From fc98a758849cdf5f3cda46b8d328715ddb2efa6f Mon Sep 17 00:00:00 2001 From: Karl Berry Date: Sat, 29 Jun 2024 20:00:37 +0000 Subject: pst-diffraction (29jun24) git-svn-id: svn://tug.org/texlive/trunk@71657 c570f23f-e606-0410-a88d-b1316a301751 --- .../texmf-dist/doc/generic/pst-diffraction/Changes | 4 + .../texmf-dist/doc/generic/pst-diffraction/README | 10 +- .../pst-diffraction/pst-diffraction-doc.pdf | Bin 0 -> 22756751 bytes .../pst-diffraction/pst-diffraction-doc.tex | 451 +++++++++++++++++++ .../pst-diffraction/pst-diffraction-docDE.pdf | Bin 828505 -> 0 bytes .../pst-diffraction/pst-diffraction-docDE.tex | 495 --------------------- .../pst-diffraction/pst-diffraction-docE.pdf | Bin 799677 -> 0 bytes .../pst-diffraction/pst-diffraction-docE.tex | 485 -------------------- .../pst-diffraction/pst-diffraction-docFR.pdf | Bin 813332 -> 0 bytes .../pst-diffraction/pst-diffraction-docFR.tex | 483 -------------------- .../source/generic/pst-diffraction/Makefile | 55 --- .../generic/pst-diffraction/pst-diffraction.tex | 18 +- .../tex/latex/pst-diffraction/pst-diffraction.sty | 2 +- 13 files changed, 470 insertions(+), 1533 deletions(-) create mode 100644 Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.pdf create mode 100644 Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.tex delete mode 100644 Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdf delete mode 100644 Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex delete mode 100644 Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdf delete mode 100644 Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex delete mode 100644 Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdf delete mode 100644 Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex delete mode 100644 Master/texmf-dist/source/generic/pst-diffraction/Makefile (limited to 'Master') diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/Changes b/Master/texmf-dist/doc/generic/pst-diffraction/Changes index d5cad1459f4..9f4fe42b2ba 100644 --- a/Master/texmf-dist/doc/generic/pst-diffraction/Changes +++ b/Master/texmf-dist/doc/generic/pst-diffraction/Changes @@ -1,4 +1,8 @@ pst-diffraction.tex -------- +2.04a 2024-06-29 - bugfix for the documentation header + - removed german and french docs +2.04 2010-01-05 - fix bug with missing \space for keywords + from pst-3dplot 2.03 2008-09-03 - fix compatibility bug with pst-3d (\variablesIIID no more valid) 2.02 2007-09-25 - add IIID option for all macros diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/README b/Master/texmf-dist/doc/generic/pst-diffraction/README index e642ddc6fb1..86d7c0bb597 100644 --- a/Master/texmf-dist/doc/generic/pst-diffraction/README +++ b/Master/texmf-dist/doc/generic/pst-diffraction/README @@ -3,7 +3,7 @@ %% Manuel Luque (ml _at_ pstricks.de) (France) %% Herbert Voss (hv _at_ pstricks.de) (Germany) %% -%% 2007-09-04 +%% 2024-06-29 %% PSTricks offers excellent macros to insert more or less complex @@ -41,10 +41,10 @@ the images are very big. If you like to get the documentation file in another format run -latex pst-diffraction-docX.tex -bibtex pst-diffraction-docX -latex pst-diffraction-docX.tex -dvips pst-diffraction-docX.dvi +latex pst-diffraction-doc.tex +bibtex pst-diffraction-doc +latex pst-diffraction-doc.tex +dvips pst-diffraction-doc.dvi to get a PostScript file. But pay attention, that the pst-diffraction files are saved in the above mentioned way, before you run diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.pdf b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.pdf new file mode 100644 index 00000000000..33256a5b76f Binary files /dev/null and b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.pdf differ diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.tex b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.tex new file mode 100644 index 00000000000..f38f06f02e3 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.tex @@ -0,0 +1,451 @@ +%% $Id: pst-diffraction-docE.tex 134 2009-09-27 12:28:50Z herbert $ +\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings, + headexclude,footexclude,oneside]{pst-doc} +\usepackage{pst-grad,pst-diffraction} +\let\pstDiffractionFV\fileversion + +\usepackage{libertinus} +\usepackage{biblatex} +\addbibresource{pst-diffraction-doc.bib} + +\lstset{pos=t,wide=true,language=PSTricks, + morekeywords={psdiffractionRectangle,psdiffractionCircle,psdiffractionCircular},basicstyle=\footnotesize\ttfamily} +\lstdefinestyle{syntax}{backgroundcolor=\color{blue!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, + frame=single} +\lstdefinestyle{example}{backgroundcolor=\color{red!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, + frame=single} +\newcommand*\psp{\texttt{pspicture}\xspace} +% +\begin{document} + +\title{\texttt{pst-diffraction}} +\subtitle{Diffraction patterns for diffraction from circular, rectangular and triangular +apertures; v.\pstDiffractionFV} +\author{Manuel Luque \\ Herbert Vo\ss} +\docauthor{Herbert Voß} +\date{\today} +\maketitle + +\tableofcontents + +\clearpage + +\begin{abstract} +\noindent + +\vfill\noindent +Thanks to: Julien Cubizolles, +Doris Wagner, +Timothy Van Zandt, Keno Wehr, +Michael Zedler. +\end{abstract} + +\section{Optical setup} + +\begin{center} +\begin{pspicture}(0,-3)(12,3) +\pnode(0,0){S} \pnode(4,1){L'1} \pnode(4,-1){L'2} \pnode(6,1){E'1} \pnode(6,-1){E'2} +\pnode(6,0.5){E1}\pnode(6,-0.5){E2}\pnode(8.5,1.5){L1}\pnode(8.5,0.5){L2}\pnode(11.5,1.25){P} +% lentille L' +\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{% + \code{0.5 0.83333 scale} + \psarc(4,0){4.176}{-16.699}{16.699} + \psarc(12,0){4.176}{163.30}{196.699}} +% lentille L +\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{% + \code{1 1.5 scale} + \psarc(4.5,0){4.176}{-16.699}{16.699} + \psarc(12.5,0){4.176}{163.30}{196.699}} +\pspolygon[linestyle=none,fillstyle=vlines, + hatchcolor=yellow](S)(L'1)(E'1)(E1)(L1)(P)(L2)(E2)(E'2)(L'2) +\uput[90](4,1){$L'$}\uput[90](8.5,2){$L$} +\psdot(S)\uput[180](S){S} +\psline(S)(12,0)\psline[linewidth=2\pslinewidth](6,2)(6,0.5)\psline[linewidth=2\pslinewidth](6,-2)(6,-0.5) +\psline[linestyle=dashed](6,0.5)(6,-0.5)\psline(11.5,-3)(11.5,3)\psline(S)(L'1)(E'1)\psline(S)(L'2)(E'2) +\uput[0](P){P} +\psline(E1)(L1)(P)\psline(E2)(L2)(P)\psline[linestyle=dashed](8.5,0)(P) +%\rput(8.5,0){\psarc{->}(0,0){1.5}{0}{!1.25 3 atan}\uput[0](1.5;15){$\theta$}} +\uput[-90](10,0){$f$}\uput[0](6,2){E}\uput[135](6,0){T}\uput[45](11.5,0){O} +\end{pspicture} +\end{center} + +Monochromatic light rays diverging from the focal point S of a positive lens L' emerge parallel to +the axis and strike the aperture stop E with the aperture T. +The light bends behind the aperture, this bending is called diffraction: +Every point in the opening acts as if it was a point source (Huygens's principle) and the +light waves of all those points overlap and produce an interference pattern (diffraction +pattern) on a screen. When the screen is very far away, the observed patterns are called +Fraunhofer diffraction patterns. In this case one can assume that the rays from the aperture +striking the same point P on the screen are parallel.