From 822310e24b0af8d083e21bb6f2164a26a8596d30 Mon Sep 17 00:00:00 2001 From: Karl Berry Date: Thu, 2 Mar 2023 21:02:07 +0000 Subject: qrbill (2mar23) git-svn-id: svn://tug.org/texlive/trunk@66301 c570f23f-e606-0410-a88d-b1316a301751 --- Master/texmf-dist/doc/latex/qrbill/README.md | 8 +- .../doc/latex/qrbill/qrbill-letter-demo.tex | 6 +- .../doc/latex/qrbill/qrbill-standalone-demo.tex | 6 +- Master/texmf-dist/doc/latex/qrbill/qrbill.pdf | Bin 86225 -> 86454 bytes .../texmf-dist/scripts/qrbill/qrbill-qrencode.lua | 1351 ++++++++++++++++++++ Master/texmf-dist/source/latex/qrbill/qrbill.dtx | 21 +- Master/texmf-dist/source/latex/qrbill/qrbill.ins | 6 +- .../texmf-dist/tex/latex/qrbill/epc.qrbill-cfg.tex | 6 +- Master/texmf-dist/tex/latex/qrbill/qrbill.sty | 21 +- .../tex/latex/qrbill/swiss.qrbill-cfg.tex | 6 +- 10 files changed, 1397 insertions(+), 34 deletions(-) create mode 100644 Master/texmf-dist/scripts/qrbill/qrbill-qrencode.lua (limited to 'Master') diff --git a/Master/texmf-dist/doc/latex/qrbill/README.md b/Master/texmf-dist/doc/latex/qrbill/README.md index 03eff67b341..3888da81b22 100644 --- a/Master/texmf-dist/doc/latex/qrbill/README.md +++ b/Master/texmf-dist/doc/latex/qrbill/README.md @@ -1,10 +1,10 @@ # qrbill – create QR-bills based on the swiss payment standard -Copyright (C) Marei Peischl (peiTeX) , 2020–2022 +Copyright (C) Marei Peischl (peiTeX) , 2020–2023 This work is part of a collaborative project of Marei Peischl (peiTeX) and Alex Antener (foobar LLC). -qrbill 2022/10/20 v1.07 +qrbill 2023/02/28 v2.00 *************************************************************************** @@ -79,4 +79,6 @@ For further information on l3build and other options please have a look at the c - add possibilities to ignore data fields if empty - allow the usage of commas within the billing info * v1.07 (2022-10-20) - - fix utf8 encoding für qrmode=package \ No newline at end of file + - fix utf8 encoding für qrmode=package + * v2.00 (2023-02-28) + - add luaqrcode to qrbill \ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/qrbill/qrbill-letter-demo.tex b/Master/texmf-dist/doc/latex/qrbill/qrbill-letter-demo.tex index 5cb69f3cd64..5e56ff6c79b 100644 --- a/Master/texmf-dist/doc/latex/qrbill/qrbill-letter-demo.tex +++ b/Master/texmf-dist/doc/latex/qrbill/qrbill-letter-demo.tex @@ -6,17 +6,17 @@ %% %% qrbill.dtx (with options: `qrbill-letter-demo.tex') %% -%% Copyright (C) 2020–2022 by Marei Peischl (peiTeX) +%% Copyright (C) 2020–2023 by Marei Peischl (peiTeX) %% %% This work is a collaboration of %% Marei Peischl (peiTeX) and Alex Antener (foobar LLC). %% %% This work may be distributed and/or modified under the -%% conditions of the LaTeX Project Public License, either version 1.3 +%% conditions of the LaTeX Project Public License, either version 1.3c %% of this license or (at your option) any later version. %% The latest version of this license is in %% http://www.latex-project.org/lppl.txt -%% and version 1.3 or later is part of all distributions of LaTeX +%% and version 1.3c or later is part of all distributions of LaTeX %% version 2005/12/01 or later. %% %% This work has the LPPL maintenance status `maintained'. diff --git a/Master/texmf-dist/doc/latex/qrbill/qrbill-standalone-demo.tex b/Master/texmf-dist/doc/latex/qrbill/qrbill-standalone-demo.tex index 2aaed854bab..9c18912455c 