
1

TEX Live
for version 2014

October 2013

Karl Berry
Peter Breitenlohner
Norbert Preining
http://tug.org/tex-live

http://tug.org/tex-live

2 TEX Live

This file documents the TEX Live system, etc.

Copyright c© 2013 Karl Berry, Peter Breitenlohner, & Norbert Preining.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the TEX Users Group.

i

Table of Contents

1 Introduction . 1
1.1 TEX Live Mailing Lists . 1

2 The TEX Live Build System 3
2.1 Requirements to Build TEX Live . 3
2.2 Building and Installing TEX Live . 4

2.2.1 Installation Paths . 4
2.2.2 Linked Scripts . 5
2.2.3 Distro Builds . 5

2.2.3.1 Configuring for a Distro . 5
2.3 The TEX Live Source Tree . 6

2.3.1 The Top-Level Directories . 7
2.3.2 TEX Live Specific Autoconf Macros . 7

2.3.2.1 General Setup . 7
2.3.2.2 Programs . 8
2.3.2.3 Compilers . 8
2.3.2.4 Library Functions . 8
2.3.2.5 Flags for Libraries and Headers . 8
2.3.2.6 Windows Specific Macros . 9

2.3.3 Structure of Library Modules . 10
2.3.3.1 The png Library in libs/libpng . 10
2.3.3.2 The zlib Library in libs/zlib . 11
2.3.3.3 The freetype Library in libs/freetype2 11
2.3.3.4 The kpathsea Library in texk/kpathsea 11

2.3.4 Structure of Program Modules . 11
2.3.4.1 The t1utils Package in utils/t1utils 11
2.3.4.2 The xindy Package in utils/xindy 11
2.3.4.3 The xdvik Package in texk/xdvik 12
2.3.4.4 The Subdirectory utils/asymptote 12

2.3.5 Adding New Modules . 12
2.3.5.1 Adding a New Program Module . 12
2.3.5.2 Adding a New Generic Library Module 13
2.3.5.3 Adding a New TEX Specific Library Module 13

2.4 List of all Configure Options . 13
2.4.1 Global Configure Options . 14

2.4.1.1 --disable-native-texlive-build 14
2.4.1.2 --prefix, --exec-prefix, --bindir, 14
2.4.1.3 --enable-multiplatform . 14
2.4.1.4 --enable-cxx-runtime-hack . 14
2.4.1.5 --enable-shared . 14
2.4.1.6 --disable-largefile . 14
2.4.1.7 --without-x . 15

ii TeX Live: The xxx

2.4.1.8 --enable-compiler-warnings=[no|min|yes|max|all]

. 15
2.4.1.9 --disable-missing . 15
2.4.1.10 --enable-silent-rules . 15
2.4.1.11 --without-ln-s . 15
2.4.1.12 --enable-maintainer-mode . 15

2.4.2 Configure Options for Program Modules 15
2.4.2.1 --enable-prog, --disable-prog . 15
2.4.2.2 --disable-all-pkgs . 15
2.4.2.3 Configure Options for texk/web2c 15
2.4.2.4 Configure Options for texk/bibtex-x 16
2.4.2.5 Configure Options for texk/dvipdfm-x 17
2.4.2.6 Configure Options for texk/dvisvgm 17
2.4.2.7 Configure Options for texk/xdvik 17
2.4.2.8 Configure Options for utils/xindy 17

2.4.3 Configure Options for Library Modules 17
2.4.3.1 --with-system-lib . 17
2.4.3.2 Configure Options for kpathsea . 18
2.4.3.3 Configure Options for system poppler 18

2.4.4 Interesting and/or Important Variables 18
2.4.4.1 CC, CXX, CPPFLAGS, . 18
2.4.4.2 FT2_CONFIG, ICU_CONFIG, PKG_CONFIG 18
2.4.4.3 CLISP . 18
2.4.4.4 PERL, LATEX, PDFLATEX . 18
2.4.4.5 TL_PLATFORM . 19
2.4.4.6 KPSEWHICH . 19
2.4.4.7 MAKE, SED, . 19

2.5 Cross Compilation . 19
2.5.1 Configuring for Cross Compilation . 19
2.5.2 Cross Compilation Problems . 20

2.6 Coding Rules . 21
2.6.1 Declarations . 21

2.6.1.1 ANSI C Function Prototypes and Definitions 21
2.6.1.2 Static Functions . 21
2.6.1.3 Extern Functions . 21
2.6.1.4 Variables . 21

2.6.2 Const . 22
2.6.2.1 Function Parameters . 22
2.6.2.2 What Must be Avoided . 22
2.6.2.3 What Should be Avoided . 22

Index . 23

Chapter 1: Introduction 1

1 Introduction

This manual corresponds to version 2014 of the TEX Live system, released in October 2013.

1.1 TEX Live Mailing Lists

First, two common kinds of messages which should not go to any TeX Live list:

• Package bug reports must go to the package author. TEX Live redistributes what is on
CTAN without changes.

• General TEX/LATEX usage questions should go to one of general help resources. The
TEX Live lists are for TEX Live topics specifically.

The following mailing lists related to TEX Live are hosted on tug.org:

• tex-live@tug.org - bug reports, package requests, license issues, and general TEX
Live discussion of any kind.

• tlbuild@tug.org - specifically about building the binaries from the sources included
in TEX Live, and additional custom binaries.

• tldistro@tug.org - specifically about packaging TEX Live for complete OS distribu-
tions.

• tldoc@tug.org - specifically about the base TEX Live documentation and its transla-
tions.

• tlsecurity@tug.org - specifically for security-related reports.

You can (un)subscribe to each or peruse their archives via the web interfaces listed above.

tex-live@tug.org
tlbuild@tug.org
tldistro@tug.org
tldoc@tug.org
tlsecurity@tug.org

Chapter 2: The TEX Live Build System 3

2 The TEX Live Build System

The TEX Live build system has been redesigned in 2009, using Autoconf, Automake, and
Libtool. Thus
configure && make && make check && make install

or the more or less equivalent top-level Build script suffice to build and install the TEX
Live programs, where make check performs various test of the generated programs that are
not necessary but strongly recommend.

The main components of the TEX Live build system are TEX specific programs in subdi-
rectories texk/prog, utility programs in subdirectories utils/prog, TEX specific libraries
in subdirectories texk/lib (lib=kpathsea. . .) used by the TEX specific programs, and
generic libraries in subdirectories libs/lib.

The primary design goal is modularity. Each program and library module (or package)
specifies its own requirements and properties, such as required libraries, whether an installed
(system) version of a library can be used, configure options to be seen at the top-level, and
more. An explicit list of all available modules is only kept in one central place.

A second, related goal is to configure and build each library before configuring any other
(program or library) module using that library. This allows to check for properties and
features of a library built as part of the TEX Live tree in much the same way as for a system
version of that library.