\\ +In practice one wants to realize a short distance between the aperture stop and the screen. +Hence one sets up a converging lens L after the opening and installs the screen +into the focal plane (containing the points P and O) of this lens. Parallel rays incident on +the lens are then focused at a point P in the focal plane. + +With the following PSTricks-commands we can draw the diffraction patterns for different +geometric forms +of apertures. It is understood that only monochromatic light is used. The aperture stops can +have rectangular, circular or triangular openings. + +The options available are the dimensions of the aperture under consideration and of the particular optical +setting, e.g. the radius in case of an circular opening. Moreover one can choose the wavelength +of the light (the associated color will be given automatically by the package). + +There are three commands, for rectangular, circular and triangular openings respectively: + +\begin{BDef} +\Lcs{psdiffractionRectangle}\OptArgs\\ +\Lcs{psdiffractionCircular}\OptArgs\\ +\Lcs{psdiffractionTriangle}\OptArgs +\end{BDef} + + +\section{The color} +The desired color is defined by specifying the associated wavelength $\lambda$ (in nanometers). +Red for instance one gets by the option \Lkeyword{lambda}=632 because +red light has the wavelength $\lambda_{\textrm{rot}}=632\,\textrm{nm}$. + +The conversion of the wavelength into the associated \texttt{RGB}-value is done by PostScript. +The code is similar to the code of a FORTRAN program which can be found here: \\ +\url{http://www.midnightkite.com/color.html} + +\section{Diffraction from a rectangular aperture} + +\begin{center} +\begin{pspicture}(-2,-1)(2,1.5) +\psframe(-0.5,-1)(0.5,1) +\pcline{<->}(-0.5,1.1)(0.5,1.1) +\Aput{$a$} +\pcline{<->}(0.6,1)(0.6,-1) +\Aput{$h=k\times a$} +\end{pspicture} +\end{center} + +The width of the rectangle with the area $h=k\times a$ is defined by the letter \Lkeyword{a}, +the height by \Lkeyword{k}. +The focal length is specified by \Lkeyword{f}, the desired resolution in pixels [pixel]. +With the option \Lkeyword{contrast} one can improve the visibility of the minor secondary +maxima more. +We get a black and white picture if we use the option \Lkeyword{colorMode}=0, +the option \Lkeyword{colorMode}=1 provides the associated negative pattern. The options +\Lkeyword{colorMode}=2 and \Lkeyword{colorMode}=3 render color pictures in the +\Index{CMYK} and \Index{RGB} color model respectively. + +By default the settings are as follows: + + +\begin{tabular}{@{}lll@{}} +\Lkeyword{a}=0.2e-3 in m; & \Lkeyword{k}=1; & \Lkeyword{f}=5 in m;\\ +\Lkeyword{lambda}=650 in nm; & \Lkeyword{pixel}=0.5; & \Lkeyword{contrast}=38, greates value;\\ +\Lkeyword{colorMode}=3; & \Lkeyword{IIID}=\false. +\end{tabular} + +\bigskip +\noindent +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) +\psdiffractionRectangle[f=2.5] +\end{pspicture} +\hfill +\begin{pspicture}(-1.5,-2.5)(3.5,3.5) +\psdiffractionRectangle[IIID,Alpha=30,f=2.5] +\end{pspicture} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) +\psdiffractionRectangle[f=2.5] +\end{pspicture} +\hfill +\begin{pspicture}(-1.5,-2.5)(3.5,3.5) +\psdiffractionRectangle[IIID,Alpha=30,f=2.5] +\end{pspicture} +\end{lstlisting} + + + +\noindent\begin{pspicture}(-2,-4)(2,4) +\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} +\hfill +\begin{pspicture}(0,-3)(4,4) +\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-2,-4)(2,4) +\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} +\hfill +\begin{pspicture}(0,-3)(4,4) +\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} +\end{lstlisting} + + + +\noindent +\begin{pspicture}(-2.5,-2.5)(3.5,3) +\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} +\hfill +\begin{pspicture}(-1.5,-2)(3.5,3) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-2.5,-2.5)(3.5,3) +\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} +\hfill +\begin{pspicture}(-1.5,-2)(3.5,3) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} +\end{lstlisting} + + +\noindent +\begin{pspicture}(-3.5,-1)(3.5,1) +\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\hfill +\begin{pspicture}(-3.5,-1)(3.5,4) +\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-1)(3.5,1) +\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\hfill +\begin{pspicture}(-3.5,-1)(3.5,4) +\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\end{lstlisting} + +\section[Diffraction from two rectangular apertures]{Diffraction from two rectangular apertures% +\protect\footnote{This simulation was provided by Julien Cubizolles.}} +It is also possible to render the diffraction pattern of two congruent rectangles +(placed parallel such that their base is located on the $x$-axis) +by using the option \Lkeyword{twoSlit}. +By default this option is deactivated. +The distance of the two rectangles is specified by the option $s$. +The default for $s$ is $12e^{-3}\,\mathrm{m}$. + + +\begin{center} +\noindent +\begin{pspicture}(-4,-1)(4,1) +\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{center} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-4,-1)(4,1) +\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{lstlisting} + +\begin{center} +\begin{pspicture}(-2,-1)(4,4) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{center} + +\begin{lstlisting}[pos=t,style=example,wide=false] +\begin{pspicture}(-2,-1)(4,4) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{lstlisting} + + + + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\section{Diffraction from a circular aperture} +The radius of the circular opening can be chosen via the letter \Lkeyword{r}, e.g. +\Lkeyword{r}=1e-3. The default is $r=1$ mm. In the first quadrant +PSTricks displays the graph of the intensity distribution (the maximum in the center will be +cropped if its height exceeds the margin of the environment \Lenv{pspicture*}). + +\hspace*{-1cm}% +\begin{LTXexample}[pos=t,style=example,wide=false] +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520] +\end{pspicture} +\end{LTXexample} + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\section{Diffraction from two circular apertures} +Only the case of equal radii is provided, this common radius can be defined like in the +previous section via \Lkeyword{r}=\dots. +Furthermore one has to give the half distance of the circles measured from their centers by +\Lkeyword{d}=\dots, e.g. \Lkeyword{d}=3e-3. Also the option +\Lkeyword{twoHole} has to be used.\\ +The rendering process could take some time in this case\dots + + +\begin{pspicture}(-3,-3.5)(3.5,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3.5)(3.5,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} +\end{lstlisting} + + +\hspace*{-1cm}% +\begin{pspicture}(-3,-3)(3.5,4) +\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} +% +\begin{pspicture}(-3.5,-2)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-3)(3.5,4) +\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} +% +\begin{pspicture}(-3.5,-2)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} +\end{lstlisting} + +Not in every case bands occur in the central circle. The number $N$ of those inner +bands is given by $N=2.44\frac{d}{r}$. Thus this effect is not observable until $N\geq2$ +or $d=\frac{2r}{1.22}$ (see +\url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}). + +\hspace*{-1cm}% +\begin{pspicture}(-3,-3.5)(3,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3.5)(3,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} +\end{lstlisting} + + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\section{Diffraction from a triangular aperture} + +Only the case of an equilateral triangle is provided, whose height \Lkeyword{h} has to be +defined as an option. As is generally known, $h$ can be computed from the length $s$ of +its side by $h=\frac{\sqrt{3}}{2}s$. A black and white picture can be obtained by using the +option \Lkeyword{colorMode}=0. + + + +\begin{center} +\begin{pspicture}(-1,-1)(1,1) +\pspolygon*(0,0)(1;150)(1;210) +\pcline{|-|}(-0.732,-1)(0,-1) +\Aput{$h$} +\end{pspicture} +\end{center} + +\makebox[\linewidth]{% +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture}} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture} +\end{lstlisting} + + +\makebox[\linewidth]{% +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture}} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture} +\end{lstlisting} + + + +\clearpage +\section{List of all optional arguments for \texttt{pst-diff}} +\Loption{pst-diff} is the short form for the keywords in the package \LPack{pst-diffraction}. + +\xkvview{family=pst-diff,columns={key,type,default}} + + + +\raggedright +\nocite{*} +\printbibliography +%\bibliography{pst-diffraction-doc} + +\printindex + +\end{document} diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdf b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdf deleted file mode 100644 index 08199e91ec2..00000000000 Binary files a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdf and /dev/null differ diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex deleted file mode 100644 index 27f528fcff0..00000000000 --- a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex +++ /dev/null @@ -1,495 +0,0 @@ -\documentclass[ngerman,a4paper]{article} -\usepackage[T1]{fontenc} -\usepackage[utf8]{inputenc} -\usepackage[bmargin=2cm,tmargin=2cm]{geometry} -% -\usepackage{pstricks,pst-node,pst-grad,url} -\usepackage{pst-diffraction} -\let\PSTfileversion\fileversion -\let\PSTfiledate\filedate -% -\usepackage{ccfonts} -\usepackage[euler-digits]{eulervm} -\usepackage[scaled=0.85]{luximono} -\usepackage{xspace} -\def\UrlFont{\small\ttfamily} -\newcommand*\psp{\texttt{pspicture}\xspace} -\makeatletter -\def\verbatim@font{\small\normalfont\ttfamily} -\makeatother -\usepackage{showexpl} -\lstdefinestyle{syntax}{backgroundcolor=\color{blue!