100644 --- a/Master/texmf-dist/doc/latex/qrbill/qrbill-standalone-demo.tex +++ b/Master/texmf-dist/doc/latex/qrbill/qrbill-standalone-demo.tex @@ -6,17 +6,17 @@ %% %% qrbill.dtx (with options: `qrbill-standalone-demo.tex') %% -%% Copyright (C) 2020–2022 by Marei Peischl (peiTeX) +%% Copyright (C) 2020–2023 by Marei Peischl (peiTeX) %% %% This work is a collaboration of %% Marei Peischl (peiTeX) and Alex Antener (foobar LLC). %% %% This work may be distributed and/or modified under the -%% conditions of the LaTeX Project Public License, either version 1.3 +%% conditions of the LaTeX Project Public License, either version 1.3c %% of this license or (at your option) any later version. %% The latest version of this license is in %% http://www.latex-project.org/lppl.txt -%% and version 1.3 or later is part of all distributions of LaTeX +%% and version 1.3c or later is part of all distributions of LaTeX %% version 2005/12/01 or later. %% %% This work has the LPPL maintenance status `maintained'. diff --git a/Master/texmf-dist/doc/latex/qrbill/qrbill.pdf b/Master/texmf-dist/doc/latex/qrbill/qrbill.pdf index 3684e2c948b..1125e6cddc7 100644 Binary files a/Master/texmf-dist/doc/latex/qrbill/qrbill.pdf and b/Master/texmf-dist/doc/latex/qrbill/qrbill.pdf differ diff --git a/Master/texmf-dist/scripts/qrbill/qrbill-qrencode.lua b/Master/texmf-dist/scripts/qrbill/qrbill-qrencode.lua new file mode 100644 index 00000000000..1df9a1e2fed --- /dev/null +++ b/Master/texmf-dist/scripts/qrbill/qrbill-qrencode.lua @@ -0,0 +1,1351 @@ +--- The qrcode library is licensed under the 3-clause BSD license (aka "new BSD") +--- To get in contact with the author, mail to . +--- +--- Please report bugs on the [github project page](http://speedata.github.io/luaqrcode/). +-- Copyright (c) 2012-2020, Patrick Gundlach and contributors, see https://github.com/speedata/luaqrcode +-- All rights reserved. +-- +-- Redistribution and use in source and binary forms, with or without +-- modification, are permitted provided that the following conditions are met: +-- * Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- * Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in the +-- documentation and/or other materials provided with the distribution. +-- * Neither the name of SPEEDATA nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +-- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +-- DISCLAIMED. IN NO EVENT SHALL SPEEDATA GMBH BE LIABLE FOR ANY +-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND +-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + +--- Overall workflow +--- ================ +--- The steps to generate the qrcode, assuming we already have the codeword: +--- +--- 1. Determine version, ec level and mode (=encoding) for codeword +--- 1. Encode data +--- 1. Arrange data and calculate error correction code +--- 1. Generate 8 matrices with different masks and calculate the penalty +--- 1. Return qrcode with least penalty +--- +--- Each step is of course more or less complex and needs further description + +--- Helper functions +--- ================ +--- +--- We start with some helper functions + +-- To calculate xor we need to do that bitwise. This helper table speeds up the num-to-bit +-- part a bit (no pun intended) +local cclxvi = {[0] = {0,0,0,0,0,0,0,0}, {1,0,0,0,0,0,0,0}, {0,1,0,0,0,0,0,0}, {1,1,0,0,0,0,0,0}, +{0,0,1,0,0,0,0,0}, {1,0,1,0,0,0,0,0}, {0,1,1,0,0,0,0,0}, {1,1,1,0,0,0,0,0}, +{0,0,0,1,0,0,0,0}, {1,0,0,1,0,0,0,0}, {0,1,0,1,0,0,0,0}, {1,1,0,1,0,0,0,0}, +{0,0,1,1,0,0,0,0}, {1,0,1,1,0,0,0,0}, {0,1,1,1,0,0,0,0}, {1,1,1,1,0,0,0,0}, +{0,0,0,0,1,0,0,0}, {1,0,0,0,1,0,0,0}, {0,1,0,0,1,0,0,0}, {1,1,0,0,1,0,0,0}, +{0,0,1,0,1,0,0,0}, {1,0,1,0,1,0,0,0}, {0,1,1,0,1,0,0,0}, {1,1,1,0,1,0,0,0}, +{0,0,0,1,1,0,0,0}, {1,0,0,1,1,0,0,0}, {0,1,0,1,1,0,0,0}, {1,1,0,1,1,0,0,0}, +{0,0,1,1,1,0,0,0}, {1,0,1,1,1,0,0,0}, {0,1,1,1,1,0,0,0}, {1,1,1,1,1,0,0,0}, +{0,0,0,0,0,1,0,0}, {1,0,0,0,0,1,0,0}, {0,1,0,0,0,1,0,0}, {1,1,0,0,0,1,0,0}, +{0,0,1,0,0,1,0,0}, {1,0,1,0,0,1,0,0}, {0,1,1,0,0,1,0,0}, {1,1,1,0,0,1,0,0}, +{0,0,0,1,0,1,0,0}, {1,0,0,1,0,1,0,0}, {0,1,0,1,0,1,0,0}, {1,1,0,1,0,1,0,0}, +{0,0,1,1,0,1,0,0}, {1,0,1,1,0,1,0,0}, {0,1,1,1,0,1,0,0}, {1,1,1,1,0,1,0,0}, +{0,0,0,0,1,1,0,0}, {1,0,0,0,1,1,0,0}, {0,1,0,0,1,1,0,0}, {1,1,0,0,1,1,0,0}, +{0,0,1,0,1,1,0,0}, {1,0,1,0,1,1,0,0}, {0,1,1,0,1,1,0,0}, {1,1,1,0,1,1,0,0}, +{0,0,0,1,1,1,0,0}, {1,0,0,1,1,1,0,0}, {0,1,0,1,1,1,0,0}, {1,1,0,1,1,1,0,0}, +{0,0,1,1,1,1,0,0}, {1,0,1,1,1,1,0,0}, {0,1,1,1,1,1,0,0}, {1,1,1,1,1,1,0,0}, +{0,0,0,0,0,0,1,0}, {1,0,0,0,0,0,1,0}, {0,1,0,0,0,0,1,0}, {1,1,0,0,0,0,1,0}, +{0,0,1,0,0,0,1,0}, {1,0,1,0,0,0,1,0}, {0,1,1,0,0,0,1,0}, {1,1,1,0,0,0,1,0}, +{0,0,0,1,0,0,1,0}, {1,0,0,1,0,0,1,0}, {0,1,0,1,0,0,1,0}, {1,1,0,1,0,0,1,0}, +{0,0,1,1,0,0,1,0}, {1,0,1,1,0,0,1,0}, {0,1,1,1,0,0,1,0}, {1,1,1,1,0,0,1,0}, +{0,0,0,0,1,0,1,0}, {1,0,0,0,1,0,1,0}, {0,1,0,0,1,0,1,0}, {1,1,0,0,1,0,1,0}, +{0,0,1,0,1,0,1,0}, {1,0,1,0,1,0,1,0}, {0,1,1,0,1,0,1,0}, {1,1,1,0,1,0,1,0}, +{0,0,0,1,1,0,1,0}, {1,0,0,1,1,0,1,0}, {0,1,0,1,1,0,1,0}, {1,1,0,1,1,0,1,0}, +{0,0,1,1,1,0,1,0}, {1,0,1,1,1,0,1,0}, {0,1,1,1,1,0,1,0}, {1,1,1,1,1,0,1,0}, +{0,0,0,0,0,1,1,0}, {1,0,0,0,0,1,1,0}, {0,1,0,0,0,1,1,0}, {1,1,0,0,0,1,1,0}, +{0,0,1,0,0,1,1,0}, {1,0,1,0,0,1,1,0}, {0,1,1,0,0,1,1,0}, {1,1,1,0,0,1,1,0}, +{0,0,0,1,0,1,1,0}, {1,0,0,1,0,1,1,0}, {0,1,0,1,0,1,1,0}, {1,1,0,1,0,1,1,0}, +{0,0,1,1,0,1,1,0}, {1,0,1,1,0,1,1,0}, {0,1,1,1,0,1,1,0}, {1,1,1,1,0,1,1,0}, +{0,0,0,0,1,1,1,0}, {1,0,0,0,1,1,1,0}, {0,1,0,0,1,1,1,0}, {1,1,0,0,1,1,1,0}, +{0,0,1,0,1,1,1,0}, {1,0,1,0,1,1,1,0}, {0,1,1,0,1,1,1,0}, {1,1,1,0,1,1,1,0}, +{0,0,0,1,1,1,1,0}, {1,0,0,1,1,1,1,0}, {0,1,0,1,1,1,1,0}, {1,1,0,1,1,1,1,0}, +{0,0,1,1,1,1,1,0}, {1,0,1,1,1,1,1,0}, {0,1,1,1,1,1,1,0}, {1,1,1,1,1,1,1,0}, +{0,0,0,0,0,0,0,1}, {1,0,0,0,0,0,0,1}, {0,1,0,0,0,0,0,1}, {1,1,0,0,0,0,0,1}, +{0,0,1,0,0,0,0,1}, {1,0,1,0,0,0,0,1}, {0,1,1,0,0,0,0,1}, {1,1,1,0,0,0,0,1}, +{0,0,0,1,0,0,0,1}, {1,0,0,1,0,0,0,1}, {0,1,0,1,0,0,0,1}, {1,1,0,1,0,0,0,1}, +{0,0,1,1,0,0,0,1}, {1,0,1,1,0,0,0,1}, {0,1,1,1,0,0,0,1}, {1,1,1,1,0,0,0,1}, +{0,0,0,0,1,0,0,1}, {1,0,0,0,1,0,0,1}, {0,1,0,0,1,0,0,1}, {1,1,0,0,1,0,0,1}, +{0,0,1,0,1,0,0,1}, {1,0,1,0,1,0,0,1}, {0,1,1,0,1,0,0,1}, {1,1,1,0,1,0,0,1}, +{0,0,0,1,1,0,0,1}, {1,0,0,1,1,0,0,1}, {0,1,0,1,1,0,0,1}, {1,1,0,1,1,0,0,1}, +{0,0,1,1,1,0,0,1}, {1,0,1,1,1,0,0,1}, {0,1,1,1,1,0,0,1}, {1,1,1,1,1,0,0,1}, +{0,0,0,0,0,1,0,1}, {1,0,0,0,0,1,0,1}, {0,1,0,0,0,1,0,1}, {1,1,0,0,0,1,0,1}, +{0,0,1,0,0,1,0,1}, {1,0,1,0,0,1,0,1}, {0,1,1,0,0,1,0,1}, {1,1,1,0,0,1,0,1}, +{0,0,0,1,0,1,0,1}, {1,0,0,1,0,1,0,1}, {0,1,0,1,0,1,0,1}, {1,1,0,1,0,1,0,1}, +{0,0,1,1,0,1,0,1}, {1,0,1,1,0,1,0,1}, {0,1,1,1,0,1,0,1}, {1,1,1,1,0,1,0