All generic libraries and several programs are maintained independently. The corre-
sponding modules use (parts of) the distributed source tree and document any modifications
of that source tree.

All this should simplify upgrading of modules maintained independently and/or inte-
grating new modules into the TEX Live build system.

2.1 Requirements to Build TEX Live

Building the TEX Live programs requires

• C and C++ compilers

• GNU make

and uses the libraries included in the TEX Live source tree. There are, however, some
additional requirements

• xindy requires GNU clisp and in addition perl, latex, and pdflatex to build the
rules and/or documentation.

• Autodetection of the TEX Live platform name for biber requires perl.

• xpdfopen and xdvik require X11 headers and libraries (often a “development” package,
not installed by default).

• XeTeX requires an Objective C++ compiler under Mac OS X or otherwise
libfontconfig (again both headers and library).

• Modification of any .y or .l source files requires bison or flex to updatete the corre-
sponding C sources; modification of the sources for .info files requires makeinfo.

• Modification of any part of the build system (M4 macros, configure.ac, Makefile.am,
or their fragments) requires GNU M4, GNU Autoconf, GNU Automake, and GNU
Libtool to update the generated files.

4 TeX Live: The xxx

Without the required tools modifying such files or building these programs must avoided,
e.g., via --disable-xindy or --without-x.

2.2 Building and Installing TEX Live

The top-level Build script can be used to configure and build everything in a subdirectory
(root of the build tree, default Work), install everything in an other subdirectory (default
inst), and finally run make check. Several details of this process can be specified via
environment variables and a few leading options; all remaining arguments (assignments or
options) are passed to the configure script. Or one can run configure and make in a
suitable empty subdirectory.

Running the top-level configure script configures just the top-level and the subdirecto-
ries libs, utils, and texk. Running make at the top-level first iterates over all TEX specific
libraries, and then runs make in libs, utils, and texk to iterate over all generic libraries,
utility programs, and TEX specific programs. These iterations consist of two steps:
(1) For each library or program module not yet configured run configure adding the con-
figure option --disable-build if the module need not be built or otherwise run make all.
(2) For each library or program module that must be built run make for the selected tar-
get(s): default or all to (re-)build, check to run tests, install etc.

Running the top-level make a second time iterates again over all library and program
modules but finds nothing to be done unless some source files have been modified.

In case configuring or building a module fails, one could fix the problem, remove the
subdirectory for that module from the build tree, and rerun the top-level make (or Build
script with --no-clean as additional first argument).

With the configure option --disable-all-pkgs all program and library modules are
configured but none of them are built. The Makefile for each such module contains all
build rules and dependencies and can be invoked to build an individual program or library
and causes to first build any required libraries. This build "on demand" procedure is used,
e.g., in the luatex repository to build LuaTEX, essentially from a subset of the complete
TEX Live tree. Similarly, when, e.g., building ε-TEX has been disabled (as by default), one
can run make etex (or make etex.exe) in texk/web2c/ to build ε-TEX (altough there is no
simple way to install ε-TEX).

The TEX Live build system carefully formulates dependencies as well as make rules when
a tool (such as tangle, ctangle, or convert) creates several output files. This allows for
parallel builds (make -j n with n>1 or even make -j) that can considerably speed up the
TEX Live build on multi core systems. Further speed up can be achieved by using a configure
cache file, i.e., with the option -C.

Running make dist at the top-level creates a tarball tex-live-yyyy-mm-dd.tar.xz
from the TEX Live source tree, whereas make dist-check also verifies that this tarball
suffices to build and install all of TEX Live.

2.2.1 Installation Paths

Running make install (or make install-strip) installs executables in bindir,
libraries in libdir, headers in includedir, data (including "linked scripts") in
datarootdir/texmf-dist, manpages in mandir, and TEX info files in infodir. The
values of these directories are determined by configure and can be specified explictly as

Chapter 2: The TEX Live Build System 5

options such as --prefix=prefix or --bindir=bindir; otherwise they are given by their
usual Autoconf defaults

prefix /usr/local

exec_prefix prefix

bindir exec_prefix/bin

libdir exec_prefix/lib

includedir prefix/include

datarootdir prefix/share

mandir datarootdir/man

infodir datarootdir/info

and modified as follows:

• If the option --enable-multiplatform is given (or implied for a native TEX Live
build), /host, i.e., the canonical host name is appended to bindir and libdir.

• In a native TEX Live build datarootdir is set to prefix, mandir to
prefix/texmf-dist/doc/man, and infodir to prefix/texmf-dist/doc/info.

The top-level configure script displays all these installation paths.

For a native TEX Live build either for the TEX Live DVD or for an additional platform
the contents of bindir should be copied to the directory Master/bin/arch of the TEX Live
tree where arch is the TEX Live platform name corresponding to the canonical host name
host, the contents of libdir and includedir can be discarded, and everything else should
match files already present in the TEX Live tree.

2.2.2 Linked Scripts

Quite a few executables are architecture independent Shell, Perl, or other scripts. Some
of them are maintained as part of the TEX Live source tree, but most are maintained
elsewhere with copies under texk/texlive/linked_scripts. They are installed under
datarootdir/texmf-dist/scripts; for Unix-like systems there is a symbolic link point-
ing, e.g., from bindir/ps2eps to datarootdir/texmf-dist/scripts/ps2eps/ps2eps.pl

whereas for Windows bindir/ps2eps.exe is a copy of a small standard binary serving the
same purpose. One reason for all this is to avoid having many copies for the same script,
but most importantly this allows to invoke the same Perl or other script under Windows.

2.2.3 Distro Builds

Although they use the same code base, building for a TEX Live binary distribution as
shipped by the user groups may be quite different from a ’distro’ build for, e.g., some kind
of Linux distribution, a *Bsd or Mac OS X port, or similar.

While a TEX Live binary distribution uses shared libraries (libc, libm, X11 libraries,
and libfontconfig) only when absolutely necessary, a distro might use as many shared
libraries as possible, including TEX specific libraries such as libkpathsea. In addition the
installation paths will, in general, be quite different.

2.2.3.1 Configuring for a Distro

For a distro build you must use
--disable-native-texlive-build

and should use

6 TeX Live: The xxx

--with-banner-add=/SomeDistro

to identify your distro. You may specify
--enable-shared

to build shared TEX specific libraries and might add
--disable-static

to not build the static ones. You would like to use
--with-system-lib for as many libraries as possible and may then have to add --with-

lib-includes=dir and/or --with-lib-libdir=dir.

You should specify
--prefix=/usr or perhaps --prefix=/opt/TeXLive

and may have to add
--libdir=\${exec_prefix}/lib64

for 64-bit bi-arch (Linux) systems.

To make a usable TEX installation, you need (thousands of) support files in addition to
the binaries that are built and installed here. The support files are maintained completely
independently. The best basis for dealing with them is the TEX Live (plain text) database
and/or the TEX Live installer.