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, - frame=single} -\lstdefinestyle{example}{backgroundcolor=\color{red!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, - frame=single} -\lstset{wide=true,language=PSTricks, - morekeywords={psdiffractionCircular,psdiffractionRectangle,psdiffractionTriangle}} - - -\usepackage{prettyref} -\usepackage{fancyhdr} -\usepackage{multicol} - -\usepackage{babel} -\usepackage[colorlinks,linktocpage]{hyperref} - -\pagestyle{fancy} -\def\Lcs#1{{\ttfamily\textbackslash #1}} -\lfoot{\small\ttfamily\jobname.tex} -\cfoot{Documentation} -\rfoot{\thepage} -\lhead{PSTricks} -\renewcommand{\headrulewidth}{0pt} -\renewcommand{\footrulewidth}{0pt} -\newcommand{\PS}{PostScript} -\newcommand\CMD[1]{\texttt{\textbackslash#1}} -\makeatother -\usepackage{framed} -\definecolor{shadecolor}{cmyk}{0.2,0,0,0} -\SpecialCoor - -\title{\texttt{pst-diffraction}\\[6pt] -\mbox{}\\[1cm] -Beugungsmuster für Beugung an kreisförmigen, rechteckigen und dreieckigen -Öffnungen\\[10pt] ----\\[10pt] -{\normalsize v. \PSTfileversion (\PSTfiledate)}} -\author{% - \tabular[t]{c}Manuel Luque\\[3pt] - \url{ml@PSTricks.de} - \endtabular \and - \tabular[t]{c}Herbert Vo\ss\\[3pt] - \url{hv@PSTricks.de}\endtabular% -} -\date{\today} -\begin{document} -\maketitle -\vfill -Dank an Doris Wagner für die Ãœbersetzung der Dokumentation.\\ -Beiträge und Anmerkungen lieferten: Julien Cubizolles. - -\clearpage -\tableofcontents -\clearpage - - -\section{Versuchsaufbau} - -\begin{center} -\begin{pspicture}(0,-3)(12,3) -\pnode(0,0){S} \pnode(4,1){L'1} \pnode(4,-1){L'2} \pnode(6,1){E'1} \pnode(6,-1){E'2} -\pnode(6,0.5){E1}\pnode(6,-0.5){E2}\pnode(8.5,1.5){L1}\pnode(8.5,0.5){L2}\pnode(11.5,1.25){P} -\pspolygon[linestyle=none,fillstyle=vlines, - hatchcolor=yellow](S)(L'1)(E'1)(E1)(L1)(P)(L2)(E2)(E'2)(L'2) -% lentille L' -\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{% - \code{0.5 0.83333 scale} - \psarc(4,0){4.176}{-16.699}{16.699} - \psarc(12,0){4.176}{163.30}{196.699}} -% lentille L -\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{% - \code{1 1.5 scale} - \psarc(4.5,0){4.176}{-16.699}{16.699} - \psarc(12.5,0){4.176}{163.30}{196.699}} -\uput[90](4,1){$L'$}\uput[90](8.5,2){$L$} -\psdot(S)\uput[180](S){S} -\psline(S)(12,0)\psline[linewidth=2\pslinewidth](6,2)(6,0.5)\psline[linewidth=2\pslinewidth](6,-2)(6,-0.5) -\psline[linestyle=dashed](6,0.5)(6,-0.5)\psline(11.5,-3)(11.5,3)\psline(S)(L'1)(E'1)\psline(S)(L'2)(E'2) -\uput[0](P){P} -\psline(E1)(L1)(P)\psline(E2)(L2)(P)\psline[linestyle=dashed](8.5,0)(P) -%\rput(8.5,0){\psarc{->}(0,0){1.5}{0}{!1.25 3 atan}\uput[0](1.5;15){$\theta$}} -\uput[-90](10,0){$f$}\uput[0](6,2){E}\uput[135](6,0){T}\uput[45](11.5,0){O} -\end{pspicture} -\end{center} - -Das von der punktförmigen Lichtquelle S ausgehende monochromatische Licht verlässt die -Sammellinse L' achsenparallel und trifft auf die Blende E mit der Öffnung T. -Das Licht wird an der Öffnung gebeugt: -Jeder Punkt in der Öffnung wirkt als punktförmige Lichtquelle (Huygens'sches Prinzip) und es entsteht ein -Interferenzmuster (Beugungsmuster), welches auf einem Schirm beobachtet werden kann. Ist der Schirm von der -Blende hinreichend weit entfernt, so spricht man von Fraunhofer'scher Beugung. -In diesem Fall kann man annehmen, da"s alle Lichtstrahlen, die von der Öffnung her kommen und -denselben Punkt P auf dem Schirm treffen, parallel verlaufen.\\ -In der Praxis will man den Abstand zwischen Schirm und Blende klein halten. Deshalb -wird zwischen die Blende und den Schirm eine Sammellinse L montiert und der -Schirm (in der Zeichnung enthält er die Punkte P und O) in die Brennebene dieser Linse gestellt. -Links von der Linse parallel verlaufende Lichtstrahlen werden dann im Punkt P in der Brennebene -fokussiert. - -Die folgenden PSTricks-Befehle ermöglichen es, Beugungsmuster für -verschiedene Formen von Blendenöffnungen zu erstellen. Dabei wird die Verwendung von monochromatischem -Licht vorausgesetzt. Die Blenden können eine rechteckige, kreisförmige oder -dreieckige Öffnung haben. - -Als mögliche Optionen für die Befehle hat man die Abmessungen, die sich aus dem jeweiligen -Versuchsaufbau ergeben, etwa -den Radius bei Verwendung einer Lochblende. Au"serdem kann man die Wellenlänge des verwendeten Lichts -angeben (die zugehörige Farbe wird vom Paket dann automatisch zugeordnet). - -Es gibt drei Befehle, jeweils einen für rechteckige, kreisförmige und -dreieckige Öffnungen: - - -\begin{lstlisting}[style=syntax] -\psdiffractionRectangle[] -\psdiffractionCircular[] -\psdiffractionTriangle[] -\end{lstlisting} - - -\section{Die Farbe} -Die gewünschte Lichtfarbe wird über die Angabe der zugehörigen Wellenlänge -$\lambda$ (in Nanometern) definiert. Für die Farbe rot beispielsweise gibt man als -Option \texttt{[lambda=632]} an wegen $\lambda_{\textrm{rot}}=632\,\textrm{nm}$. - -Die Umrechnung der Wellenlänge in den entsprechenden Wert des -\texttt{RGB}-Farbschemas wird von PostScript durchgeführt. Der zugrunde liegende -Code lehnt sich an an ein Fortran-Programm, welches man auf folgender Seite -findet: -\url{http://www.midnightkite.com/color.html}. - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Beugung an einer rechteckigen Blendenöffnung} - -\begin{center} -\begin{pspicture}(-2,-1)(2,1.5) -\psframe(-0.5,-1)(0.5,1) -\pcline{<->}(-0.5,1.1)(0.5,1.1) -\Aput{$a$} -\pcline{<->}(0.6,1)(0.6,-1) -\Aput{$h=k\times a$} -\end{pspicture} -\end{center} - -Die Breite des Rechtecks mit der Fläche $h=k\times a$ wird -über den Buchstaben \texttt{[a]} definiert, die Höhe -über den Buchstaben \texttt{[k]}. -Die Brennweite der Linse gibt man durch \texttt{[f]} an, die Auflösung kann man mit der -Option [pixel] verändern. -Mit der Option \texttt{[contrast]} kann man erreichen, da"s die Nebenmaxima des -Beugungsmusters deutlicher werden.