,1}, +{0,0,0,0,1,1,0,1}, {1,0,0,0,1,1,0,1}, {0,1,0,0,1,1,0,1}, {1,1,0,0,1,1,0,1}, +{0,0,1,0,1,1,0,1}, {1,0,1,0,1,1,0,1}, {0,1,1,0,1,1,0,1}, {1,1,1,0,1,1,0,1}, +{0,0,0,1,1,1,0,1}, {1,0,0,1,1,1,0,1}, {0,1,0,1,1,1,0,1}, {1,1,0,1,1,1,0,1}, +{0,0,1,1,1,1,0,1}, {1,0,1,1,1,1,0,1}, {0,1,1,1,1,1,0,1}, {1,1,1,1,1,1,0,1}, +{0,0,0,0,0,0,1,1}, {1,0,0,0,0,0,1,1}, {0,1,0,0,0,0,1,1}, {1,1,0,0,0,0,1,1}, +{0,0,1,0,0,0,1,1}, {1,0,1,0,0,0,1,1}, {0,1,1,0,0,0,1,1}, {1,1,1,0,0,0,1,1}, +{0,0,0,1,0,0,1,1}, {1,0,0,1,0,0,1,1}, {0,1,0,1,0,0,1,1}, {1,1,0,1,0,0,1,1}, +{0,0,1,1,0,0,1,1}, {1,0,1,1,0,0,1,1}, {0,1,1,1,0,0,1,1}, {1,1,1,1,0,0,1,1}, +{0,0,0,0,1,0,1,1}, {1,0,0,0,1,0,1,1}, {0,1,0,0,1,0,1,1}, {1,1,0,0,1,0,1,1}, +{0,0,1,0,1,0,1,1}, {1,0,1,0,1,0,1,1}, {0,1,1,0,1,0,1,1}, {1,1,1,0,1,0,1,1}, +{0,0,0,1,1,0,1,1}, {1,0,0,1,1,0,1,1}, {0,1,0,1,1,0,1,1}, {1,1,0,1,1,0,1,1}, +{0,0,1,1,1,0,1,1}, {1,0,1,1,1,0,1,1}, {0,1,1,1,1,0,1,1}, {1,1,1,1,1,0,1,1}, +{0,0,0,0,0,1,1,1}, {1,0,0,0,0,1,1,1}, {0,1,0,0,0,1,1,1}, {1,1,0,0,0,1,1,1}, +{0,0,1,0,0,1,1,1}, {1,0,1,0,0,1,1,1}, {0,1,1,0,0,1,1,1}, {1,1,1,0,0,1,1,1}, +{0,0,0,1,0,1,1,1}, {1,0,0,1,0,1,1,1}, {0,1,0,1,0,1,1,1}, {1,1,0,1,0,1,1,1}, +{0,0,1,1,0,1,1,1}, {1,0,1,1,0,1,1,1}, {0,1,1,1,0,1,1,1}, {1,1,1,1,0,1,1,1}, +{0,0,0,0,1,1,1,1}, {1,0,0,0,1,1,1,1}, {0,1,0,0,1,1,1,1}, {1,1,0,0,1,1,1,1}, +{0,0,1,0,1,1,1,1}, {1,0,1,0,1,1,1,1}, {0,1,1,0,1,1,1,1}, {1,1,1,0,1,1,1,1}, +{0,0,0,1,1,1,1,1}, {1,0,0,1,1,1,1,1}, {0,1,0,1,1,1,1,1}, {1,1,0,1,1,1,1,1}, +{0,0,1,1,1,1,1,1}, {1,0,1,1,1,1,1,1}, {0,1,1,1,1,1,1,1}, {1,1,1,1,1,1,1,1}} + +-- Return a number that is the result of interpreting the table tbl (msb first) +local function tbl_to_number(tbl) + local n = #tbl + local rslt = 0 + local power = 1 + for i = 1, n do + rslt = rslt + tbl[i]*power + power = power*2 + end + return rslt +end + +-- Calculate bitwise xor of bytes m and n. 0 <= m,n <= 256. +local function bit_xor(m, n) + local tbl_m = cclxvi[m] + local tbl_n = cclxvi[n] + local tbl = {} + for i = 1, 8 do + if(tbl_m[i] ~= tbl_n[i]) then + tbl[i] = 1 + else + tbl[i] = 0 + end + end + return tbl_to_number(tbl) +end + +-- Return the binary representation of the number x with the width of `digits`. +local function binary(x,digits) + local s=string.format("%o",x) + local a={["0"]="000",["1"]="001", ["2"]="010",["3"]="011", + ["4"]="100",["5"]="101", ["6"]="110",["7"]="111"} + s=string.gsub(s,"(.)",function (d) return a[d] end) + -- remove leading 0s + s = string.gsub(s,"^0*(.*)$","%1") + local fmtstring = string.format("%%%ds",digits) + local ret = string.format(fmtstring,s) + return string.gsub(ret," ","0") +end + +-- A small helper function for add_typeinfo_to_matrix() and add_version_information() +-- Add a 2 (black by default) / -2 (blank by default) to the matrix at position x,y +-- depending on the bitstring (size 1!) where "0"=blank and "1"=black. +local function fill_matrix_position(matrix,bitstring,x,y) + if bitstring == "1" then + matrix[x][y] = 2 + else + matrix[x][y] = -2 + end +end + + +--- Step 1: Determine version, ec level and mode for codeword +--- ======================================================== +--- +--- First we need to find out the version (= size) of the QR code. This depends on +--- the input data (the mode to be used), the requested error correction level +--- (normally we use the maximum level that fits