return false; item_count = inner_map ? inner_map->get_population () : var_data.get_item_count (); if (!item_count) return true; unsigned row_size = var_data.get_row_size (); const HBUINT8 *delta_bytes = var_data.get_delta_bytes (); for (unsigned r = 0; r < num_regions; r++) { /* In VarData, deltas are organized in rows, convert them into * column(region) based tuples, resize deltas_x first */ tuple_delta_t tuple; if (!tuple.deltas_x.resize (item_count, false) || !tuple.indices.resize (item_count, false)) return false; for (unsigned i = 0; i < item_count; i++) { tuple.indices.arrayZ[i] = true; tuple.deltas_x.arrayZ[i] = var_data.get_item_delta_fast (inner_map ? inner_map->backward (i) : i, r, delta_bytes, row_size); } unsigned region_index = var_data.get_region_index (r); if (region_index >= regions.length) return false; tuple.axis_tuples = regions.arrayZ[region_index]; tuple_vars.push (std::move (tuple)); } return !tuple_vars.in_error (); } private: static int _cmp_axis_tag (const void *pa, const void *pb) { const hb_tag_t *a = (const hb_tag_t*) pa; const hb_tag_t *b = (const hb_tag_t*) pb; return (int)(*a) - (int)(*b); } bool change_tuple_variations_axis_limits (const hb_hashmap_t& normalized_axes_location, const hb_hashmap_t& axes_triple_distances) { /* sort axis_tag/axis_limits, make result deterministic */ hb_vector_t axis_tags; if (!axis_tags.alloc (normalized_axes_location.get_population ())) return false; for (auto t : normalized_axes_location.keys ()) axis_tags.push (t); axis_tags.qsort (_cmp_axis_tag); for (auto axis_tag : axis_tags) { Triple *axis_limit; if (!normalized_axes_location.has (axis_tag, &axis_limit)) return false; TripleDistances axis_triple_distances{1.0, 1.0}; if (axes_triple_distances.has (axis_tag)) axis_triple_distances = axes_triple_distances.get (axis_tag); hb_vector_t new_vars; for (const tuple_delta_t& var : tuple_vars) { hb_vector_t out = var.change_tuple_var_axis_limit (axis_tag, *axis_limit, axis_triple_distances); if (!out) continue; unsigned new_len = new_vars.length + out.length; if (unlikely (!new_vars.alloc (new_len, false))) return false; for (unsigned i = 0; i < out.length; i++) new_vars.push (std::move (out[i])); } tuple_vars.fini (); tuple_vars = std::move (new_vars); } return true; } /* merge tuple variations with overlapping tents, if iup delta optimization * is enabled, add default deltas to contour_points */ bool merge_tuple_variations (contour_point_vector_t* contour_points = nullptr) { hb_vector_t new_vars; hb_hashmap_t*, unsigned> m; unsigned i = 0; for (const tuple_delta_t& var : tuple_vars) { /* if all axes are pinned, drop the tuple variation */ if (var.axis_tuples.is_empty ()) { /* if iup_delta_optimize is enabled, add deltas to contour coords */ if (contour_points && !contour_points->add_deltas (var.deltas_x, var.deltas_y, var.indices)) return false; continue; } unsigned *idx; if (m.has (&(var.axis_tuples), &idx)) { new_vars[*idx] += var; } else { new_vars.push (var); if (!m.set (&(var.axis_tuples), i)) return false; i++; } } tuple_vars.fini (); tuple_vars = std::move (new_vars); return true; } /* compile all point set and store byte data in a point_set->hb_bytes_t hashmap, * also update point_set->count map, which will be used in finding shared * point set*/ bool compile_all_point_sets () { for (const auto& tuple: tuple_vars) { const hb_vector_t* points_set = &(tuple.indices); if (point_data_map.has (points_set)) { unsigned *count; if (unlikely (!point_set_count_map.has (points_set, &count) || !point_set_count_map.set (points_set, (*count) + 1))) return false; continue; } hb_vector_t compiled_point_data; if (!tuple_delta_t::compile_point_set (*points_set, compiled_point_data)) return false; if (!point_data_map.set (points_set, std::move (compiled_point_data)) || !point_set_count_map.set (points_set, 1)) return false; } return true; } /* find shared points set which saves most bytes */ void find_shared_points () { unsigned max_saved_bytes = 0; for (const auto& _ : point_data_map.iter_ref ()) { const hb_vector_t* points_set = _.first; unsigned data_length = _.second.length; if (!data_length) continue; unsigned *count; if (unlikely (!point_set_count_map.has (points_set, &count) || *count <= 1)) { shared_points_bytes = nullptr; return; } unsigned saved_bytes = data_length * ((*count) -1); if (saved_bytes > max_saved_bytes) { max_saved_bytes = saved_bytes; shared_points_bytes = &(_.second); } } } bool calc_inferred_deltas (const contour_point_vector_t& contour_points) { for (tuple_delta_t& var : tuple_vars) if (!var.calc_inferred_deltas (contour_points)) return false; return true; } bool iup_optimize (const contour_point_vector_t& contour_points) { for (tuple_delta_t& var : tuple_vars) { if (!var.optimize (contour_points, is_composite)) return false; } return true; } public: bool instantiate (const hb_hashmap_t& normalized_axes_location, const hb_hashmap_t& axes_triple_distances, contour_point_vector_t* contour_points = nullptr, bool optimize = false) { if (!tuple_vars) return true; if (!change_tuple_variations_axis_limits (normalized_axes_location, axes_triple_distances)) return false; /* compute inferred deltas only for gvar */ if (contour_points) if (!calc_inferred_deltas (*contour_points)) return false; /* if iup delta opt is on, contour_points can't be null */ if (optimize && !contour_points) return false; if (!merge_tuple_variations (optimize ? contour_points : nullptr)) return false; if (optimize && !iup_optimize (*contour_points)) return false; return !tuple_vars.in_error (); } bool compile_bytes (const hb_map_t& axes_index_map, const hb_map_t& axes_old_index_tag_map, bool use_shared_points, const hb_hashmap_t*, unsigned>* shared_tuples_idx_map = nullptr) { // compile points set and store data in hashmap if (!compile_all_point_sets ()) return false; if (use_shared_points) { find_shared_points (); if (shared_points_bytes) compiled_byte_size += shared_points_bytes->length; } // compile delta and tuple var header for each tuple variation for (auto& tuple: tuple_vars) { const hb_vector_t* points_set = &(tuple.indices); hb_vector_t *points_data; if (unlikely (!point_data_map.has (points_set, &points_data))) return false; /* when iup optimization is enabled, num of referenced points could be 0 * and thus the compiled points bytes is empty, we should skip compiling * this tuple */ if (!points_data->length) continue; if (!tuple.compile_deltas ()) return false; unsigned points_data_length = (points_data != shared_points_bytes) ? points_data->length : 0; if (!tuple.compile_tuple_var_header (axes_index_map, points_data_length, axes_old_index_tag_map, shared_tuples_idx_map)) return false; compiled_byte_size += tuple.compiled_tuple_header.length + points_data_length + tuple.compiled_deltas.length; } return true; } bool serialize_var_headers (hb_serialize_context_t *c, unsigned& total_header_len) const { TRACE_SERIALIZE (this); for (const auto& tuple: tuple_vars) { tuple.compiled_tuple_header.as_array ().copy (c); if (c->in_error ()) return_trace (false); total_header_len += tuple.compiled_tuple_header.length; } return_trace (true); } bool serialize_var_data (hb_serialize_context_t *c, bool is_gvar) const { TRACE_SERIALIZE (this); if (is_gvar && shared_points_bytes) { hb_bytes_t s (shared_points_bytes->arrayZ, shared_points_bytes->length); s.copy (c); } for (const auto& tuple: tuple_vars) { const hb_vector_t* points_set = &(tuple.indices); hb_vector_t *point_data; if (!point_data_map.has (points_set, &point_data)) return_trace (false); if (!is_gvar || point_data != shared_points_bytes) { hb_bytes_t s (point_data->arrayZ, point_data->length); s.copy (c); } tuple.compiled_deltas.as_array ().copy (c); if (c->in_error ()) return_trace (false); } /* padding for gvar */ if (is_gvar && (compiled_byte_size % 2)) { HBUINT8 pad; pad = 0; if (!c->embed (pad)) return_trace (false); } return_trace (true); } }; struct tuple_iterator_t { unsigned get_axis_count () const { return axis_count; } void init (hb_bytes_t var_data_bytes_, unsigned int axis_count_, const void *table_base_) { var_data_bytes = var_data_bytes_; var_data = var_data_bytes_.as (); index = 0; axis_count = axis_count_; current_tuple = &var_data->get_tuple_var_header (); data_offset = 0; table_base = table_base_; } bool get_shared_indices (hb_vector_t &shared_indices /* OUT */) { if (var_data->has_shared_point_numbers ()) { const HBUINT8 *base = &(table_base+var_data->data); const HBUINT8 *p = base; if (!unpack_points (p, shared_indices, (const HBUINT8 *) (var_data_bytes.arrayZ + var_data_bytes.length))) return false; data_offset = p - base; } return true; } bool is_valid () const { return (index < var_data->tupleVarCount.get_count ()) && var_data_bytes.check_range (current_tuple, TupleVariationHeader::min_size) && var_data_bytes.check_range (current_tuple, hb_max (current_tuple->get_data_size (), current_tuple->get_size (axis_count))); } bool move_to_next () { data_offset += current_tuple->get_data_size (); current_tuple = ¤t_tuple->get_next (axis_count); index++; return is_valid (); } const HBUINT8 *get_serialized_data () const { return &(table_base+var_data->data) + data_offset; } private: const TupleVariationData *var_data; unsigned int index; unsigned int axis_count; unsigned int data_offset; const void *table_base; public: hb_bytes_t var_data_bytes; const TupleVariationHeader *current_tuple; }; static bool get_tuple_iterator (hb_bytes_t var_data_bytes, unsigned axis_count, const void *table_base, hb_vector_t &shared_indices /* OUT */, tuple_iterator_t *iterator /* OUT */) { iterator->init (var_data_bytes, axis_count, table_base); if (!iterator->get_shared_indices (shared_indices)) return false; return iterator->is_valid (); } bool has_shared_point_numbers () const { return tupleVarCount.has_shared_point_numbers (); } static bool unpack_points (const HBUINT8 *&p /* IN/OUT */, hb_vector_t &points /* OUT */, const HBUINT8 *end) { enum packed_point_flag_t { POINTS_ARE_WORDS = 0x80, POINT_RUN_COUNT_MASK = 0x7F }; if (unlikely (p + 1 > end)) return false; unsigned count = *p++; if (count & POINTS_ARE_WORDS) { if (unlikely (p + 1 > end)) return false; count = ((count & POINT_RUN_COUNT_MASK) << 8) | *p++; } if (unlikely (!points.resize (count, false))) return false; unsigned n = 0; unsigned i = 0; while (i < count) { if (unlikely (p + 1 > end)) return false; unsigned control = *p++; unsigned run_count = (control & POINT_RUN_COUNT_MASK) + 1; unsigned stop = i + run_count; if (unlikely (stop > count)) return false; if (control & POINTS_ARE_WORDS) { if (unlikely (p + run_count * HBUINT16::static_size > end)) return false; for (; i < stop; i++) { n += *(const HBUINT16 *)p; points.arrayZ[i] = n; p += HBUINT16::static_size; } } else { if (unlikely (p + run_count > end)) return false; for (; i < stop; i++) { n += *p++; points.arrayZ[i] = n; } } } return true; } static bool unpack_deltas (const HBUINT8 *&p /* IN/OUT */, hb_vector_t &deltas /* IN/OUT */, const HBUINT8 *end) { unsigned i = 0; unsigned count = deltas.length; while (i < count) { if (unlikely (p + 1 > end)) return false; unsigned control = *p++; unsigned run_count = (control & DELTA_RUN_COUNT_MASK) + 1; unsigned stop = i + run_count; if (unlikely (stop > count)) return false; if (control & DELTAS_ARE_ZERO) { for (; i < stop; i++) deltas.arrayZ[i] = 