\\ -Ein Schwarzweissbild erhält man, wenn man die Option \texttt{[colorMode=0]} -verwendet, \texttt{[colorMode=1]} liefert das zugehörige Negativ. Die Optionen -\texttt{[colorMode=2]} bzw. \texttt{[colorMode=3]} liefern Farbbilder im -CMYK-Farbmodell bzw. RGB-Farbmodell. - -Defaultmä"sig sind folgende Werte voreingestellt: - -\begin{tabular}{@{}lll@{}} -\texttt{[a=0.2e-3]} in m; & \texttt{[k=1]}; & \texttt{[f=5]} in m;\\ -\texttt{[lambda=650]} in nm; & \texttt{[pixel=0.5]}; & \texttt{[contrast=38]}, Maximalwert;\\ -\texttt{[colorMode=3]}; & \texttt{[IIID=false]}. -\end{tabular} - -\bigskip -\noindent -\begin{pspicture}(-3.5,-3.5)(3.5,3.5) -\psdiffractionRectangle[f=2.5] -\end{pspicture} -\hfill -\begin{pspicture}(-1.5,-2.5)(3.5,3.5) -\psdiffractionRectangle[IIID,Alpha=30,f=2.5] -\end{pspicture} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3.5,-3.5)(3.5,3.5) -\psdiffractionRectangle[f=2.5] -\end{pspicture} -\hfill -\begin{pspicture}(-1.5,-2.5)(3.5,3.5) -\psdiffractionRectangle[IIID,Alpha=30,f=2.5] -\end{pspicture} -\end{lstlisting} - - - -\noindent\begin{pspicture}(-2,-4)(2,4) -\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\end{pspicture} -\hfill -\begin{pspicture}(0,-3)(4,4) -\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\end{pspicture} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-2,-4)(2,4) -\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\end{pspicture} -\hfill -\begin{pspicture}(0,-3)(4,4) -\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\end{pspicture} -\end{lstlisting} - - - -\noindent -\begin{pspicture}(-2.5,-2.5)(3.5,3) -\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\end{pspicture} -\hfill -\begin{pspicture}(-1.5,-2)(3.5,3) -\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\end{pspicture} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-2.5,-2.5)(3.5,3) -\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\end{pspicture} -\hfill -\begin{pspicture}(-1.5,-2)(3.5,3) -\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\end{pspicture} -\end{lstlisting} - - -\noindent -\begin{pspicture}(-3.5,-1)(3.5,1) -\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\end{pspicture} -\hfill -\begin{pspicture}(-3.5,-1)(3.5,4) -\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\end{pspicture} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3.5,-1)(3.5,1) -\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\end{pspicture} -\hfill -\begin{pspicture}(-3.5,-1)(3.5,4) -\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\end{pspicture} -\end{lstlisting} - -\section{Beugung an zwei rechteckigen Blendenöffnungen} - -\begin{shaded} -Der Code für diese Simulation wurde von Julien \textsc{Cubizolles} erstellt. -\end{shaded} -Man kann auch das Beugungsmuster zweier kongruenter Rechtecke (so nebeneinander -angeordnet, da"s ihre Grundlinie auf der $x$-Achse liegt) erstellen, -indem man zusätzlich -zu den Angaben für den Fall nur eines Rechtecks die Option \texttt{[twoSlit]} angibt. -Defaultmä"sig ist \texttt{[twoSlit]} deaktiviert. Den Abstand zwischen den beiden -Rechtecken kann man über die Option $s$ einstellen. Sie wird, wenn nichts anderes angegeben -wird, mit dem Wert $12e^{-3}\,\mathrm{m}$ belegt. - -\begin{center} -\noindent -\begin{pspicture}(-4,-1)(4,1) -\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\end{pspicture} -\end{center} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-4,-1)(4,1) -\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\end{pspicture} -\end{lstlisting} - -\begin{center} -\begin{pspicture}(-2,-1)(4,4) -\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\end{pspicture} -\end{center} - -\begin{lstlisting}[pos=t,style=example,wide=false] -\begin{pspicture}(-2,-1)(4,4) -\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\end{pspicture} -\end{lstlisting} - - -\section{Beugung an einer kreisförmigen Blendenöffnung} -Der Lochradius wird über den Buchstaben \texttt{r} angesprochen, beispielsweise -\texttt{[r=1e-3]}. Der Default ist $r=1$ mm. Im ersten Quadranten wird der Graph der -Intensitätsverteilung abgebildet (das Maximum in der Mitte wird abgeschnitten, -falls es über den oberen Rand der \psp-Umgebung hinausgeht). - -\begin{center} -\begin{pspicture}(-3.5,-3.5)(3.5,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520] -\end{pspicture} -\end{center} - - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3.5,-3.5)(3.5,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520] -\end{pspicture} -\end{lstlisting} - - - - - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Beugung an zwei kreisförmigen Blendenöffnungen} -Es ist nur der Fall gleich gro"ser Radien vorgesehen, diesen gemeinsamen Radius -spezifiziert man wie vorher über \texttt{[r=\dots]}. Au"serdem muss man den -halben Abstand der beiden Kreismitten festlegen vermöge \texttt{[d=\dots]}, -beispielsweise \texttt{[d=3e-3]}. Zusätzlich muss man die Option -\texttt{[twoHole]} verwenden. Der Bildaufbau kann in diesem Fall etwas länger dauern\dots - -\begin{pspicture}(-3,-3.5)(3.5,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\end{pspicture} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3,-3.5)(3.5,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\end{pspicture} -\end{lstlisting} - - -\hspace*{-1cm}% -\begin{pspicture}(-3,-3)(3.5,4) -\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\end{pspicture} -% -\begin{pspicture}(-3.5,-2)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\end{pspicture} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3.5,-3)(3.5,4) -\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\end{pspicture} -% -\begin{pspicture}(-3.5,-2)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\end{pspicture} -\end{lstlisting} - -Nicht in jedem Fall ergibt sich im mittleren Kreis ein Streifenmuster. Die Anzahl $N$ der Streifen -im Inneren ist gegeben durch $N=2,44\frac{d}{r}$. Man kann diesen Effekt also erst für -$N\geq2$ bzw. ab $d=\frac{2r}{1,22}$ beobachten (siehe -\url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}). - - -\hspace*{-1cm}% -\begin{pspicture}(-3,-3.5)(3,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\end{pspicture} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3,-3.5)(3,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\end{pspicture} -\end{lstlisting} - - - -\section{Brechung an einer dreieckigen Blendenöffnung} -Es ist nur der Fall eines gleichseitigen Dreiecks vorgesehen. Als Option gibt man dessen Höhe -\texttt{[h]} an, welche sich bekanntlich über $h=\frac{\sqrt{3}}{2}s$ aus der Seitenlänge $s$ -des Dreiecks berechnet. Ein Schwarzweissbild erhält man mit \texttt{[colorMode=0]}. - -\begin{center} -\begin{pspicture}(-1,-1)(1,1) -\pspolygon*(0,0)(1;150)(1;210) -\pcline{|-|}(-0.732,-1)(0,-1) -\Aput{$h$} -\end{pspicture} -\end{center} - -\makebox[\linewidth]{% -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] -\end{pspicture} -\quad -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\end{pspicture} -\quad -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\end{pspicture}} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] -\end{pspicture} -\quad -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\end{pspicture} -\quad -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\end{pspicture} -\end{lstlisting} - - -\makebox[\linewidth]{% -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] -\end{pspicture} -\quad -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\end{pspicture} -\quad -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\end{pspicture}} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] -\end{pspicture} -\quad -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\end{pspicture} -\quad -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\end{pspicture} -\end{lstlisting} - - -%\section{Credits} - - -\bgroup -\nocite{*} -\raggedright -\bibliographystyle{plain} -\bibliography{pst-diffraction-doc} -\egroup - - - -\end{document} diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdf b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdf deleted file mode 100644 index f68036fd2ac..00000000000 Binary files a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdf and /dev/null differ diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex deleted file mode 100644 index 1dc2d35e4c3..00000000000 --- a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex +++ /dev/null @@ -1,485 +0,0 @@ -\documentclass[dvips,english,a4paper]{article} -\usepackage[utf8]{inputenc}% -\usepackage[T1]{fontenc} -\usepackage[bmargin=2cm,tmargin=2cm]{geometry} -% -\usepackage{pstricks,pst-node,pst-grad,url} -\usepackage{pst-diffraction} -\let\PSTfileversion\fileversion -\let\PSTfiledate\filedate -% -\usepackage{ccfonts} -\usepackage[euler-digits]{eulervm} -\usepackage[scaled=0.85]{luximono} -\usepackage{xspace} -\newcommand*\psp{\texttt{pspicture}\xspace} -\def\UrlFont{\small\ttfamily} -\makeatletter -\def\verbatim@font{\small\normalfont\ttfamily} -\makeatother -\usepackage{prettyref,multicol} -\usepackage{fancyhdr} -\usepackage{showexpl} -\lstdefinestyle{syntax}{backgroundcolor=\color{blue!