into the minimal size). + +-- Return the mode for the given string `str`. +-- See table 2 of the spec. We only support mode 1, 2 and 4. +-- That is: numeric, alaphnumeric and binary. +local function get_mode( str ) + if string.match(str,"^[0-9]+$") then + return 1 + elseif string.match(str,"^[0-9A-Z $%%*./:+-]+$") then + return 2 + else + return 4 + end + assert(false,"never reached") -- luacheck: ignore + return nil +end + + + +--- Capacity of QR codes +--- -------------------- +--- The capacity is calculated as follow: \\(\text{Number of data bits} = \text{number of codewords} * 8\\). +--- The number of data bits is now reduced by 4 (the mode indicator) and the length string, +--- that varies between 8 and 16, depending on the version and the mode (see method `get_length()`). The +--- remaining capacity is multiplied by the amount of data per bit string (numeric: 3, alphanumeric: 2, other: 1) +--- and divided by the length of the bit string (numeric: 10, alphanumeric: 11, binary: 8, kanji: 13). +--- Then the floor function is applied to the result: +--- $$\Big\lfloor \frac{( \text{#data bits} - 4 - \text{length string}) * \text{data per bit string}}{\text{length of the bit string}} \Big\rfloor$$ +--- +--- There is one problem remaining. The length string depends on the version, +--- and the version depends on the length string. But we take this into account when calculating the +--- the capacity, so this is not really a problem here. + +-- The capacity (number of codewords) of each version (1-40) for error correction levels 1-4 (LMQH). +-- The higher the ec level, the lower the capacity of the version. Taken from spec, tables 7-11. +local capacity = { + { 19, 16, 13, 9},{ 34, 28, 22, 16},{ 55, 44, 34, 26},{ 80, 64, 48, 36}, + { 108, 86, 62, 46},{ 136, 108, 76, 60},{ 156, 124, 88, 66},{ 194, 154, 110, 86}, + { 232, 182, 132, 100},{ 274, 216, 154, 122},{ 324, 254, 180, 140},{ 370, 290, 206, 158}, + { 428, 334, 244, 180},{ 461, 365, 261, 197},{ 523, 415, 295, 223},{ 589, 453, 325, 253}, + { 647, 507, 367, 283},{ 721, 563, 397, 313},{ 795, 627, 445, 341},{ 861, 669, 485, 385}, + { 932, 714, 512, 406},{1006, 782, 568, 442},{1094, 860, 614, 464},{1174, 914, 664, 514}, + {1276, 1000, 718, 538},{1370, 1062, 754, 596},{1468, 1128, 808, 628},{1531, 1193, 871, 661}, + {1631, 1267, 911, 701},{1735, 1373, 985, 745},{1843, 1455, 1033, 793},{1955, 1541, 1115, 845}, + {2071, 1631, 1171, 901},{2191, 1725, 1231, 961},{2306, 1812, 1286, 986},{2434, 1914, 1354, 1054}, + {2566, 1992, 1426, 1096},{2702, 2102, 1502, 1142},{2812, 2216, 1582, 1222},{2956, 2334, 1666, 1276}} + + +--- Return the smallest version for this codeword. If `requested_ec_level` is supplied, +--- then the ec level (LMQH - 1,2,3,4) must be at least the requested level. +-- mode = 1,2,4,8 +local function get_version_eclevel(len,mode,requested_ec_level) + local local_mode = mode + if mode == 4 then + local_mode = 3 + elseif mode == 8 then + local_mode = 4 + end + assert( local_mode <= 4 ) + + local bits, digits, modebits, c + local tab = { {10,9,8,8},{12,11,16,10},{14,13,16,12} } + local minversion = 40 + local maxec_level = requested_ec_level or 1 + local min,max = 1, 4 + if requested_ec_level and requested_ec_level >= 1 and requested_ec_level <= 4 then + min = requested_ec_level + max = requested_ec_level + end + for ec_level=min,max