2.3 The TEX Live Source Tree

The TEX Live source tree is the subtree rooted at Build/source of the complete TEX Live
tree and contains the sources for all TEX Live executables as well as make rules to build and
install them together with some of their support files.

In general, the TEX Live build system uses the latest released versions of the GNU build
tools, installed directly from the original GNU releases (e.g., by building them with
configure --prefix=/usr/local/gnu

and having PATH start with /usr/local/gnu/bin). Currently these are

autoconf (GNU Autoconf) 2.69

automake (GNU automake) 1.14

ltmain.sh (GNU libtool) 2.4.2

bison (GNU Bison) 3.0

flex 2.5.37

m4 (GNU M4) 1.4.17

makeinfo (GNU texinfo) 5.2

These versions should be used to update the generated files (e.g., configure or
Makefile.in) in all or parts of the TEX Live tree when some of their sources have been
changed. This can be done explicitly with the top-level reautoconf script or implicitly by
using the configure option --enable-maintainer-mode.

The files in the SVN repository svn://tug.org/texlive/trunk are all up to date, but
this need not be reflected by their timestamps. To avoid unnecessary runs of bison, flex,
or makeinfo it may be necessary to touch the generated (.c, .h, or .info) files. With
--enable-maintainer-mode mode it may also be necessary to touch first aclocal.m4,
then configure and config.h.in (or c-auto.in), and finally all Makefile.in files.

svn://tug.org/texlive/trunk

Chapter 2: The TEX Live Build System 7

2.3.1 The Top-Level Directories

The files config.guess, config.sub, etc. for most packages are kept centrally in
build-aux/, sourced from GNU Gnulib (http://www.gnu.org/software/gnulib), which
in turn pulls them from their ultimate upstream source repository. There are, however,
independent copies in, e.g., libs/freetype2/freetype-*/builds/unix/, and similar
places. The reautoconf script does not take care of those, but a TEX Live cron job keeps
them in sync (nightly).

The directories m4/ and am/ contain Autoconf macros and Makefile.am fragments re-
spectively, all of them used in many places.

The file m4/kpse-pkgs.m4 contains lists of all program and library modules; missing
modules are, however, silently ignored. Each such module contributes fragments defining
its capabilities and requirements to the configure.ac scripts at the top-level and in the
subdirectiories libs, utils, and texk. The fragments from program modules supply con-
figure options to disable or enable building them, those from library modules specify if an
installed (system) version of that library can be used. This decides which modules need to
be built, although all modules must be configured for the benefit of make targets such as
dist or distcheck.

The directory extra/ contains things which are not part of the TeX Live build, but
are present for convenience, e.g., epstopdf developed here or xz required by the TEX Live
installer.

2.3.2 TEX Live Specific Autoconf Macros

Here we describe Autoconf macros used for several modules. They are supplemented by
module specific macros in directories such as texk/dvipng/m4/.

2.3.2.1 General Setup

The macro KPSE_BASIC is used to initialize the TEX Live infrastructure common to all
generic library and utility program modules, whereas the TEX specific library and program
modules use KPSE_COMMON to perform additional checks.

[Macro]KPSE_BASIC (name, [more-options])
Initialize the basic TEX Live infrastructure for module name:
AM_INIT_AUTOMAKE([foreign more-options])

AM_MAINTAINER_MODE

KPSE_COMPILER_WARNINGS

and make sure the C compiler understands function prototypes.

[Macro]KPSE_COMMON (name, [more-options])
Like KPSE_BASIC but add:
LT_PREREQ([2.2.6])

LT_INIT([win32-dll])

AC_SYS_LARGEFILE

AC_FUNC_FSEEKO

and check for various frequently used functions, headers, types, and structures.

http://www.gnu.org/software/gnulib

8 TeX Live: The xxx

2.3.2.2 Programs

[Macro]KPSE_CHECK_LATEX
Set LATEX to the name of the first of latex, elatex, or lambda existing in the
PATH, or to no if none of them exists. Call AC_SUBST for LATEX. The result of this
test can be overridden by setting the LATEX variable or the cache variable ac_cv_

prog_LATEX.

[Macro]KPSE_CHECK_PDFLATEX
Check for pdflatex existing in the PATH and set PDFLATEX.

[Macro]KPSE_CHECK_PERL
Check for perl or perl5 existing in the PATH and set PERL.

[Macro]KPSE_PROG_LEX
Call AC_PROG_LEX and add the flag -l for flex.

2.3.2.3 Compilers

[Macro]KPSE_COMPILER_WARNINGS
When using the (Objective) C/C++ compiler set WARNING [OBJ]C[XX]FLAGS to
suitable warning flags (depending on the value given to or implied for --enable-

compiler-warnings). Call AC_SUBST for them. At the moment this only works for
GNU compilers, but could be extended to others when necessary.

This macro caches its results in the kpse_cv_warning_cflags, . . . variables.

[Macro]KPSE_COMPILER_VISIBILITY
When using the C or C++ compiler try to set VISIBILITY C[XX]FLAGS to flags
to hide external symbols. Call AC_SUBST for this variable. At the moment this only
tests for -fvisibility=hidden, but that could be extended with more flags when
necessary.

This macro caches its results in the kpse_cv_visibility_cflags or kpse_cv_

visibility_cxxflags variable.

[Macro]KPSE_CXX_HACK
Provide the configure option --enable-cxx-runtime-hack. If enabled and when
using g++, try to statically link with libstdc++, somewhat improving portability.

This macro caches its result in the kpse_cv_cxx_hack variable.

2.3.2.4 Library Functions

[Macro]KPSE_LARGEFILE (variable, [extra-define])
Call AC_SYS_LARGEFILE and AC_FUNC_FSEEKO and append suitable -D flags (option-
ally including -Dextra-define) to variable.

2.3.2.5 Flags for Libraries and Headers

Each library module libs/lib or texk/lib there is supplemented by a macro KPSE_LIB_

FLAGS that provides make variables for that library. For, e.g., libs/libpng there is:

Chapter 2: The TEX Live Build System 9

[Macro]KPSE_LIBPNG_FLAGS
Provide the configure option --with-system-libpng. Set and AC_SUBST make vari-
ables for modules using this library (either an installed version or from the TEX
Live tree): LIBPNG INCLUDES for use in CPPFLAGS, LIBPNG LIBS for use in
LDADD, LIBPNG DEPEND for use as dependency, and LIBPNG RULE defining
make rules to rebuild the library.

[Macro]KPSE_ADD_FLAGS (name)
Temporarily extend CPPFLAGS and LIBS with the values required for the library
module name.

[Macro]KPSE_RESTORE_FLAGS
Restore CPPFLAGS and LIBS to their original values.

