/* GRAPHITE2 LICENSING Copyright 2010, SIL International All rights reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should also have received a copy of the GNU Lesser General Public License along with this library in the file named "LICENSE". If not, write to the Free Software Foundation, 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA or visit their web page on the internet at http://www.fsf.org/licenses/lgpl.html. Alternatively, the contents of this file may be used under the terms of the Mozilla Public License (http://mozilla.org/MPL) or the GNU General Public License, as published by the Free Software Foundation, either version 2 of the License or (at your option) any later version. */ #include #include "graphite2/Segment.h" #include "inc/debug.h" #include "inc/Endian.h" #include "inc/Silf.h" #include "inc/Segment.h" #include "inc/Rule.h" #include "inc/Error.h" using namespace graphite2; namespace { static const uint32 ERROROFFSET = 0xFFFFFFFF; } Silf::Silf() throw() : m_passes(0), m_pseudos(0), m_classOffsets(0), m_classData(0), m_justs(0), m_numPasses(0), m_numJusts(0), m_sPass(0), m_pPass(0), m_jPass(0), m_bPass(0), m_flags(0), m_aPseudo(0), m_aBreak(0), m_aUser(0), m_aBidi(0), m_aMirror(0), m_aPassBits(0), m_iMaxComp(0), m_aLig(0), m_numPseudo(0), m_nClass(0), m_nLinear(0), m_gEndLine(0) { memset(&m_silfinfo, 0, sizeof m_silfinfo); } Silf::~Silf() throw() { releaseBuffers(); } void Silf::releaseBuffers() throw() { delete [] m_passes; delete [] m_pseudos; free(m_classOffsets); free(m_classData); free(m_justs); m_passes= 0; m_pseudos = 0; m_classOffsets = 0; m_classData = 0; m_justs = 0; } bool Silf::readGraphite(const byte * const silf_start, size_t lSilf, Face& face, uint32 version) { const byte * p = silf_start, * const silf_end = p + lSilf; Error e; if (version >= 0x00030000) { if (e.test(lSilf < 28, E_BADSIZE)) { releaseBuffers(); return face.error(e); } be::skip(p); // ruleVersion be::skip(p,2); // passOffset & pseudosOffset } else if (e.test(lSilf < 20, E_BADSIZE)) { releaseBuffers(); return face.error(e); } const uint16 maxGlyph = be::read(p); m_silfinfo.extra_ascent = be::read(p); m_silfinfo.extra_descent = be::read(p); m_numPasses = be::read(p); m_sPass = be::read(p); m_pPass = be::read(p); m_jPass = be::read(p); m_bPass = be::read(p); m_flags = be::read(p); be::skip(p,2); // max{Pre,Post}Context. m_aPseudo = be::read(p); m_aBreak = be::read(p); m_aBidi = be::read(p); m_aMirror = be::read(p); m_aPassBits = be::read(p); // Read Justification levels. m_numJusts = be::read(p); if (e.test(maxGlyph >= face.glyphs().numGlyphs(), E_BADMAXGLYPH) || e.test(p + m_numJusts * 8 >= silf_end, E_BADNUMJUSTS)) { releaseBuffers(); return face.error(e); } if (m_numJusts) { m_justs = gralloc(m_numJusts); if (e.test(!m_justs, E_OUTOFMEM)) return face.error(e); for (uint8 i = 0; i < m_numJusts; i++) { ::new(m_justs + i) Justinfo(p[0], p[1], p[2], p[3]); be::skip(p,8); } } if (e.test(p + sizeof(uint16) + sizeof(uint8)*8 >= silf_end, E_BADENDJUSTS)) { releaseBuffers(); return face.error(e); } m_aLig = be::read(p); m_aUser = be::read(p); m_iMaxComp = be::read(p); be::skip(p,5); // direction and 4 reserved bytes be::skip(p, be::read(p)); // don't need critical features yet be::skip(p); // reserved if (e.test(p >= silf_end, E_BADCRITFEATURES)) { releaseBuffers(); return face.error(e); } be::skip(p, be::read(p)); // don't use scriptTag array. if (e.test(p + sizeof(uint16) + sizeof(uint32) >= silf_end, E_BADSCRIPTTAGS)) { releaseBuffers(); return face.error(e); } m_gEndLine = be::read(p); // lbGID const byte * o_passes = p, * const passes_start = silf_start + be::read(p); const size_t num_attrs = face.glyphs().numAttrs(); if (e.test(m_aPseudo >= num_attrs, E_BADAPSEUDO) || e.test(m_aBreak >= num_attrs, E_BADABREAK) || e.test(m_aBidi >= num_attrs, E_BADABIDI) || e.test(m_aMirror>= num_attrs, E_BADAMIRROR) || e.test(m_numPasses > 