do + for version=1,#capacity do + bits = capacity[version][ec_level] * 8 + bits = bits - 4 -- the mode indicator + if version < 10 then + digits = tab[1][local_mode] + elseif version < 27 then + digits = tab[2][local_mode] + elseif version <= 40 then + digits = tab[3][local_mode] + end + modebits = bits - digits + if local_mode == 1 then -- numeric + c = math.floor(modebits * 3 / 10) + elseif local_mode == 2 then -- alphanumeric + c = math.floor(modebits * 2 / 11) + elseif local_mode == 3 then -- binary + c = math.floor(modebits * 1 / 8) + else + c = math.floor(modebits * 1 / 13) + end + if c >= len then + if version <= minversion then + minversion = version + maxec_level = ec_level + end + break + end + end + end + return minversion, maxec_level +end + +-- Return a bit string of 0s and 1s that includes the length of the code string. +-- The modes are numeric = 1, alphanumeric = 2, binary = 4, and japanese = 8 +local function get_length(str,version,mode) + local i = mode + if mode == 4 then + i = 3 + elseif mode == 8 then + i = 4 + end + assert( i <= 4 ) + local tab = { {10,9,8,8},{12,11,16,10},{14,13,16,12} } + local digits + if version < 10 then + digits = tab[1][i] + elseif version < 27 then + digits = tab[2][i] + elseif version <= 40 then + digits = tab[3][i] + else + assert(false, "get_length, version > 40 not supported") + end + local len = binary(#str,digits) + return len +end + +--- If the `requested_ec_level` or the `mode` are provided, this will be used if possible. +--- The mode depends on the characters used in the string `str`. It seems to be +--- possible to split the QR code to handle multiple modes, but we don't do that. +local function get_version_eclevel_mode_bistringlength(str,requested_ec_level,mode) + local local_mode + if mode then + assert(false,"not implemented") + -- check if the mode is OK for the string + local_mode = mode + else + local_mode = get_mode(str) + end + local version, ec_level + version, ec_level = get_version_eclevel(#str,local_mode,requested_ec_level) + local length_string = get_length(str,version,local_mode) + return version,ec_level,binary(local_mode,4),local_mode,length_string +end + +--- Step 2: Encode data +--- =================== + +--- There are several ways to encode the data. We currently support only numeric, alphanumeric and binary. +--- We already chose the encoding (a.k.a. mode) in the first step, so we need to apply the mode to the +--- codeword. +--- +--- **Numeric**: take three digits and encode them in 10 bits +--- **Alphanumeric**: take two characters and encode them in 11 bits +--- **Binary**: take one octet and encode it in 8 bits + +local asciitbl = { + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -- 0x01-0x0f + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -- 0x10-0x1f + 36, -1, -1, -1, 37, 38, -1, -1, -1, -1, 39, 40, -1, 41, 42, 43, -- 0x20-0x2f + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 44, -1, -1, -1, -1, -1, -- 0x30-0x3f + -1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, -- 0x40-0x4f + 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, -1, -- 0x50-0x5f + } + +-- Return a binary representation of the numeric string `str`. This must contain only digits 0-9. +local function encode_string_numeric(str) + local bitstring = "" + local int + string.gsub(str,"..?.?",function(a) + int = tonumber(a) + if #a == 3 then + bitstring = bitstring .. binary(int,10) + elseif #a == 2 then + bitstring = bitstring .. binary(int,7) + else + bitstring = bitstring .. binary(int,4) + end + end) + return bitstring +end + +-- Return a binary representation of the alphanumeric string `str`. This must contain only +-- digits 0-9, uppercase letters A-Z, space and the following chars: $%*./:+-. +local function encode_string_ascii(str) + local bitstring = "" + local int + local b1, b2 + string.gsub(str,"..?",function(a) + if #a == 2 then + b1 = asciitbl[string.byte(string.sub(a,1,1))] + b2 = asciitbl[string.byte(string.sub(a,2,2))] + int = b1 * 45 + b2 + bitstring = bitstring .. binary(int,11) + else + int = asciitbl[string.byte(a)] + bitstring = bitstring .. binary(int,6) + end + end) + return bitstring +end + +-- Return a bitstring representing string str in binary mode. +-- We don't handle UTF-8 in any special way because we assume the +-- scanner recognizes UTF-8 and displays it correctly. +local function encode_string_binary(str) + local ret = {} + string.gsub(str,".",function(x) + ret[#ret + 1] = binary(string.byte(x),8) + end) + return table.concat(ret) +end + +-- Return a bitstring representing string str in the given mode. +local function encode_data(str,mode) + if mode == 1 then + return encode_string_numeric(str) + elseif mode == 2 then + return encode_string_ascii(str) + elseif mode == 4 then + return encode_string_binary(str) + else + assert(false,"not implemented yet") + end +end + +-- Encoding the codeword is not enough. We need to make sure that +-- the length of the binary string is equal to the number of codewords of the version. +local function add_pad_data(version,ec_level,data) + local count_to_pad, missing_digits + local cpty = capacity[version][ec_level] * 8 + count_to_pad = math.min(4,cpty - #data) + if count_to_pad > 0 then + data = data .. string.rep("0",count_to_pad) + end + if math.fmod(#data,8) ~= 0 then + missing_digits = 8 - math.fmod(#data,8) + data = data .. string.rep("0",missing_digits) + end + assert(math.fmod(#data,8) == 0) + -- add "11101100" and "00010001" until enough data + while #data < cpty do + data = data .. "11101100" + if #data < cpty then + data = data .. "00010001" + end + end + return data +end + + + +--- Step 3: Organize data and calculate error correction code +--- ======================================================= +--- The data in the qrcode is not encoded linearly. For example code 5-H has four blocks, the first two blocks +--- contain 11 codewords and 22 error correction codes each, the second block contain 12 codewords and 22 ec codes each. +--- We just take the table from the spec and don't calculate the blocks ourself. The table `ecblocks` contains this info. +--- +--- During the phase of splitting the data into codewords, we do the calculation for error correction codes. This step involves +--- polynomial division. Find a math book from school and follow the code here :) + +--- ### Reed Solomon error correction +--- Now this is the slightly ugly part of the error correction. We start with log/antilog tables +-- https://codyplanteen.com/assets/rs/gf256_log_antilog.pdf +local alpha_int = { + [0] = 1, + 2, 4, 8, 16, 32, 64, 128, 29, 58, 116, 232, 205, 135, 19, 38, 76, + 152, 45, 90, 180, 117, 234, 201, 143, 3, 6, 