The file configure.ac for a hypothetical module utils/foo using libpng (and zlib)
would contain
KPSE_ZLIB_FLAGS

KPSE_LIBPNG_FLAGS

and Makefile.am might contain
bin PROGRAMS = foo
AM CPPFLAGS = ${LIBPNG INCLUDES} ${ZLIB INCLUDES}
foo LDADD = ${LIBPNG LIBS} ${ZLIB LIBS}
foo DEPENDENCIES = ${LIBPNG DEPEND} ${ZLIB DEPEND}
Rebuild libz
@ZLIB RULE@
Rebuild libpng
@LIBPNG RULE@

In order to examine some libpng features, configure.ac should be continued with
KPSE_ADD_FLAGS([zlib])

... # tests for zlib features (if any).
KPSE_ADD_FLAGS([libpng])

... # tests for libpng features.
KPSE_RESTORE_FLAGS # restore CPPFLAGS and LIBS.

2.3.2.6 Windows Specific Macros

Windows differs in several aspects from Unix-like systems, many of them due to the lack of
symbolic links.

[Macro]KPSE_CHECK_WIN32
Check if compiling for a Windows system. The result is no for Unix-like systems
(including Cygwin), mingw32 for Windows with GCC, or native for Windows with
MSVC and is cached in the kpse_cv_have_win32 variable.

[Macro]KPSE_COND_WIN32
Call KPSE_CHECK_WIN32 and define the Automake conditional WIN32 (true if the value
of kpse_cv_have_win32 is not no).

[Macro]KPSE_COND_MINGW32
Call KPSE_COND_WIN32 and define the Automake conditional MINGW32 (true if the
value of kpse_cv_have_win32 is mingw32).

10 TeX Live: The xxx

[Macro]KPSE_COND_WIN32_WRAP
Call KPSE_COND_WIN32 and define the Automake conditional WIN32_WRAP (true
if the standard Windows wrapper texk/texlive/w32_wrapper/runscript.exe

exists). This wrapper is used on Windows instead of symlinks to the linked scripts.

[Macro]KPSE_WIN32_CALL
Call KPSE_COND_WIN32, check if the file texk/texlive/w32_wrapper/callexe.c

exists, and if so create a symlink in the build tree. Compiling callexe.c with
-DEXEPROG=’"foo.exe"’ and installing callexe.exe as bar.exe is used for
Windows instead of a symlink bar->foo for Unix-like systems.

2.3.3 Structure of Library Modules

The structure of library modules is best explained with a few examples.

2.3.3.1 The png Library in libs/libpng

This generic library uses the distributed source tree in, e.g., libpng-1.5.17 with all
modifications recorded in libpng-1.5.17-PATCHES/*. The configure.ac fragment
ac/withenable.ac contains

KPSE_WITH_LIB([libpng], [zlib])

with the module name and indicating the dependency on zlib. A third argument tree

would specify that the library from the TEX Live tree can not be replaced by a system
version. That not being the case, a second fragment ac/libpng.ac contains

KPSE_TRY_LIB([libpng],

[#include <png.h>],

[png_structp png; png_voidp io; png_rw_ptr fn;

png_set_read_fn(png, io, fn);])

and provides the simple C code

#include <png.h>

int main ()

{ png_structp png; png_voidp io; png_rw_ptr fn;

png_set_read_fn(png, io, fn);

return 0; }

used to verify the usability of a system version. The similar macro KPSE_TRY_LIBXX would
provide some C++ code. These fragments are included by configure.ac at the top levels.

A proxy build system (configure.ac, Makefile.am, and include/Makefile.am) ig-
nores the distributed one and consequently a few generated files and auxiliary scripts are
removed from the distributed source tree. The public headers png.h, pngconf.h, and
pnglibconf.h are ’installed’ (as symlinks) under include/ in the build tree exactly as
they are for a system version under, e.g., usr/include/.

The module is supplemented by the file m4/kpse-libpng-flags.m4 that defines the
M4 macro KPSE_LIBPNG_FLAGS used by all modules depending on this library in their
configure.ac to generate the make variables LIBPNG_INCLUDES for use in CPPFLAGS,
LIBPNG_LIBS for use in LDADD, LIBPNG_DEPEND for use as dependency, and LIBPNG_RULE

defining make rules to rebuild the library.

In addition m4/kpse-libpng-flags.m4 supplies the configure option --with-system-

libpng and uses pkg-config to determine the flags required for the system library.

Chapter 2: The TEX Live Build System 11

2.3.3.2 The zlib Library in libs/zlib

This generic library is quite analogous to libpng but does not depend on any other library.
The file m4/kpse-zlib-flags.m4 supplies the configure option --with-system-zlib as
well as --with-zlib-includes and --with-zlib-libdir to specify non standard locations
of the zlib headers and/or library.

2.3.3.3 The freetype Library in libs/freetype2

This module uses a wrapper build system with an almost trivial configure.ac and with
Makefile.am that invokes configure and make for the distributed source, followed by make

install with the build tree as destination. The flags required for the system library are
obtained through freetype-config.

2.3.3.4 The kpathsea Library in texk/kpathsea

This is one of the TEX specific libraries that are maintained as part of TEX Live. Other than
the generic libraries they are (static and/or shared) Libtool libraries and are installed to-
gether with the programs. They are, however, not part of the TEX Live DVD as distributed
by TEX user groups.

It is possible, although quite unusual to specify the configure option --with-system-

kpathsea in order to use a system version of the library and it may then be necessary to
specify --with-kpathsea-includes and/or --with-kpathsea-libdir.

In addition to ac/withenable.ac and ac/kpathsea.ac there is a third fragment
ac/mktex.ac included by both ac/withenable.ac and configure.ac that supplies
configure options such as --enable-mktextfm-default determining the compile time
default whether or not to run mktextfm to generate a missing .tfm file. Note, however,
that the command line options -mktex=tfm or -no-mktex=tfm for TEX-like engines
override this default.

2.3.4 Structure of Program Modules

The structure of program modules is again best explained with a few examples.

2.3.4.1 The t1utils Package in utils/t1utils

Once again we use the distributed source tree t1utils-1.38 with modifications documented
in t1utils-1.38-PATCHES/* and a proxy build system consisting of configure.ac and
Makefile.am. The fragment ac/withenable.ac contains

KPSE_ENABLE_PROG([t1utils])

specifying the module name without any dependencies and supplies the configure option
--disable-t1utils.

2.3.4.2 The xindy Package in utils/xindy

This module uses the distributed source tree xindy-2.4 with modifications documented in
xindy-2.4-PATCHES/*, a proxy configure.ac, and a wrapper Makefile.am that descends
into xindy-2.4. This requires that the distributed Makefiles allow a VPATH build, can
handle all targets, and do not refer to ${top_srcdir} or ${top_builddir}. The fragment
ac/withenable.ac contains

12 TeX Live: The xxx

KPSE_ENABLE_PROG([xindy], , [disable native])

m4_include(kpse_TL[utils/xindy/ac/xindy.ac])

m4_include(kpse_TL[utils/xindy/ac/clisp.ac])

where disable in the third argument indicates that xindy is only built if explicitly enabled
by --enable-xindy (because it requires clisp) and native disallows cross compilation.
The additional fragments ac/xindy.ac and ac/clisp.ac specify more configure options to
be seen at the top-leved with ac/xindy.ac also included by configure.ac.