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, - frame=single} -\lstdefinestyle{example}{backgroundcolor=\color{red!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, - frame=single} -\lstset{wide=true,language=PSTricks, - morekeywords={psdiffractionCircular,psdiffractionRectangle,psdiffractionTriangle}} - -\usepackage{babel} -\usepackage[colorlinks,linktocpage]{hyperref} - -\pagestyle{fancy} -\def\Lcs#1{{\ttfamily\textbackslash #1}} -\lfoot{\small\ttfamily\jobname.tex} -\cfoot{Documentation} -\rfoot{\thepage} -\lhead{PSTricks} -\renewcommand{\headrulewidth}{0pt} -\renewcommand{\footrulewidth}{0pt} -\newcommand{\PS}{PostScript} -\newcommand\CMD[1]{\texttt{\textbackslash#1}} -\makeatother -\usepackage{framed} -\definecolor{shadecolor}{cmyk}{0.2,0,0,0} -\SpecialCoor - -\title{\texttt{pst-diffraction}\\[6pt] -Diffraction patterns for diffraction from circular, rectangular and triangular -apertures -\\[1cm] ----\\[10pt] -{\normalsize v. \PSTfileversion (\PSTfiledate)}} -\author{% - \tabular[t]{c}Manuel Luque\\[3pt] - \url{ml@PSTricks.de} - \endtabular \and - \tabular[t]{c}Herbert Vo\ss\\[3pt] - \url{hv@PSTricks.de}\endtabular% -} -\date{\today} -\begin{document} -\maketitle -\vfill\noindent -Thanks to Doris Wagner for help with the documentation.\\ -Also thanks to: Julien Cubizolles. - - -\clearpage -\tableofcontents - -\clearpage - -\section{Optical setup} - -\begin{center} -\begin{pspicture}(0,-3)(12,3) -\pnode(0,0){S} \pnode(4,1){L'1} \pnode(4,-1){L'2} \pnode(6,1){E'1} \pnode(6,-1){E'2} -\pnode(6,0.5){E1}\pnode(6,-0.5){E2}\pnode(8.5,1.5){L1}\pnode(8.5,0.5){L2}\pnode(11.5,1.25){P} -% lentille L' -\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{% - \code{0.5 0.83333 scale} - \psarc(4,0){4.176}{-16.699}{16.699} - \psarc(12,0){4.176}{163.30}{196.699}} -% lentille L -\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{% - \code{1 1.5 scale} - \psarc(4.5,0){4.176}{-16.699}{16.699} - \psarc(12.5,0){4.176}{163.30}{196.699}} -\pspolygon[linestyle=none,fillstyle=vlines, - hatchcolor=yellow](S)(L'1)(E'1)(E1)(L1)(P)(L2)(E2)(E'2)(L'2) -\uput[90](4,1){$L'$}\uput[90](8.5,2){$L$} -\psdot(S)\uput[180](S){S} -\psline(S)(12,0)\psline[linewidth=2\pslinewidth](6,2)(6,0.5)\psline[linewidth=2\pslinewidth](6,-2)(6,-0.5) -\psline[linestyle=dashed](6,0.5)(6,-0.5)\psline(11.5,-3)(11.5,3)\psline(S)(L'1)(E'1)\psline(S)(L'2)(E'2) -\uput[0](P){P} -\psline(E1)(L1)(P)\psline(E2)(L2)(P)\psline[linestyle=dashed](8.5,0)(P) -%\rput(8.5,0){\psarc{->}(0,0){1.5}{0}{!1.25 3 atan}\uput[0](1.5;15){$\theta$}} -\uput[-90](10,0){$f$}\uput[0](6,2){E}\uput[135](6,0){T}\uput[45](11.5,0){O} -\end{pspicture} -\end{center} - -Monochromatic light rays diverging from the focal point S of a positive lens L' emerge parallel to -the axis and strike the aperture stop E with the aperture T. -The light bends behind the aperture, this bending is called diffraction: -Every point in the opening acts as if it was a point source (Huygens's principle) and the -light waves of all those points overlap and produce an interference pattern (diffraction -pattern) on a screen. When the screen is very far away, the observed patterns are called -Fraunhofer diffraction patterns. In this case one can assume that the rays from the aperture -striking the same point P on the screen are parallel.\\ -In practice one wants to realize a short distance between the aperture stop and the screen. -Hence one sets up a converging lens L after the opening and installs the screen -into the focal plane (containing the points P and O) of this lens. Parallel rays incident on -the lens are then focused at a point P in the focal plane. - -With the following PSTricks-commands we can draw the diffraction patterns for different -geometric forms -of apertures. It is understood that only monochromatic light is used. The aperture stops can -have rectangular, circular or triangular openings. - -The options available are the dimensions of the aperture under consideration and of the particular optical -setting, e.g. the radius in case of an circular opening. Moreover one can choose the wavelength -of the light (the associated color will be given automatically by the package). - -There are three commands, for rectangular, circular and triangular openings respectively: - -\begin{lstlisting}[style=syntax] -\psdiffractionRectangle[] -\psdiffractionCircular[] -\psdiffractionTriangle[] -\end{lstlisting} - - -\section{The color} -The desired color is defined by specifying the associated wavelength $\lambda$ (in nanometers). -Red for instance one gets by the option \texttt{[lambda=632]} because -red light has the wavelength $\lambda_{\textrm{rot}}=632\,\textrm{nm}$. - -The conversion of the wavelength into the associated \texttt{RGB}-value is done by PostScript. -The code is similar to the code of a FORTRAN program which can be found here: \\ -\url{http://www.midnightkite.com/color.html} - -\clearpage - -\section{Diffraction from a rectangular aperture} - -\begin{center} -\begin{pspicture}(-2,-1)(2,1.5) -\psframe(-0.5,-1)(0.5,1) -\pcline{<->}(-0.5,1.1)(0.5,1.1) -\Aput{$a$} -\pcline{<->}(0.6,1)(0.6,-1) -\Aput{$h=k\times a$} -\end{pspicture} -\end{center} - -The width of the rectangle with the area $h=k\times a$ is defined by the letter \texttt{[a]}, -the height by \texttt{[k]}. -The focal length is specified by \texttt{[f]}, the desired resolution in pixels [pixel]. -With the option \texttt{[contrast]} one can improve the visibility of the minor secondary -maxima more.\\ -We get a black and white picture if we use the option \texttt{[colorMode=0]}, -the option \texttt{[colorMode=1]} provides the associated negative pattern. The options -\texttt{[colorMode=2]} and \texttt{[colorMode=3]} render color pictures in the -CMYK and RGB color model respectively. - -By default the settings are as follows: - - -\begin{tabular}{@{}lll@{}} -\texttt{[a=0.2e-3]} in m; & \texttt{[k=1]}; & \texttt{[f=5]} in m;\\ -\texttt{[lambda=650]} in nm; & \texttt{[pixel=0.5]}; & \texttt{[contrast=38]}, greates value;\\ -\texttt{[colorMode=3]}; & \texttt{[IIID=false]}. -\end{tabular} - -\bigskip -\noindent -\begin{pspicture}(-3.5,-3.5)(3.5,3.5) -\psdiffractionRectangle[f=2.5] -\end{pspicture} -\hfill -\begin{pspicture}(-1.5,-2.5)(3.5,3.5) -\psdiffractionRectangle[IIID,Alpha=30,f=2.5] -\end{pspicture} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3.5,-3.5)(3.5,3.5) -\psdiffractionRectangle[f=2.5] -\end{pspicture} -\hfill -\begin{pspicture}(-1.5,-2.5)(3.5,3.5) -\psdiffractionRectangle[IIID,Alpha=30,f=2.5] -\end{pspicture} -\end{lstlisting} - - - -\noindent\begin{pspicture}(-2,-4)(2,4) -\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\end{pspicture} -\hfill -\begin{pspicture}(0,-3)(4,4) -\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\end{pspicture} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-2,-4)(2,4) -\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\end{pspicture} -\hfill -\begin{pspicture}(0,-3)(4,4) -\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\end{pspicture} -\end{lstlisting} - - - -\noindent -\begin{pspicture}(-2.5,-2.5)(3.5,3) -\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\end{pspicture} -\hfill -\begin{pspicture}(-1.5,-2)(3.5,3) -\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\end{pspicture} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-2.5,-2.5)(3.5,3) -\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\end{pspicture} -\hfill -\begin{pspicture}(-1.5,-2)(3.5,3) -\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\end{pspicture} -\end{lstlisting} - - -\noindent -\begin{pspicture}(-3.5,-1)(3.5,1) -\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\end{pspicture} -\hfill -\begin{pspicture}(-3.5,-1)(3.5,4) -\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\end{pspicture} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3.5,-1)(3.5,1) -\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\end{pspicture} -\hfill -\begin{pspicture}(-3.5,-1)(3.5,4) -\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\end{pspicture} -\end{lstlisting} - -\section{Diffraction