0; } else if (control & DELTAS_ARE_WORDS) { if (unlikely (p + run_count * HBUINT16::static_size > end)) return false; for (; i < stop; i++) { deltas.arrayZ[i] = * (const HBINT16 *) p; p += HBUINT16::static_size; } } else { if (unlikely (p + run_count > end)) return false; for (; i < stop; i++) { deltas.arrayZ[i] = * (const HBINT8 *) p++; } } } return true; } bool has_data () const { return tupleVarCount; } bool decompile_tuple_variations (unsigned point_count, bool is_gvar, tuple_iterator_t iterator, const hb_map_t *axes_old_index_tag_map, const hb_vector_t &shared_indices, const hb_array_t shared_tuples, tuple_variations_t& tuple_variations, /* OUT */ bool is_composite_glyph = false) const { return tuple_variations.create_from_tuple_var_data (iterator, tupleVarCount, point_count, is_gvar, axes_old_index_tag_map, shared_indices, shared_tuples, is_composite_glyph); } bool serialize (hb_serialize_context_t *c, bool is_gvar, const tuple_variations_t& tuple_variations) const { TRACE_SERIALIZE (this); /* empty tuple variations, just return and skip serialization. */ if (!tuple_variations) return_trace (true); auto *out = c->start_embed (this); if (unlikely (!c->extend_min (out))) return_trace (false); if (!c->check_assign (out->tupleVarCount, tuple_variations.get_var_count (), HB_SERIALIZE_ERROR_INT_OVERFLOW)) return_trace (false); unsigned total_header_len = 0; if (!tuple_variations.serialize_var_headers (c, total_header_len)) return_trace (false); unsigned data_offset = min_size + total_header_len; if (!is_gvar) data_offset += 4; if (!c->check_assign (out->data, data_offset, HB_SERIALIZE_ERROR_INT_OVERFLOW)) return_trace (false); return tuple_variations.serialize_var_data (c, is_gvar); } protected: struct TupleVarCount : HBUINT16 { friend struct tuple_variations_t; bool has_shared_point_numbers () const { return ((*this) & SharedPointNumbers); } unsigned int get_count () const { return (*this) & CountMask; } TupleVarCount& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; } explicit operator bool () const { return get_count (); } protected: enum Flags { SharedPointNumbers= 0x8000u, CountMask = 0x0FFFu }; public: DEFINE_SIZE_STATIC (2); }; TupleVarCount tupleVarCount; /* A packed field. The high 4 bits are flags, and the * low 12 bits are the number of tuple variation tables * for this glyph. The number of tuple variation tables * can be any number between 1 and 4095. */ Offset16To data; /* Offset from the start of the base table * to the serialized data. */ /* TupleVariationHeader tupleVariationHeaders[] *//* Array of tuple variation headers. */ public: DEFINE_SIZE_MIN (4); }; using tuple_variations_t = TupleVariationData::tuple_variations_t; struct item_variations_t { using region_t = const hb_hashmap_t*; private: /* each subtable is decompiled into a tuple_variations_t, in which all tuples * have the same num of deltas (rows) */ hb_vector_t vars; /* num of retained rows for each subtable, there're 2 cases when var_data is empty: * 1. retained item_count is zero * 2. regions is empty and item_count is non-zero. * when converting to tuples, both will be dropped because the tuple is empty, * however, we need to retain 2. as all-zero rows to keep original varidx * valid, so we need a way to remember the num of rows for each subtable */ hb_vector_t var_data_num_rows; /* original region list, decompiled from item varstore, used when rebuilding * region list after instantiation */ hb_vector_t> orig_region_list; /* region list: vector of Regions, maintain the original order for the regions * that existed before instantiate (), append the new regions at the end. * Regions are stored in each tuple already, save pointers only. * When converting back to item varstore, unused regions will be pruned */ hb_vector_t