2.3.4.3 The xdvik Package in texk/xdvik

This package is maintained as part of the TEX Live tree with sources in its top-level and
the subdirectory gui. The fragment ac/withenable.ac contains

dnl extra_dirs = texk/xdvik/squeeze

KPSE_ENABLE_PROG([xdvik], [kpathsea freetype2], [x])

m4_include(kpse_TL[texk/xdvik/ac/xdvik.ac])

and specifies the dependency on the kpathsea, freetype, and X11 libraries. The M4 com-
ment (following dnl) signals the subsidiary squeeze/configure.ac. This is needed because
the main executable xdvi-bin (to be installed as, e.g., xdvi-xaw) is for the host system
whereas the auxiliary program squeeze/squeeze has to run on the build system and in
a cross compilation they differ. The additional fragment ac/xdvik.ac is also included by
configure.ac and supplies the configure option --with-xdvi-x-toolkit also seen at the
top-level.

2.3.4.4 The Subdirectory utils/asymptote

This subdirectory contains the sources for asy and xasy but due to its complexity and
prerequisites (e.g., libGL) it is not part the TEX Live build system. These programs must
be built and installed independently, but are contained in the TEX Live DVD together with
their support files.

2.3.5 Adding New Modules

2.3.5.1 Adding a New Program Module

A TEX specific program module in a subdirectory texk/prog may use the TEX specific
libraries and is included by adding its name prog to the M4 list kpse_texk_pkgs defined in
m4/kpse-pkgs.m4. A generic program module in a subdirectory utils/prog must not
use the TEX specific libraries and is included by adding its name prog to the M4 list
kpse_utils_pkgs in m4/kpse-pkgs.m4. Apart from the program sources and build sys-
tem (configure.ac and Makefile.am) the subdirectory texk/prog or utils/prog must
provide a fragment ac/withenable.ac that contains the M4 macro KPSE_ENABLE_PROG de-
fined in m4/kpse-setup.m4 with prog as mandatory first argument and three optional
arguments: a list of required libraries from the TEX Live tree, a list of options (disable if
this module is not to be built without the configure option --enable-prog, native if cross
compilation is not possible, x if the program requires X11 libraries), and a comment added
to the help text for the configure option --enable-prog or --disable-prog.

If the module requires specific configure options to be seen at the top-level, they should
be defined in an additional fragment ac/prog.ac included from ac/withenable.ac and
configure.ac.

Chapter 2: The TEX Live Build System 13

2.3.5.2 Adding a New Generic Library Module

A generic library module in a subdirectory libs/lib must not depend on TEX specific
libraries and is included by adding its name lib to the M4 list kpse_libs_pkgs in
m4/kpse-pkgs.m4 (before other libraries from the TEX Live tree it depends on). As for
program modules the subdirectory libs/lib must contain the sources and build system
for the library (and any installable support programs) and a fragment ac/withenable.ac
that contains the M4 macro KPSE_WITH_LIB defined in m4/kpse-setup.m4 with lib as
mandatory first argument and two optional arguments: a list of required libraries from the
TEX Live tree, and a list of options (currently only tree if this library can not be replaced
by a system version).

If a system version can be used, a second fragment ac/lib.ac containing the M4 macro
KPSE_TRY_LIB (or KPSE_TRY_LIBXX) with lib as mandatory first argument and two ad-
ditional arguments for the Autoconf macro AC_LANG_PROGRAM used to compile and link a
small C (or C++) program as sanity check for using the system library.

In addition a file m4/kpse-lib-flags (at the top-level) must define the M4 macro KPSE_

LIB_FLAGS (all uppercase) setting up the make variables LIB_INCLUDES, LIB_LIBS, LIB_
DEPEND, and LIB_RULE with the values required for CPPFLAGS, LDADD, dependencies, and a
(multiline) make rule to rebuild the library when necessary, all that for the library from the
TEX Live tree or perhaps for a system version.

If a system library is allowed KPSE_LIB_FLAGS also provides the configure option --with-

system-lib and uses the additional M4 macro KPSE_LIB_SYSTEM_FLAGS to generate the
make variables for a system library. Furthermore the definition of the M4 macro KPSE_ALL_

SYSTEM_FLAGS in m4/kpse-pkgs.m4 must be extended by the line
AC_REQUIRE([KPSE_LIB_SYSTEM_FLAGS])

2.3.5.3 Adding a New TEX Specific Library Module

A TEX specific library module in a subdirectory texk/libmay depend on other TEX specific
libraries but must not depend on any generic library from the TEX Live tree. It is included
as is a generic library module with these modifications:

• The library name lib is added to the M4 list kpse_texlibs_pkgs also in
m4/kpse-pkgs.m4.

• The fragment ac/withenable.ac must use KPSE_WITH_TEXLIB.

2.4 List of all Configure Options

Corresponding to the large number of program and library modules there are plenty of
configure options, most of which are described here. The command
configure --help

at the top-level gives an exhaustive list of all global options and a few important module
specific ones, whereas, e.g.,
texk/lcdf-typetools/configure --help

also displays the lcdf-typetools specific options not shown at the top-level. The help
text also mentions several influential environment variables, but for TEX Live it is better
to specify them as assigments on the command line.

14 TeX Live: The xxx

The ./Build script used to make the binaries shipped with TEX Live invokes the top-
level configure with a few additional options. Any defaults discussed below are those for
the base configure script; invoking configure via ./Build may yield different results.

Defaults for most options are set at the top-level and propagated explicitly to all subdi-
rectories. Options specified on the command line are checked for consistency but are never
modified.

2.4.1 Global Configure Options

2.4.1.1 --disable-native-texlive-build

If enabled (the default), build for a TEX Live binary distribution as shipped by the user
groups; this requires GNU make and implies --enable-multiplatform and --enable-cxx-

runtime-hack unless they are explicitly disabled and enforces --disable-shared.

If building TEX Live for a GNU/Linux or other distribution, this should be disabled and
system versions of most libraries would be used (see below). This may require GNU make,
but will also try without it.

A related option --enable-texlive-build is automatically passed to all subdirectories
(and can not be disabled). Subdirectories that could also be built independently from the
TEX Live tree (such as utils/xindy or texk/dvipng) can use this option, e.g., to choose
TEX Live specific installation paths.

2.4.1.2 --prefix, --exec-prefix, --bindir, . . .