from two rectangular apertures} - -\begin{shaded} -This simulation was provided by Julien -\textsc{Cubizolles}. -\end{shaded} -It is also possible to render the diffraction pattern of two congruent rectangles -(placed parallel such that their base is located on the $x$-axis) -by using the option \texttt{[twoSlit]}. -By default this option is deactivated. -The distance of the two rectangles is specified by the option $s$. -The default for $s$ is $12e^{-3}\,\mathrm{m}$. - - -\begin{center} -\noindent -\begin{pspicture}(-4,-1)(4,1) -\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\end{pspicture} -\end{center} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-4,-1)(4,1) -\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\end{pspicture} -\end{lstlisting} - -\begin{center} -\begin{pspicture}(-2,-1)(4,4) -\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\end{pspicture} -\end{center} - -\begin{lstlisting}[pos=t,style=example,wide=false] -\begin{pspicture}(-2,-1)(4,4) -\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\end{pspicture} -\end{lstlisting} - - - - - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Diffraction from a circular aperture} -The radius of the circular opening can be chosen via the letter \texttt{r}, e.g. -\texttt{[r=1e-3]}. The default is $r=1$ mm. In the first quadrant -PSTricks displays the graph of the intensity distribution (the maximum in the center will be -cropped if its height exceeds the margin of the \psp-environment). - -\hspace*{-1cm}% -\begin{LTXexample}[pos=t,style=example,wide=false] -\begin{pspicture}(-3.5,-3.5)(3.5,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520] -\end{pspicture} -\end{LTXexample} - - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Diffraction from two circular apertures} -Only the case of equal radii is provided, this common radius can be defined like in the -previous section via \texttt{[r=\dots]}. -Furthermore one has to give the half distance of the circles measured from their centers by -\texttt{[d=\dots]}, e.g. \texttt{[d=3e-3]}. Also the option -\texttt{[twoHole]} has to be used.\\ -The rendering process could take some time in this case\dots - - -\begin{pspicture}(-3,-3.5)(3.5,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\end{pspicture} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3,-3.5)(3.5,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\end{pspicture} -\end{lstlisting} - - -\hspace*{-1cm}% -\begin{pspicture}(-3,-3)(3.5,4) -\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\end{pspicture} -% -\begin{pspicture}(-3.5,-2)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\end{pspicture} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3.5,-3)(3.5,4) -\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\end{pspicture} -% -\begin{pspicture}(-3.5,-2)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\end{pspicture} -\end{lstlisting} - -Not in every case bands occur in the central circle. The number $N$ of those inner -bands is given by $N=2.44\frac{d}{r}$. Thus this effect is not observable until $N\geq2$ -or $d=\frac{2r}{1.22}$ (see -\url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}). - -\hspace*{-1cm}% -\begin{pspicture}(-3,-3.5)(3,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\end{pspicture} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3,-3.5)(3,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\end{pspicture} -\end{lstlisting} - - - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Diffraction from a triangular aperture} - -Only the case of an equilateral triangle is provided, whose height \texttt{[h]} has to be -defined as an option. As is generally known, $h$ can be computed from the length $s$ of -its side by $h=\frac{\sqrt{3}}{2}s$. A black and white picture can be obtained by using the -option \texttt{[colorMode=0]}. - - - -\begin{center} -\begin{pspicture}(-1,-1)(1,1) -\pspolygon*(0,0)(1;150)(1;210) -\pcline{|-|}(-0.732,-1)(0,-1) -\Aput{$h$} -\end{pspicture} -\end{center} - -\makebox[\linewidth]{% -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] -\end{pspicture} -\quad -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\end{pspicture} -\quad -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\end{pspicture}} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] -\end{pspicture} -\quad -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\end{pspicture} -\quad -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\end{pspicture} -\end{lstlisting} - - -\makebox[\linewidth]{% -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] -\end{pspicture} -\quad -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\end{pspicture} -\quad -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\end{pspicture}} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] -\end{pspicture} -\quad -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\end{pspicture} -\quad -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\end{pspicture} -\end{lstlisting} - - - - -%\section{Credits} - - -\bgroup -\nocite{*} -\raggedright -\bibliographystyle{plain} -\bibliography{pst-diffraction-doc} -\egroup - - -\end{document} diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdf b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdf deleted file mode 100644 index 5059c652a5e..00000000000 Binary files a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdf and /dev/null differ diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex deleted file mode 100644 index 0f59dfe1556..00000000000 --- a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex +++ /dev/null @@ -1,483 +0,0 @@ -\documentclass[frenchb,dvips,a4paper]{article} -\usepackage[latin9]{inputenc}% -\usepackage[T1]{fontenc} -\usepackage[bmargin=2cm,tmargin=2cm]{geometry} -% -\usepackage{pstricks,pst-node,pst-grad,url} -\usepackage{pst-diffraction} -\let\PSTfileversion\fileversion -\let\PSTfiledate\filedate -% -\usepackage{ccfonts} -\usepackage[euler-digits]{eulervm} -\usepackage[scaled=0.85]{luximono} -\usepackage{xspace} -\newcommand*\psp{\texttt{pspicture}\xspace} -\def\UrlFont{\small\ttfamily} -\makeatletter -\def\verbatim@font{\small\normalfont\ttfamily} -\makeatother -\usepackage{prettyref,multicol} -\usepackage{fancyhdr} - -\usepackage{showexpl} -\lstdefinestyle{syntax}{backgroundcolor=\color{blue!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, - frame=single} -\lstdefinestyle{example}{backgroundcolor=\color{red!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, - frame=single} -\lstset{wide=true,language=PSTricks, - morekeywords={psdiffractionCircular,psdiffractionRectangle,psdiffractionTriangle}} - -\usepackage{babel} -\usepackage[colorlinks,linktocpage]{hyperref} - -\pagestyle{fancy} -\def\Lcs#1{{\ttfamily\textbackslash #1}} -\lfoot{\small\ttfamily\jobname.tex} -\cfoot{Documentation} -\rfoot{\thepage} -\lhead{PSTricks} -\renewcommand{\headrulewidth}{0pt} -\renewcommand{\footrulewidth}{0pt} -\newcommand{\PS}{PostScript} -\newcommand\CMD[1]{\texttt{\textbackslash#1}} -\makeatother -\usepackage{framed} -\definecolor{shadecolor}{cmyk}{0.2,0,0,0} -\SpecialCoor - -\title{\texttt{pst-diffraction}\\[6pt] -Diffraction \`a l'infini -par un trou rectangulaire, -un trou circulaire, deux trous circulaires, -un trou triangulaire.