128, E_BADNUMPASSES) || e.test(passes_start >= silf_end, E_BADPASSESSTART) || e.test(m_pPass < m_sPass, E_BADPASSBOUND) || e.test(m_pPass > m_numPasses, E_BADPPASS) || e.test(m_sPass > m_numPasses, E_BADSPASS) || e.test(m_jPass < m_pPass, E_BADJPASSBOUND) || e.test(m_jPass > m_numPasses, E_BADJPASS) || e.test((m_bPass != 0xFF && (m_bPass < m_jPass || m_bPass > m_numPasses)), E_BADBPASS) || e.test(m_aLig > 127, E_BADALIG)) { releaseBuffers(); return face.error(e); } be::skip(p, m_numPasses); if (e.test(p + sizeof(uint16) >= passes_start, E_BADPASSESSTART)) { releaseBuffers(); return face.error(e); } m_numPseudo = be::read(p); be::skip(p, 3); // searchPseudo, pseudoSelector, pseudoShift if (e.test(p + m_numPseudo*(sizeof(uint32) + sizeof(uint16)) >= passes_start, E_BADNUMPSEUDO)) { releaseBuffers(); return face.error(e); } m_pseudos = new Pseudo[m_numPseudo]; for (int i = 0; i < m_numPseudo; i++) { m_pseudos[i].uid = be::read(p); m_pseudos[i].gid = be::read(p); } const size_t clen = readClassMap(p, passes_start - p, version, e); if (e || e.test(p + clen > passes_start, E_BADPASSESSTART)) { releaseBuffers(); return face.error(e); } m_passes = new Pass[m_numPasses]; for (size_t i = 0; i < m_numPasses; ++i) { const byte * const pass_start = silf_start + be::read(o_passes), * const pass_end = silf_start + be::peek(o_passes); face.error_context((face.error_context() & 0xFF00) + EC_ASILF + (i << 16)); if (e.test(pass_start > pass_end, E_BADPASSSTART) || e.test(pass_end > silf_end, E_BADPASSEND)) { releaseBuffers(); return face.error(e); } m_passes[i].init(this); if (!m_passes[i].readPass(pass_start, pass_end - pass_start, pass_start - silf_start, face, e)) { releaseBuffers(); return false; } } // fill in gr_faceinfo m_silfinfo.upem = face.glyphs().unitsPerEm(); m_silfinfo.has_bidi_pass = (m_bPass != 0xFF); m_silfinfo.justifies = (m_numJusts != 0) || (m_jPass < m_pPass); m_silfinfo.line_ends = (m_flags & 1); m_silfinfo.space_contextuals = gr_faceinfo::gr_space_contextuals((m_flags >> 2) & 0x7); return true; } template inline uint32 Silf::readClassOffsets(const byte *&p, size_t data_len, Error &e) { const T cls_off = 2*sizeof(uint16) + sizeof(T)*(m_nClass+1); const size_t max_off = (be::peek(p + sizeof(T)*m_nClass) - cls_off)/sizeof(uint16); // Check that the last+1 offset is less than or equal to the class map length. if (e.test(be::peek(p) != cls_off, E_MISALIGNEDCLASSES) || e.test(max_off > (data_len - cls_off)/sizeof(uint16), E_HIGHCLASSOFFSET)) return ERROROFFSET; // Read in all the offsets. m_classOffsets = gralloc(m_nClass+1); if (e.test(!m_classOffsets, E_OUTOFMEM)) return ERROROFFSET; for (uint32 * o = m_classOffsets, * const o_end = o + m_nClass + 1; o != o_end; ++o) { *o = (be::read(p) - cls_off)/sizeof(uint16); if (e.test(*o > max_off, E_HIGHCLASSOFFSET)) return ERROROFFSET; } return max_off; } size_t Silf::readClassMap(const byte *p, size_t data_len, uint32 version, Error &e) { if (e.test(data_len < sizeof(uint16)*2, E_BADCLASSSIZE)) return ERROROFFSET; m_nClass = be::read(p); m_nLinear = be::read(p); // Check that numLinear < numClass, // that there is at least enough data for numClasses offsets. if (e.test(m_nLinear > m_nClass, E_TOOMANYLINEAR) || e.test((m_nClass + 1) * (version >= 0x00040000 ? sizeof(uint32) : sizeof(uint16)) > (data_len - 4), E_CLASSESTOOBIG)) return ERROROFFSET; uint32 max_off; if (version >= 0x00040000) max_off = readClassOffsets(p, data_len, e); else max_off = readClassOffsets(p, data_len, e); if (max_off == ERROROFFSET) return ERROROFFSET; // Check the linear offsets are sane, these must be monotonically increasing. for (const uint32 *o = m_classOffsets, * const o_end = o + m_nLinear; o != o_end; ++o) if (e.test(o[0] > o[1], E_BADCLASSOFFSET)) return ERROROFFSET; // Fortunately the class data is all uint16s so we can decode these now m_classData = gralloc(max_off); if (e.test(!m_classData, E_OUTOFMEM)) return ERROROFFSET; for (uint16 *d = m_classData, * const d_end = d + max_off; d != d_end; ++d) *d = be::read(p); // Check the lookup class invariants for each non-linear class for (const uint32 *o = m_classOffsets + m_nLinear, * const o_end = m_classOffsets + m_nClass; o != o_end; ++o) { const uint16 * lookup = m_classData + *o; if (e.test(*o > max_off - 4, E_HIGHCLASSOFFSET) // LookupClass doesn't stretch over max_off || e.test(lookup[0] == 0 // A LookupClass with no looks is a suspicious thing ... || lookup[0] > (max_off - *o - 4)/2 // numIDs lookup pairs fits within (start of LookupClass' lookups array, max_off] || lookup[3] != lookup[0] - lookup[1], E_BADCLASSLOOKUPINFO)) // rangeShift: numIDs - searchRange return ERROROFFSET; } return max_off; } uint16 Silf::findPseudo(uint32 uid) const { for (int i = 0; i < m_numPseudo; i++) if (m_pseudos[i].uid == uid) return m_pseudos[i].gid; return 0; } uint16 Silf::findClassIndex(uint16 cid, uint16 gid) const { if (cid > m_nClass) return -1; const uint16 * cls = m_classData + m_classOffsets[cid]; if (cid < m_nLinear) // output class being used for input, shouldn't happen { for (unsigned int i = 0, n = m_classOffsets[cid + 1]; i < n; ++i, ++cls) if (*cls == gid) return i; return -1; } else { const uint16 * min = cls + 4, // lookups array * max = min + cls[0]*2; // lookups aray is numIDs (cls[0]) uint16 pairs long do { const uint16 * p = min + (-2 & ((max-min)/2)); if (p[0] > gid) max = p; else min = p; } while (max - min > 2); return min[0] == gid ? min[1] : -1; } } uint16 Silf::getClassGlyph(uint16 cid, unsigned int index) const { if (cid > m_nClass) return 0; uint32 loc = m_classOffsets[cid]; if (cid < m_nLinear) { if (index < m_classOffsets[cid + 1] - loc) return m_classData[index + loc]; } else // input class being used for output. Shouldn't happen { for (unsigned int i = loc + 4; i < m_classOffsets[cid + 1]; i += 2) if (m_classData[i + 1] == index) return m_classData[i]; } return 0; } bool Silf::runGraphite(Segment *seg, uint8 firstPass, uint8 lastPass, int dobidi) const { assert(seg != 0); SlotMap map(*seg); FiniteStateMachine fsm(map, seg->getFace()->logger()); vm::Machine m(map); unsigned int initSize = seg->slotCount(); uint8 lbidi = m_bPass; #if !defined GRAPHITE2_NTRACING json * const dbgout = seg->getFace()->logger(); #endif if (lastPass == 0) { if (firstPass == lastPass && lbidi == 0xFF) return true; lastPass = m_numPasses; } if (firstPass <= lbidi && lastPass >= lbidi && dobidi) lastPass++; else lbidi = 0xFF; for (size_t i = firstPass; i < lastPass; ++i) { // bidi and mirroring if (i == lbidi) { #if !defined GRAPHITE2_NTRACING if (dbgout) { *dbgout << json::item << json::object << "id" << -1 << "slots" << json::array; seg->positionSlots(0); for(Slot * s = seg->first(); s; s = s->next()) *dbgout << dslot(seg, s); *dbgout << json::close << "rules" << json::array << json::close << json::close; } #endif if (!(seg->dir() & 2)) seg->bidiPass(m_aBidi, seg->dir() & 1, m_aMirror); else if (m_aMirror) { Slot * s; for (s = seg->first(); s; s = s->next()) { unsigned short g = seg->glyphAttr(s->gid(), m_aMirror); if (g && (!(seg->dir() & 4) || !seg->glyphAttr(s->gid(), m_aMirror + 1))) s->setGlyph(seg, g); } } --i; --lastPass; lbidi = 0xFF; continue; } #if !defined GRAPHITE2_NTRACING if (dbgout) { *dbgout << json::item << json::object << "id" << i+1 << "slots" << json::array; seg->positionSlots(0); for(Slot * s = seg->first(); s; s = s->next()) *dbgout << dslot(seg, s); *dbgout << json::close; } #endif // test whether to reorder, prepare for positioning if (i >= 32 || (seg->passBits() & (1 << i)) == 0) m_passes[i].runGraphite(m, fsm); // only subsitution passes can change segment length, cached subsegments are short for their text if (m.status() != vm::Machine::finished || (i < m_pPass && (seg->slotCount() > initSize * MAX_SEG_GROWTH_FACTOR || (seg->slotCount() && seg->slotCount() * MAX_SEG_GROWTH_FACTOR < initSize)))) return false; } return true; }