These options specify various installation directories as usual, all of them still prefixed by
the value of an assignment for DESTDIR on the make command line (see Section “Installation
in a temporary location” in GNU Automake).

2.4.1.3 --enable-multiplatform

If enabled, install executables and libraries in platform dependent subdirectories of
EPREFIX/bin and EPREFIX/lib (unless --bindir=dir or --libdir=dir is specified),
where EPREFIX is the value given or implied for exec_prefix. The values for bindir and
libdir are automatically propagated to all subdirectories.

2.4.1.4 --enable-cxx-runtime-hack

If enabled and when using g++, try to statically link with libstdc++, somewhat improving
portability.

2.4.1.5 --enable-shared

Build shared versions of the TEX specific libraries such as libkpathsea; this is not allowed
for a native TEX Live build.

2.4.1.6 --disable-largefile

Omit large file support (LFS), needed on most 32-bit Unix systems for files with 2GB or
more. The size of DVI and GF files must always be < 2GB. With LFS there should be no
limit on the size of PDF files created by pdftex or PS files created by dvips. The size of
PDF images included by pdftex must, however, be < 4GB when using xpdf and < 2GB

Chapter 2: The TEX Live Build System 15

when using older versions of poppler (even on 64-bit systems with LFS), whereas poppler
Version 0.23 and later imposes no such limit.

2.4.1.7 --without-x

Disable all programs using the X Window System.

2.4.1.8 --enable-compiler-warnings=[no|min|yes|max|all]

Enable various degrees of compiler warnings for (Objective) C and C++. The default is yes
in maintainer-mode and min otherwise. This option defines WARNING_[OBJ]C[XX]FLAGS but
these flags are not used in all library and program modules. Using them should help to
resolve portability problems.

At the moment these warning flags are only defined for the GNU compilers but flags for
other compilers could be added when needed.

2.4.1.9 --disable-missing

Immediately terminate the build process if a requested program or feature must be disabled,
e.g., due to missing libraries.

2.4.1.10 --enable-silent-rules

Enable the use of less verbose build rules. When using GNU make or another make im-
plementation that supports nested variable expansions you can always specify V=1 on the
make command line to get more respectively V=0 to get less verbosity.

2.4.1.11 --without-ln-s

Required when using a system without working ln -s to build binaries for a Unix-like
system. But note that make install will not create anything useful and might even fail.

2.4.1.12 --enable-maintainer-mode

Enable make rules and dependencies not useful (and sometimes confusing) to the casual
user. This requires current versions of the GNU build tools.

2.4.2 Configure Options for Program Modules

2.4.2.1 --enable-prog, --disable-prog

Do or do not build and install the program(s) of the module prog.

2.4.2.2 --disable-all-pkgs

Do not build any program modules, except those explicitly enabled. Without this option,
all modules are built except those that are explicitly disabled or specify disable in their
ac/withenable.ac fragment.

2.4.2.3 Configure Options for texk/web2c

--with-banner-add=str

Add str to the default version string (TeX Live year or Web2C year) appended to banner
lines. This is ignored for a native TEX Live build, but distro builds should specify, e.g.,
/SomeDistro.

16 TeX Live: The xxx

--with-editor=cmd

Specify the command cmd to invoke from the e option of TEX-like engines, replacing the
default vi +%d ’%s’ for Unix or texworks --position=%d "%s" for Windows.

--enable-auto-core

This option causes TEX & METAFONT to produce a core dump when a particular hacky
filename is encountered.

--disable-dump-share

Make the fmt/base dump files architecture dependent (somewhat faster on little-endian
architectures).

--disable-ipc

Disable TEX’s --ipc option.

--disable-tex, --enable-etex, . . .
Do not or do build the various TEX, METAFONT, and MetaPost engines (defaults are
defined in the fragment texk/web2c/ac/web2c.ac).

--enable-tex-synctex, --disable-etex-synctex, . . .
Build the various TEX-like engines with or without SyncTeX support (ignored for a native
TEX Live build, defaults are again defined in texk/web2c/ac/web2c.ac).

--with-fontconfig-includes=dir, --with-fontconfig-libdir=dir
Building XeTeX on non-Mac systems requires installed fontconfig headers and library. If
one or both of these options are given, the required flags are derived from them; otherwise,
they are determined via pkg-config (if present).

--enable-libtool-hack

If enabled (at present the default for all platforms), prevents libtool from linking explicitly
with dependencies of libfontconfig such as libexpat.

--with-mf-x-toolkit

Use the X toolkit (libXt) for METAFONT (default is yes).

--enable-*win

Include various types of other window support for METAFONT.

--disable-mf-nowin

Do not build a separate non-graphically-capable METAFONT.

--disable-web-progs

Do not build the WEB programs bibtex, . . . , weave, e.g., if you just want to (re)build
some engines.

--disable-omfonts

Build the WEB versions of the Omega font utilities ofm2opl, opl2ofm, ovf2ovp, and
ovp2ovf instead of the C version omfonts. The WEB and C versions should be roughly
equivalent.

2.4.2.4 Configure Options for texk/bibtex-x

The former modules bibtex8 and bibtexu have been merged into bibtex-x (extended
BibTeX).

--disable-bibtex8

Do not build the bibtex8 program.

Chapter 2: The TEX Live Build System 17

--disable-bibtexu

Do not build the bibtexu program (building bibtexu requires ICU libraries).

2.4.2.5 Configure Options for texk/dvipdfm-x

The former modules dvipdfmx and xdvipdfmx have been merged into dvipdfm-x.

--disable-dvipdfmx

Do not build the dvipdfmx program.

--disable-xdvipdfmx

Do not build the xdvipdfmx program (building xdvipdfmx requires the freetype library).

2.4.2.6 Configure Options for texk/dvisvgm

--with-system-libgs

Build dvisvgm using installed Ghostscript (gs) headers and library (not allowed for a native
TEX Live build). The default is to load the gs library at runtime if possible, or otherwise
disable support for PostScript specials.

--with-libgs-includes=dir, --with-libgs-libdir=dir
Specify non standard locations of the Ghostscript headers and library.

2.4.2.7 Configure Options for texk/xdvik

--with-gs=path

Hardwire the location of Ghostscript (gs).

--with-xdvi-x-toolkit=kit

Use toolkit kit (motif/xaw/xaw3d/neXtaw) for xdvi. The default is motif if available, else
xaw.

2.4.2.8 Configure Options for utils/xindy

--enable-xindy-rules

Build and install xindy rules (default: yes, except for a native TEX Live build).

--enable-xindy-docs

Build and install xindy documentation (default: yes, except for a native TEX Live build).

--with-clisp-runtime=path

Specifies the full path of the CLISP runtime (lisp.run or lisp.exe) to be installed. When
specified as default (the default for a native TeX Live build) the path is determined by
the CLISP executable; the value system (not allowed for a native TEX Live build, but the
default for a non-native one) indicates that xindy will use the installed version of clisp
(that must be identical to the one used to build xindy).