\\[1cm] ----\\[10pt] -{\normalsize v. \PSTfileversion (\PSTfiledate)}} -\author{% - \tabular[t]{c}Manuel Luque\\[3pt] - \url{ml@PSTricks.de} - \endtabular \and - \tabular[t]{c}Herbert Vo\ss\thanks{% - Thanks to Julien Cubizolles}% - \\[3pt] - \url{hv@PSTricks.de}\endtabular% -} -\date{\today} -\begin{document} -\maketitle - -\tableofcontents - -\clearpage -\section{Présentation et Montage} -\begin{center} -\begin{pspicture}(0,-3)(12,3) -\pnode(0,0){S} \pnode(4,1){L'1} \pnode(4,-1){L'2} \pnode(6,1){E'1} \pnode(6,-1){E'2} -\pnode(6,0.5){E1}\pnode(6,-0.5){E2}\pnode(8.5,1.5){L1}\pnode(8.5,0.5){L2}\pnode(11.5,1.25){P} -% lentille L' -\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{% - \code{0.5 0.83333 scale} - \psarc(4,0){4.176}{-16.699}{16.699} - \psarc(12,0){4.176}{163.30}{196.699}} -% lentille L -\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{% - \code{1 1.5 scale} - \psarc(4.5,0){4.176}{-16.699}{16.699} - \psarc(12.5,0){4.176}{163.30}{196.699}} -\pspolygon[linestyle=none,fillstyle=vlines, - hatchcolor=yellow](S)(L'1)(E'1)(E1)(L1)(P)(L2)(E2)(E'2)(L'2) -\uput[90](4,1){$L'$}\uput[90](8.5,2){$L$} -\psdot(S)\uput[180](S){S} -\psline(S)(12,0)\psline[linewidth=2\pslinewidth](6,2)(6,0.5)\psline[linewidth=2\pslinewidth](6,-2)(6,-0.5) -\psline[linestyle=dashed](6,0.5)(6,-0.5)\psline(11.5,-3)(11.5,3)\psline(S)(L'1)(E'1)\psline(S)(L'2)(E'2) -\uput[0](P){P} -\psline(E1)(L1)(P)\psline(E2)(L2)(P)\psline[linestyle=dashed](8.5,0)(P) -\rput(8.5,0){\psarc{->}(0,0){1.5}{0}{!1.25 3 atan}\uput[0](1.5;15){$\theta$}} -\uput[-90](10,0){$f$}\uput[0](6,2){E}\uput[135](6,0){T}\uput[45](11.5,0){O} -\end{pspicture} -\end{center} -Ceci est la reproduction de montage -proposé par Henri \textsc{Bouasse} dans son livre sur la -diffraction, page 25, publié aux éditions Delagrave en 1\,925. Les commentaires dont il accompagne ce -schéma sont les suivants :\newline -\begin{shaded} -« Une source ponctuelle unique S, très éloignée ou placée dans le plan focal -principal de la lentille collimatrice $L'$, fournit un faisceau cylindrique -unique de rayons. On le reçoit sur le plan~E, percé d'un trou~T dont la -forme caractérise le phénomène étudié. -Au-delà de l'écran~E la lumière est diffractée \textit{une infinité de -directions}, ou si l'on veut suivant une infinité de faisceaux -cylindriques. -Les rayons diffractés dans chaque direction sont concentrés aux divers points -du plan focal image d'une lunette accommodée sur l'infini, où ils forment la -\textit{figure de diffraction} : d'où le nom de \textit{phénomène à -l'infini}. De chaque faisceau cylindrique diffracté, l'objectif~L de la -lunette donne une image au point~P de son plan focal principal. -[\ldots]Au point P correspond un faisceau cylindrique antérieur à l'objectif -qui fait avec l'axe optique l'angle $\theta$ tel que : -$\overline{OP}=f\tan\theta\approx\theta$ -» -\end{shaded} - -Ces quelques commandes réalisées avec \texttt{PSTricks} permettent d'obtenir -les figures de diffraction \textit{à l'infini}, en lumière monochromatique, -d'un trou rectangulaire, d'un trou circulaire, de deux trous circulaires et -d'un trou triangulaire. - -Les dimensions des ouvertures sont bien sûr paramétrables, ainsi que le -choix de la longueur d'onde : la couleur s'adapte automatiquement, et des -divers paramètres du montage. - -Il y a trois commandes, l'une pour les ouvertures rectangulaires, l'autre -pour les ouvertures circulaires et la dernière pour une ouverture -triangulaire. -\begin{lstlisting}[style=syntax] -\psdiffractionRectangle[] -\psdiffractionCircular[] -\psdiffractionTriangle[] -\end{lstlisting} - -Nous allons passer en revue ces différentes commandes et leurs paramètres. -\section{La couleur de la radiation} -La longueur d'onde est définie par le paramètres \texttt{[lambda=632]} (si -l'on veut du rouge de longueur d'onde~:~ $\lambda=632$~nm), cette valeur est donc en~nm. La -conversion de la longueur d'onde dans le système \texttt{rgb} est une adaptation en -postscript de celle qu'on trouve sur~:\\ -\url{http://www.physics.sfasu.edu/astro/color.html}. - - - -\section{Diffraction par une ouverture rectangulaire} - -\begin{center} -\begin{pspicture}(-2,-1)(2,1.5) -\psframe(-0.5,-1)(0.5,1) -\pcline{<->}(-0.5,1.1)(0.5,1.1) -\Aput{$a$} -\pcline{<->}(0.6,1)(0.6,-1) -\Aput{$h=k\times a$} -\end{pspicture} -\end{center} -On donnera la largeur de la fente \texttt{[a]} et le paramètre \texttt{[k]} -qui déterminera la hauteur de la fente $h=k\times a$. On choisira aussi la -distance focale de la lentille \texttt{[a]}, la résolution du tracé par la dimension du -\texttt{[pixel]}. On pourra jouer sur le contraste pour rendre les franges -éloignées un peu plus visibles avec \texttt{[contrast]}et éventuellement, obtenir un tracé en niveaux de -gris en négatif inverse avec \texttt{[colorMode=0]} ou -negativ avec \texttt{[colorMode=1]} ou cmyk couleur avec \texttt{[colorMode=2]} ou -rgb avec \texttt{[colorMode=3]}. - -Par défaut les paramètres ont les valeurs suivantes : - -\begin{tabular}{@{}lll@{}} -\texttt{[a=0.2e-3]} en m; & \texttt{[k=1]}; & \texttt{[f=5]} en m;\\ -\texttt{[lambda=650]} en nm; & \texttt{[pixel=0.5]}; & \texttt{[contrast=38]}, valeur maximale;\\ -\texttt{[colorMode=3]}; & \texttt{[IIID=false]}. -\end{tabular} - -\bigskip -\noindent -\begin{pspicture}(-3.5,-3.5)(3.5,3.5) -\psdiffractionRectangle[f=2.5] -\end{pspicture} -\hfill -\begin{pspicture}(-1.5,-2.5)(3.5,3.5) -\psdiffractionRectangle[IIID,Alpha=30,f=2.5] -\end{pspicture} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3.5,-3.5)(3.5,3.5) -\psdiffractionRectangle[f=2.5] -\end{pspicture} -\hfill -\begin{pspicture}(-1.5,-2.5)(3.5,3.5) -\psdiffractionRectangle[IIID,Alpha=30,f=2.5] -\end{pspicture} -\end{lstlisting} - - - -\noindent\begin{pspicture}(-2,-4)(2,4) -\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\end{pspicture} -\hfill -\begin{pspicture}(0,-3)(4,4) -\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\end{pspicture} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-2,-4)(2,4) -\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\end{pspicture} -\hfill -\begin{pspicture}(0,-3)(4,4) -\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\end{pspicture} -\end{lstlisting} - - - -\noindent -\begin{pspicture}(-2.5,-2.5)(3.5,3) -\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\end{pspicture} -\hfill -\begin{pspicture}(-1.5,-2)(3.5,3) -\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\end{pspicture} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-2.5,-2.5)(3.5,3) -\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\end{pspicture} -\hfill -\begin{pspicture}(-1.5,-2)(3.5,3) -\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\end{pspicture} -\end{lstlisting} - - -\noindent -\begin{pspicture}(-3.5,-1)(3.5,1) -\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\end{pspicture} -\hfill -\begin{pspicture}(-3.5,-1)(3.5,4) -\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\end{pspicture} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3.5,-1)(3.5,1) -\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\end{pspicture} -\hfill -\begin{pspicture}(-3.5,-1)(3.5,4) -\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\end{pspicture} -\end{lstlisting} - -\section{Diffraction par deux ouverture rectangulaire} - -\begin{shaded} -This simulation was provided by Julien \textsc{Cubizolles}. -\end{shaded} - -\begin{center} -\noindent -\begin{pspicture}(-4,-1)(4,1) -\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\end{pspicture} -\end{center} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-4,-1)(4,1) -\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\end{pspicture} -\end{lstlisting} - -\begin{center} -\begin{pspicture}(-2,-1)(4,4) -\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\end{pspicture} -\end{center} - -\begin{lstlisting}[pos=t,style=example,wide=false] -\begin{pspicture}(-2,-1)(4,4) -\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\end{pspicture} -\end{lstlisting} - - - -\section{Diffraction par une ouverture circulaire} -On donnera le rayon du trou : \texttt{[r=1e-3]}, $r=1$ mm par défaut. Les -variations de l'intensité sont superposées à la figure de diffraction dans -le premier quadrant (le maximum au centre a été écrêté). - - -\begin{center} -\begin{pspicture}(-3.5,-3.5)(3.5,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520] -\end{pspicture} -\end{center} - - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3.5,-3.5)(3.5,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520] -\end{pspicture} -\end{lstlisting} - - - -\section{Diffraction par deux trous circulaires} -Les deux trous sont identiques, outre le rayon commun des trous on fixera la -demi-distance entre les centres