region_list; /* region -> idx map after instantiation and pruning unused regions */ hb_hashmap_t region_map; /* all delta rows after instantiation */ hb_vector_t> delta_rows; /* final optimized vector of encoding objects used to assemble the varstore */ hb_vector_t encodings; /* old varidxes -> new var_idxes map */ hb_map_t varidx_map; /* has long words */ bool has_long = false; public: bool has_long_word () const { return has_long; } const hb_vector_t& get_region_list () const { return region_list; } const hb_vector_t& get_vardata_encodings () const { return encodings; } const hb_map_t& get_varidx_map () const { return varidx_map; } bool instantiate (const ItemVariationStore& varStore, const hb_subset_plan_t *plan, bool optimize=true, bool use_no_variation_idx=true, const hb_array_t inner_maps = hb_array_t ()) { if (!create_from_item_varstore (varStore, plan->axes_old_index_tag_map, inner_maps)) return false; if (!instantiate_tuple_vars (plan->axes_location, plan->axes_triple_distances)) return false; return as_item_varstore (optimize, use_no_variation_idx); } /* keep below APIs public only for unit test: test-item-varstore */ bool create_from_item_varstore (const ItemVariationStore& varStore, const hb_map_t& axes_old_index_tag_map, const hb_array_t inner_maps = hb_array_t ()) { const VarRegionList& regionList = varStore.get_region_list (); if (!regionList.get_var_regions (axes_old_index_tag_map, orig_region_list)) return false; unsigned num_var_data = varStore.get_sub_table_count (); if (inner_maps && inner_maps.length != num_var_data) return false; if (!vars.alloc (num_var_data) || !var_data_num_rows.alloc (num_var_data)) return false; for (unsigned i = 0; i < num_var_data; i++) { if (inner_maps && !inner_maps.arrayZ[i].get_population ()) continue; tuple_variations_t var_data_tuples; unsigned item_count = 0; if (!var_data_tuples.create_from_item_var_data (varStore.get_sub_table (i), orig_region_list, axes_old_index_tag_map, item_count, inner_maps ? &(inner_maps.arrayZ[i]) : nullptr)) return false; var_data_num_rows.push (item_count); vars.push (std::move (var_data_tuples)); } return !vars.in_error () && !var_data_num_rows.in_error () && vars.length == var_data_num_rows.length; } bool instantiate_tuple_vars (const hb_hashmap_t& normalized_axes_location, const hb_hashmap_t& axes_triple_distances) { for (tuple_variations_t& tuple_vars : vars) if (!tuple_vars.instantiate (normalized_axes_location, axes_triple_distances)) return false; if (!build_region_list ()) return false; return true; } bool build_region_list () { /* scan all tuples and collect all unique regions, prune unused regions */ hb_hashmap_t all_regions; hb_hashmap_t used_regions; /* use a vector when inserting new regions, make result deterministic */ hb_vector_t all_unique_regions; for (const tuple_variations_t& sub_table : vars) { for (const tuple_delta_t& tuple : sub_table.tuple_vars) { region_t r = &(tuple.axis_tuples); if (!used_regions.has (r)) { bool all_zeros = true; for (float d : tuple.deltas_x) { int delta = (int) roundf (d); if (delta != 0) { all_zeros = false; break; } } if (!all_zeros) { if (!used_regions.set (r, 1)) return false; } } if (all_regions.has (r)) continue; if (!all_regions.set (r, 1)) return false; all_unique_regions.push (r); } } if (!all_regions || !all_unique_regions) return false; if (!region_list.alloc (all_regions.get_population ())) return false; unsigned idx = 0; /* append the original regions that pre-existed */ for (const auto& r : orig_region_list) { if (!all_regions.has (&r) || !used_regions.has (&r)) continue; region_list.push (&r); if (!region_map.set (&r, idx)) return false; all_regions.del (&r); idx++; } /* append the new regions at the end */ for (const auto& r: all_unique_regions) { if (!all_regions.has (r) || !used_regions.has (r)) continue; region_list.push (r); if (!region_map.set (r, idx)) return false; all_regions.del (r); idx++; } return (!region_list.in_error ()) && (!region_map.in_error ()); } /* main algorithm ported from fonttools VarStore_optimize() method, optimize * varstore by default */ struct combined_gain_idx_tuple_t { int gain; unsigned idx_1; unsigned idx_2; combined_gain_idx_tuple_t () = default; combined_gain_idx_tuple_t (int gain_, unsigned i, unsigned j) :gain (gain_), idx_1 (i), idx_2 (j) {} bool operator < (const combined_gain_idx_tuple_t& o) { if (gain != o.gain) return gain < o.gain; if (idx_1 != o.idx_1) return idx_1 < o.idx_1; return idx_2 < o.idx_2; } bool operator <= (const combined_gain_idx_tuple_t& o) { if (*this < o) return true; return gain == o.gain && idx_1 == o.idx_1 && idx_2 == o.idx_2; } }; bool as_item_varstore (bool optimize=true, bool use_no_variation_idx=true) { if (!region_list) return false; unsigned num_cols = region_list.length; /* pre-alloc a 2D vector for all sub_table's VarData rows */ unsigned total_rows = 0; for (unsigned major = 0; major < var_data_num_rows.length; major++) total_rows += var_data_num_rows[major]; if (!delta_rows.resize (total_rows)) return false; /* init all rows to [0]*num_cols */ for (unsigned i = 0; i < total_rows; i++) if (!(delta_rows[i].resize (num_cols))) return false; /* old VarIdxes -> full encoding_row mapping */ hb_hashmap_t*> front_mapping; unsigned start_row = 0; hb_vector_t encoding_objs; hb_hashmap_t, unsigned> chars_idx_map; /* delta_rows map, used for filtering out duplicate rows */ hb_hashmap_t*, unsigned> delta_rows_map; for (unsigned major = 0; major < vars.length; major++) { /* deltas are stored in tuples(column based), convert them back into items * (row based) delta */ const tuple_variations_t& tuples = vars[major]; unsigned num_rows = var_data_num_rows[major]; for (const tuple_delta_t& tuple: tuples.tuple_vars) { if (tuple.deltas_x.length != num_rows) return false; /* skip unused regions */ unsigned *col_idx; if (!region_map.has (&(tuple.axis_tuples), &col_idx)) continue; for (unsigned i = 0; i < num_rows; i++) { int rounded_delta = roundf (tuple.deltas_x[i]); delta_rows[start_row + i][*col_idx] += rounded_delta; if ((!has_long) && (rounded_delta < -65536 || rounded_delta > 65535)) has_long = true; } } if (!optimize) { /* assemble a delta_row_encoding_t for this subtable, skip optimization so * chars is not initialized, we only need delta rows for serialization */ delta_row_encoding_t obj; for (unsigned r = start_row; r < start_row + num_rows; r++) obj.add_row (&(delta_rows.arrayZ[r])); encodings.push (std::move (obj)); start_row += num_rows; continue; } for (unsigned minor = 0; minor < num_rows; minor++) { const hb_vector_t& row = delta_rows[start_row + minor]; if (use_no_variation_idx) { bool all_zeros = true; for (int delta : row) { if (delta != 0) { all_zeros = false; break; } } if (all_zeros) continue; } if (!front_mapping.set ((major<<16) + minor, &row)) return false; hb_vector_t chars = delta_row_encoding_t::get_row_chars (row); if (!chars) return false; if (delta_rows_map.has (&row)) continue; delta_rows_map.set (&row, 1); unsigned *obj_idx; if (chars_idx_map.has (chars, &obj_idx)) { delta_row_encoding_t& obj = encoding_objs[*obj_idx]; if (!obj.add_row (&row)) return false; } else { if (!chars_idx_map.set (chars, encoding_objs.length)) return false; delta_row_encoding_t obj (std::move (chars), &row); encoding_objs.push (std::move (obj)); } } start_row += num_rows; } /* return directly if no optimization, maintain original VariationIndex so * varidx_map would be empty */ if (!optimize) return !encodings.in_error (); /* sort encoding_objs */ encoding_objs.qsort (); /* main algorithm: repeatedly