--with-recode

Use recode instead of iconv to build the xindy rules and documentation, required for some
systems where iconv is missing or broken.

2.4.3 Configure Options for Library Modules

2.4.3.1 --with-system-lib

Use an installed (system) version of the library lib; this option exists for most libraries,
but is not allowed for a native TEX Live build. Using a system version implies to also use
system versions of all libraries (if any) this library depends on.

18 TeX Live: The xxx

For many libraries there are in addition --with-lib-includes=dir and --with-lib-

libdir=dir to indicate non standard search locations, others use pkg-config or similar to
determine the required flags.

The top-level configure script performs a consistency check for all required system
libraries and bails out if some of these tests fail.

2.4.3.2 Configure Options for kpathsea

--enable-cmd-default, --disable-cmd-default
Determine the compile time default whether or not to run cmd=mktexmf, mktexpk,
mktextfm, mkocp, mkofm, mktexfmt, or mktextex to generate a missing MF source, PK
font, TFM file, OCP file, OFM file, format file, or TEX source respectively.

2.4.3.3 Configure Options for system poppler

Building LuaTeX and XeTeX requires poppler either from the TEX Live tree or system
headers and library; pdfTeX requires either xpdf from the TEX Live tree or system poppler

headers and library.

--with-system-poppler

Use a system version (0.18 or better) of poppler for LuaTeX and XeTeX (and pkg-config

to obtain the required flags).

--with-system-xpdf

Use a system version (0.12 or better) of poppler (and pkg-config) for pdfTeX instead of
xpdf from the TEX Live tree.

REFER to --disable-largefile

2.4.4 Interesting and/or Important Variables

The values for these variables can be specified as configure arguments of the form
VAR=value. (In principle they could also come from the environment but that might not
work for cross compilations.)

2.4.4.1 CC, CXX, CPPFLAGS, . . .

As usual, these variables specify the name (or full path) of compilers, preprocessor flags,
and similar.

2.4.4.2 FT2_CONFIG, ICU_CONFIG, PKG_CONFIG

These specify the name (or path) for the freetype-config, icu-config, and pkg-config

commands used to determine the flags required for system versions of libfreetype, the
ICU libraries, or many other libraries.

2.4.4.3 CLISP

Name (or path) of the clisp executable, used to build xindy.

2.4.4.4 PERL, LATEX, PDFLATEX

Name (or path) for the perl, latex, and pdflatex commands used, e.g., to build the xindy
documentation

Chapter 2: The TEX Live Build System 19

2.4.4.5 TL_PLATFORM

The utility program biber consists of many components bundled by the Par::Packer

mechanism of perl. Therefore they are not built as part of TEX Live but by the biber

maintainers and third-party builders.

In order that make install creates all executables in bindir, the bibermodule contains
pre-made binaries for the platforms for which they are available. TEX Live merely checks if
an executable is present for the current platform, and if so, installs it.

The complication is hidden in the phrase "current platform". TEX Live has its own ideas
about platform names, and the mapping from the canonical system name determined by
config.guess or config.sub to the TEX Live platform name is not trivial. A value given for
TL_PLATFORM is used as TEX Live platform name. Otherwise, we use copies of the standard
perl modules TeXLive/TLUtils.pm and TeXLive/TLConfig.pm, to avoid duplicating the
platform-detection logic.

2.4.4.6 KPSEWHICH

Name (or path) of an installed kpsewhich binary, used by make check to determine the
location of, e.g., cmbx10.tfm.

2.4.4.7 MAKE, SED, . . .

Name (or path) of GNU make, GNU sed, and similar; used at the top-level and propagated
to all subdirectories.

2.5 Cross Compilation

In a cross compilation a build system is used to create binaries to be executed on a host

system with different hardware and/or operating system.

In simple cases the build system can execute binaries for the host system. This typi-
cally occurs for bi-arch systems where, e.g., i386-linux binaries can run on x86_64-linux

systems and win32 binaries can run on win64 systems. Although sometimes called "native
cross", this is technically no cross compilation. In most such cases it suffices to specify
suitable compiler flags. It might be useful to add the configure option --build=host to get
the correct canonical host name, but note that this should not be --host=host (see Section
“Hosts and Cross-Compilation” in Autoconf)!

2.5.1 Configuring for Cross Compilation

In a genuine cross compilation binaries for the host system can not execute on the build
system and it is necessary to specify the configure options --host=host and --build=build

with two different values. Building binaries requires suitable "cross" tools, e.g., compiler,
linker, and archiver, and perhaps a "cross" version of pkg-config and similar to locate
host system libraries. Autoconf expects that these cross tools are given by their usual
variables or found under their usual name prefixed with host-. Here a list of such tools
and corresponding variables:

ar AR

freetype-config FT2_CONFIG

g++ CXX

gcc CC

20 TeX Live: The xxx

icu-config ICU_CONFIG

objdump OBJDUMP

pkg-config PKG_CONFIG

ranlib RANLIB

strip STRIP

In order to, e.g., build mingw32 binaries on x86_64-linux with a cross compiler found as
i386-pc-mingw32-gcc one would specify
--host=i386-pc-mingw32 --build=x86_64-linux-gnu

or perhaps
--host=mingw32 --build=x86_64-linux CC=i386-pc-mingw32-gcc

but this might require to add CXX and others.

Configure arguments such as CFLAGS=... refer to the cross compiler. If necessary, you
can specify compilers and flags for the few auxiliary C and C++ programs required for the
build process as configure arguments

BUILDCC=...

BUILDCPPFLAGS=...

BUILDCFLAGS=...

BUILDCXX=...

BUILDCXXFLAGS=...

BUILDLDFLAGS=...

2.5.2 Cross Compilation Problems

The fact that binaries for the host system can not be executed on the build system causes
some problems.

One problem is, that configure tests using AC_RUN_IFELSE can compile and link the test
program but can not execute it. Such tests should be avoided if possible and otherwise
must supply a pessimistic test result.

An other problem arises if the build process must execute some (auxiliary or installable)
programs. Auxiliary programs can be placed into a subdirectory that is configured natively
as is done for texk/dvipsk/squeeze, texk/web2c/web2c, and texk/xdvik/squeeze. The
module libs/freetype uses the value of CC_BUILD, build-gcc, gcc, or cc as compiler for
the auxiliary program.

The situation for installable programs needed by the build process is somewhat differ-
ent. A quite expensive possibility, chosen for the ICU libraries in module libs/icu, is to
first compile natively for the build system and in a second step to use these (uninstalled)
programs during the cross compilation. This would also be possible for the tools such as
tangle used in the module texk/web2c to build the WEB programs, but that would require
to first build a native kpathsea library. To avoid this complication, cross compilation of
the WEB or CWEB programs in this module requires sufficiently recent installed versions
of tangle, ctangle, otangle, and tie.