des deux trous avec : \texttt{[d]} et pour -ce cas de figure on activera l'option \texttt{[twoHole]}. On notera que -les temps de calculs d'allongent\ldots - - -\begin{pspicture}(-3,-3.5)(3.5,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\end{pspicture} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3,-3.5)(3.5,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\end{pspicture} -\end{lstlisting} - - -\hspace*{-1cm}% -\begin{pspicture}(-3,-3)(3.5,4) -\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\end{pspicture} -% -\begin{pspicture}(-3.5,-2)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\end{pspicture} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3.5,-3)(3.5,4) -\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\end{pspicture} -% -\begin{pspicture}(-3.5,-2)(3.5,3.5) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\end{pspicture} -\end{lstlisting} - -Le cas limite d'obtention de franges se vérifie avec $\displaystyle d -=\frac{a}{1.22}$. Voir~:\\ -\url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}). - -\hspace*{-1cm}% -\begin{pspicture}(-3,-3.5)(3,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\end{pspicture} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3,-3.5)(3,3.5) -\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\end{pspicture} -% -\begin{pspicture}(-3.5,-1.5)(3.5,3) -\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\end{pspicture} -\end{lstlisting} - - - -\section{Diffraction par un trou triangulaire équilatéral} -Le triangle équilatéral est défini par sa hauteur \texttt{[h]} en m. Pour le -triangle, on peut obtenir la figure en niveaux de gris avec l'option -\texttt{[colorMode=0]}. L'étude théorique de cette diffraction a été faite par -\textsc{Airy}, on la trouve dans le livre d'Henri \textsc{Bouasse} sur la -diffraction, pages 114 et 115. - - -\begin{center} -\begin{pspicture}(-1,-1)(1,1) -\pspolygon*(0,0)(1;150)(1;210) -\pcline{|-|}(-0.732,-1)(0,-1) -\Aput{$h$} -\end{pspicture} -\end{center} - -\makebox[\linewidth]{% -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] -\end{pspicture} -\quad -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\end{pspicture} -\quad -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\end{pspicture}} - - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] -\end{pspicture} -\quad -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\end{pspicture} -\quad -\begin{pspicture}(-3,-3)(3,2.5) -\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\end{pspicture} -\end{lstlisting} - - -\makebox[\linewidth]{% -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] -\end{pspicture} -\quad -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\end{pspicture} -\quad -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\end{pspicture}} - -\begin{lstlisting}[style=example] -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] -\end{pspicture} -\quad -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\end{pspicture} -\quad -\begin{pspicture}(-3,-2)(3,3.5) -\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\end{pspicture} -\end{lstlisting} - - - - - -%\section{Credits} - - -\bgroup -\nocite{*} -\raggedright -\bibliographystyle{plain} -\bibliography{pst-diffraction-doc} -\egroup - - -\end{document} diff --git a/Master/texmf-dist/source/generic/pst-diffraction/Makefile b/Master/texmf-dist/source/generic/pst-diffraction/Makefile deleted file mode 100644 index 1d4650b7c1b..00000000000 --- a/Master/texmf-dist/source/generic/pst-diffraction/Makefile +++ /dev/null @@ -1,55 +0,0 @@ -# `Makefile' for `pst-diffraction.pdf', hv, 2007/03/17 - -.SUFFIXES : .tex .ltx .dvi .ps .pdf .eps - -PACKAGE = pst-diffraction - -LATEX = latex - -ARCHNAME = $(PACKAGE)-$(shell date +%y%m%d) -ARCHFILES = $(PACKAGE).sty *.tex $(PACKAGE).pro *.tex README Changes Makefile - -all : DE E FR clean - -DE : $(PACKAGE)-docDE.pdf -E : $(PACKAGE)-docE.pdf -FR : $(PACKAGE)-docFR.pdf - -doc : $(MAIN).pdf - -%.pdf : %.ps - GS_OPTIONS=-dAutoRotatePages=/None ps2pdf $< - -%.ps : %.dvi - dvips $< - -%.dvi : %.tex - $(LATEX) $< - $(LATEX) $< - if ! test -f $(basename $<).glo ; then touch $(basename $<).glo; fi - if ! test -f $(basename $<).idx ; then touch $(basename $<).idx; fi - makeindex -s gglo.ist -t $(basename $<).glg -o $(basename $<).gls \ - $(basename $<).glo - makeindex -t $(basename $<).ilg -o $(basename $<).ind \ - $(basename $<).idx - bibtex $(basename $<) - $(LATEX) $< - $(LATEX) $< - -clean : - $(RM) $(addprefix $(PACKAGE)-docDE, .log .aux .glg .glo .gls .ilg .idx .ind .tmp .toc .out .blg .Roessler .bbl ) - $(RM) $(addprefix $(PACKAGE)-docDE, .dvi .ps) - $(RM) $(addprefix $(PACKAGE)-docE, .log .aux .glg .glo .gls .ilg .idx .ind .tmp .toc .out .blg .Roessler .bbl ) - $(RM) $(addprefix $(PACKAGE)-docE, .dvi .ps) - $(RM) $(addprefix $(PACKAGE)-docFR, .log .aux .glg .glo .gls .ilg .idx .ind .tmp .toc .out .blg .Roessler .bbl ) - $(RM) $(addprefix $(PACKAGE)-docFR, .dvi .ps) - -veryclean : clean - $(RM) $(addprefix $(PACKAGE)-docDE, .pdf .bbl .blg) - $(RM) $(addprefix $(PACKAGE)-docE, .pdf .bbl .blg) - $(RM) $(addprefix $(PACKAGE)-docFR, .pdf .bbl .blg) - -arch : - zip $(ARCHNAME).zip $(ARCHFILES) - -# EOF diff --git a/Master/texmf-dist/tex/generic/pst-diffraction/pst-diffraction.tex b/Master/texmf-dist/tex/generic/pst-diffraction/pst-diffraction.tex index 1c653b37709..345fba99c4f 100644 --- a/Master/texmf-dist/tex/generic/pst-diffraction/pst-diffraction.tex +++ b/Master/texmf-dist/tex/generic/pst-diffraction/pst-diffraction.tex @@ -5,8 +5,8 @@ %% %% Package `pst-diffraction.tex' %% -%% Manuel Luque -%% Herbert Voss +%% Manuel Luque +%% Herbert Voss %% %% with contributions of Julien Cubizolles %% @@ -21,12 +21,12 @@ \csname PSTDiffractionLoaded\endcsname \let\PSTDiffractionLoaded\endinput % Require PSTricks -\ifx\PSTricksLoaded\endinput\else\input pstricks.tex\fi +\ifx\PSTricksLoaded\endinput\else \input pstricks.tex\fi \ifx\PSTThreeDplotLoaded\endinput\else\input pst-3dplot.tex\fi -\ifx\PSTXKeyLoaded\endinput\else \input pst-xkey \fi +\ifx\PSTXKeyLoaded\endinput\else \input pst-xkey.tex \fi % -\def\fileversion{2.03}% -\def\filedate{2008/09/03}% +\def\fileversion{2.04a} +\def\filedate{2024/06/29} \message{`PST-diffraction v\fileversion, \filedate\space (ML,hv)}% \edef\PstAtCode{\the\catcode`\@} \catcode`\@=11\relax \pst@addfams{pst-diff} @@ -94,7 +94,7 @@ /bornexpt 1 widthSlit div focus mul ondeLongueur mul 2845 mul def /borneypt 1 heightSlit div focus mul ondeLongueur mul 2845 mul def \ifPst@Diffraction@IIID - \psk@ThreeDplot@zMax dup \tx@ScreenCoor pop /zScale ED + \psk@ThreeDplot@zMax\space dup \tx@ScreenCoor pop /zScale ED tx@3DPlotDict begin \IIIDplot@variables end \fi % Les calculs commencent... @@ -170,7 +170,7 @@ \psk@Diffraction@Slit@Lambda tx@addDict begin wavelengthToRGB Red Green Blue end /Blue ED /Green ED /Red ED \ifPst@Diffraction@IIID - \psk@ThreeDplot@zMax dup \tx@ScreenCoor pop /zScale ED + \psk@ThreeDplot@zMax\space dup \tx@ScreenCoor pop /zScale ED tx@3DPlotDict begin \IIIDplot@variables end \fi % 0 0 translate @@ -408,7 +408,7 @@ /bornexpt 1 h div f mul L mul 2845 mul def /borneypt 1 h div f mul L mul 2845 mul def \ifPst@Diffraction@IIID - \psk@ThreeDplot@zMax dup \tx@ScreenCoor pop /zScale ED + \psk@ThreeDplot@zMax\space dup \tx@ScreenCoor pop /zScale ED tx@3DPlotDict begin \IIIDplot@variables end \fi /P { diff --git a/Master/texmf-dist/tex/latex/pst-diffraction/pst-diffraction.sty b/Master/texmf-dist/tex/latex/pst-diffraction/pst-diffraction.sty index ab4962f6bce..35e81216447 100644 --- a/Master/texmf-dist/tex/latex/pst-diffraction/pst-diffraction.sty +++ b/Master/texmf-dist/tex/latex/pst-diffraction/pst-diffraction.sty @@ -1,7 +1,7 @@ \RequirePackage{pstricks} \RequirePackage{pst-3dplot} \RequirePackage{pst-xkey} -\ProvidesPackage{pst-diffraction}[2009/09/04 package wrapper for +\ProvidesPackage{pst-diffraction}[2024/06/29 package wrapper for pst-diffraction.tex (hv)] \input{pst-diffraction.tex} \ProvidesFile{pst-diffraction.tex} -- cgit v1.2.3