pick 2 best encodings to combine, and combine * them */ hb_priority_queue_t queue; unsigned num_todos = encoding_objs.length; for (unsigned i = 0; i < num_todos; i++) { for (unsigned j = i + 1; j < num_todos; j++) { int combining_gain = encoding_objs.arrayZ[i].gain_from_merging (encoding_objs.arrayZ[j]); if (combining_gain > 0) queue.insert (combined_gain_idx_tuple_t (-combining_gain, i, j), 0); } } hb_set_t removed_todo_idxes; while (queue) { auto t = queue.pop_minimum ().first; unsigned i = t.idx_1; unsigned j = t.idx_2; if (removed_todo_idxes.has (i) || removed_todo_idxes.has (j)) continue; delta_row_encoding_t& encoding = encoding_objs.arrayZ[i]; delta_row_encoding_t& other_encoding = encoding_objs.arrayZ[j]; removed_todo_idxes.add (i); removed_todo_idxes.add (j); hb_vector_t combined_chars; if (!combined_chars.alloc (encoding.chars.length)) return false; for (unsigned idx = 0; idx < encoding.chars.length; idx++) { uint8_t v = hb_max (encoding.chars.arrayZ[idx], other_encoding.chars.arrayZ[idx]); combined_chars.push (v); } delta_row_encoding_t combined_encoding_obj (std::move (combined_chars)); for (const auto& row : hb_concat (encoding.items, other_encoding.items)) combined_encoding_obj.add_row (row); for (unsigned idx = 0; idx < encoding_objs.length; idx++) { if (removed_todo_idxes.has (idx)) continue; const delta_row_encoding_t& obj = encoding_objs.arrayZ[idx]; if (obj.chars == combined_chars) { for (const auto& row : obj.items) combined_encoding_obj.add_row (row); removed_todo_idxes.add (idx); continue; } int combined_gain = combined_encoding_obj.gain_from_merging (obj); if (combined_gain > 0) queue.insert (combined_gain_idx_tuple_t (-combined_gain, idx, encoding_objs.length), 0); } encoding_objs.push (std::move (combined_encoding_obj)); } int num_final_encodings = (int) encoding_objs.length - (int) removed_todo_idxes.get_population (); if (num_final_encodings <= 0) return false; if (!encodings.alloc (num_final_encodings)) return false; for (unsigned i = 0; i < encoding_objs.length; i++) { if (removed_todo_idxes.has (i)) continue; encodings.push (std::move (encoding_objs.arrayZ[i])); } /* sort again based on width, make result deterministic */ encodings.qsort (delta_row_encoding_t::cmp_width); return compile_varidx_map (front_mapping); } private: /* compile varidx_map for one VarData subtable (index specified by major) */ bool compile_varidx_map (const hb_hashmap_t*>& front_mapping) { /* full encoding_row -> new VarIdxes mapping */ hb_hashmap_t*, unsigned> back_mapping; for (unsigned major = 0; major < encodings.length; major++) { delta_row_encoding_t& encoding = encodings[major]; /* just sanity check, this shouldn't happen */ if (encoding.is_empty ()) return false; unsigned num_rows = encoding.items.length; /* sort rows, make result deterministic */ encoding.items.qsort (_cmp_row); /* compile old to new var_idxes mapping */ for (unsigned minor = 0; minor < num_rows; minor++) { unsigned new_varidx = (major << 16) + minor; back_mapping.set (encoding.items.arrayZ[minor], new_varidx); } } for (auto _ : front_mapping.iter ()) { unsigned old_varidx = _.first; unsigned *new_varidx; if (back_mapping.has (_.second, &new_varidx)) varidx_map.set (old_varidx, *new_varidx); else varidx_map.set (old_varidx, HB_OT_LAYOUT_NO_VARIATIONS_INDEX); } return !varidx_map.in_error (); } static int _cmp_row (const void *pa, const void *pb) { /* compare pointers of vectors(const hb_vector_t*) that represent a row */ const hb_vector_t** a = (const hb_vector_t**) pa; const hb_vector_t** b = (const hb_vector_t**) pb; for (unsigned i = 0; i < (*b)->length; i++) { int va = (*a)->arrayZ[i]; int vb = (*b)->arrayZ[i]; if (va != vb) return va < vb ? -1 : 1; } return 0; } }; } /* namespace OT */ #endif /* HB_OT_VAR_COMMON_HH */