Building xindy requires to run the host system clisp binary, thus cross compilation is
not possible.

Chapter 2: The TEX Live Build System 21

2.6 Coding Rules

Ideally, building all of TEX Live with --enable-compiler-warnings=max should produce
no (GCC) compiler warnings at all. In spite of considerable efforts into that direction we
are still far from that goal and there are reasons that we may never fully reach it. Below
are some rules about declarations of functions or variables and the use of const. These
rules should be applied to all parts of the TEX Live tree, except some of those maintained
independently.

2.6.1 Declarations

2.6.1.1 ANSI C Function Prototypes and Definitions

The TEX Live build system no longer supports pre-ANSI C compilers. Thus all function
prototypes and definitions must conform to the ANSI C standard (including void in the
declaration of C functions with no parameters). On the other hand TEX Live is built for
many different systems, some of them not supporting the C99 standard. Therefore using
C99 features should be avoided if that can easily be done. In particular C code must not
contain declarations after statements or C++ type comments.

If some C99 (or later) constructs have to be used, the module should verify that they
are available and otherwise provide an alternative. The module texk/chktex uses, e.g., the
C99 function stpcpy() that may or may not be available on a particular system, uses AC_
CHECK_DECLS([stpcpy]) in configure.ac to test this, and provides the perhaps slightly
less efficient alternative
#if !(defined HAVE_DECL_STPCPY && HAVE_DECL_STPCPY)

static inline char * stpcpy(char *dest, const char *src)

{

return strcpy(dest, src) + strlen(src);

}

#endif

in the file Utility.h.

2.6.1.2 Static Functions

Functions used in only one file should be declared static; they require no prototype except
as forward declaration.

2.6.1.3 Extern Functions

Functions not declared static, usually because they are used in several files, require an
(extern) prototype in exactly one header which is included in the file defining the function
and in all files using that function — this is the only way to guarantee consistency between
definition and use of functions. There must be no extern declarations sprinkled throughout
the C code (with or without comment where that function is defined).

2.6.1.4 Variables

The declaration of global variables must follow analogous rules, they are either declared
static if used in only one files or declared extern in exactly one header and instantiated
in exactly one file.

22 TeX Live: The xxx

2.6.2 Const

2.6.2.1 Function Parameters

Ideally, a function parameter not modified by the function should be declared as const.
This is important in particular for strings (char*) because the actual arguments are often
string literals. It is perfectly legitimate and safe to use a type char* value for a type const
char* variable (in an assignment, as initializer, as function argument, or as return value).
It is equally safe to use a type char** value for a type const char*const* variable, but
not for a type const char** variable since that might cause modification of a quantity
supposed to be constant. Getting all const qualifiers right is often quite involved but can
be done in most cases. There are, however, a few notable exceptions: the X11 headers are
full of declarations that ought to use const but do not and the same is true to some extent
for libfreetype (but not anymore for zlib).

2.6.2.2 What Must be Avoided

The GCC compiler warnings "assignment discards qualifiers. . ." and analogous warnings
for "initialization", "passing arg", or "return" must be avoided under all circumstances,
except when caused by X11 headers/macros or third party code.

2.6.2.3 What Should be Avoided

A type cast, e.g., from const char* to char* does not solve any problems; depending on
warning options, it may only hide them. Therefore such casts should be avoided whenever
possible and otherwise must be carefully analyzed to make sure that they can not cause the
modification of quantities supposed to be constant.

Index 23

Index

B
build system . 3

F
fundamental purpose of TEX Live 1

I
introduction . 1

K
KPSE_ADD_FLAGS . 9
KPSE_BASIC . 7
KPSE_CHECK_LATEX . 8
KPSE_CHECK_PDFLATEX . 8

KPSE_CHECK_PERL . 8
KPSE_CHECK_WIN32 . 9
KPSE_COMMON . 7
KPSE_COMPILER_VISIBILITY . 8
KPSE_COMPILER_WARNINGS . 8
KPSE_COND_MINGW32 . 9
KPSE_COND_WIN32 . 9
KPSE_COND_WIN32_WRAP . 10
KPSE_CXX_HACK . 8
KPSE_LARGEFILE . 8
KPSE_LIBPNG_FLAGS . 9
KPSE_PROG_LEX . 8
KPSE_RESTORE_FLAGS . 9
KPSE_WIN32_CALL . 10

T
the TEX Live build system . 3

	Introduction
	 Mailing Lists

	The Build System
	Requirements to Build
	Building and Installing
	Installation Paths
	Linked Scripts
	Distro Builds
	Configuring for a Distro

	The Source Tree
	The Top-Level Directories
	 Specific Autoconf Macros
	General Setup
	Programs
	Compilers
	Library Functions
	Flags for Libraries and Headers
	Windows Specific Macros

	Structure of Library Modules
	The png Library in libs/libpng
	The zlib Library in libs/zlib
	The freetype Library in libs/freetype2
	The kpathsea Library in texk/kpathsea

	Structure of Program Modules
	The t1utils Package in utils/t1utils
	The xindy Package in utils/xindy
	The xdvik Package in texk/xdvik
	The Subdirectory utils/asymptote

	Adding New Modules
	Adding a New Program Module
	Adding a New Generic Library Module
	Adding a New TeX{} Specific Library Module

	List of all Configure Options
	Global Configure Options
	--disable-native-texlive-build
	--prefix, --exec-prefix, --bindir, ...{}
	--enable-multiplatform
	--enable-cxx-runtime-hack
	--enable-shared
	--disable-largefile
	--without-x
	--enable-compiler-warnings=[no|min|yes|max|all]
	--disable-missing
	--enable-silent-rules
	--without-ln-s
	--enable-maintainer-mode

	Configure Options for Program Modules
	--enable-prog, --disable-prog
	--disable-all-pkgs
	Configure Options for texk/web2c
	Configure Options for texk/bibtex-x
	Configure Options for texk/dvipdfm-x
	Configure Options for texk/dvisvgm
	Configure Options for texk/xdvik
	Configure Options for utils/xindy

	Configure Options for Library Modules
	--with-system-lib
	Configure Options for kpathsea
	Configure Options for system poppler

	Interesting and/or Important Variables
	CC, CXX, CPPFLAGS, ...{}
	FT2_CONFIG, ICU_CONFIG, PKG_CONFIG
	CLISP
	PERL, LATEX, PDFLATEX
	TL_PLATFORM
	KPSEWHICH
	MAKE, SED, ...{}

	Cross Compilation
	Configuring for Cross Compilation
	Cross Compilation Problems

	Coding Rules
	Declarations
	ANSI C Function Prototypes and Definitions
	Static Functions
	Extern Functions
	Variables

	Const
	Function Parameters
	What Must be Avoided
	What Should be Avoided

	Index