12, 24, 48, 96, 192, 157, + 39, 78, 156, 37, 74, 148, 53, 106, 212, 181, 119, 238, 193, 159, 35, 70, + 140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111, 222, 161, 95, + 190, 97, 194, 153, 47, 94, 188, 101, 202, 137, 15, 30, 60, 120, 240, 253, + 231, 211, 187, 107, 214, 177, 127, 254, 225, 223, 163, 91, 182, 113, 226, 217, + 175, 67, 134, 17, 34, 68, 136, 13, 26, 52, 104, 208, 189, 103, 206, 129, + 31, 62, 124, 248, 237, 199, 147, 59, 118, 236, 197, 151, 51, 102, 204, 133, + 23, 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, 132, 21, 42, 84, 168, + 77, 154, 41, 82, 164, 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, 230, + 209, 191, 99, 198, 145, 63, 126, 252, 229, 215, 179, 123, 246, 241, 255, 227, + 219, 171, 75, 150, 49, 98, 196, 149, 55, 110, 220, 165, 87, 174, 65, 130, + 25, 50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167, 83, 166, 81, + 162, 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9, 18, + 36, 72, 144, 61, 122, 244, 245, 247, 243, 251, 235, 203, 139, 11, 22, 44, + 88, 176, 125, 250, 233, 207, 131, 27, 54, 108, 216, 173, 71, 142, 0, 0 +} + +local int_alpha = { + [0] = 256, -- special value + 0, 1, 25, 2, 50, 26, 198, 3, 223, 51, 238, 27, 104, 199, 75, 4, + 100, 224, 14, 52, 141, 239, 129, 28, 193, 105, 248, 200, 8, 76, 113, 5, + 138, 101, 47, 225, 36, 15, 33, 53, 147, 142, 218, 240, 18, 130, 69, 29, + 181, 194, 125, 106, 39, 249, 185, 201, 154, 9, 120, 77, 228, 114, 166, 6, + 191, 139, 98, 102, 221, 48, 253, 226, 152, 37, 179, 16, 145, 34, 136, 54, + 208, 148, 206, 143, 150, 219, 189, 241, 210, 19, 92, 131, 56, 70, 64, 30, + 66, 182, 163, 195, 72, 126, 110, 107, 58, 40, 84, 250, 133, 186, 61, 202, + 94, 155, 159, 10, 21, 121, 43, 78, 212, 229, 172, 115, 243, 167, 87, 7, + 112, 192, 247, 140, 128, 99, 13, 103, 74, 222, 237, 49, 197, 254, 24, 227, + 165, 153, 119, 38, 184, 180, 124, 17, 68, 146, 217, 35, 32, 137, 46, 55, + 63, 209, 91, 149, 188, 207, 205, 144, 135, 151, 178, 220, 252, 190, 97, 242, + 86, 211, 171, 20, 42, 93, 158, 132, 60, 57, 83, 71, 109, 65, 162, 31, + 45, 67, 216, 183, 123, 164, 118, 196, 23, 73, 236, 127, 12, 111, 246, 108, + 161, 59, 82, 41, 157, 85, 170, 251, 96, 134, 177, 187, 204, 62, 90, 203, + 89, 95, 176, 156, 169, 160, 81, 11, 245, 22, 235, 122, 117, 44, 215, 79, + 174, 213, 233, 230, 231, 173, 232, 116, 214, 244, 234, 168, 80, 88, 175 +} + +-- We only need the polynomial generators for block sizes 7, 10, 13, 15, 16, 17, 18, 20, 22, 24, 26, 28, and 30. Version +-- 2 of the qr codes don't need larger ones (as opposed to version 1). The table has the format x^1*ɑ^21 + x^2*a^102 ... +local generator_polynomial = { + [7] = { 21, 102, 238, 149, 146, 229, 87, 0}, + [10] = { 45, 32, 94, 64, 70, 118, 61, 46, 67, 251, 0 }, + [13] = { 78, 140, 206, 218, 130, 104, 106, 100, 86, 100, 176, 152, 74, 0 }, + [15] = {105, 99, 5, 124, 140, 237, 58, 58, 51, 37, 202, 91, 61, 183, 8, 0}, + [16] = {120, 225, 194, 182, 169, 147, 191, 91, 3, 76, 161, 102, 109, 107, 104, 120, 0}, + [17] = {136, 163, 243, 39, 150, 99, 24, 147, 214, 206, 123, 239, 43, 78, 206, 139, 43, 0}, + [18] = {153, 96, 98, 5, 179, 252, 148, 152, 187, 79, 170, 118, 97, 184, 94, 158, 234, 215, 0}, + [20] = {190, 188, 212, 212, 164, 156, 239, 83, 225, 221, 180, 202, 187, 26, 163, 61, 50, 79, 60, 17, 0}, + [22] = {231, 165, 105, 160, 134, 219, 80, 98, 172, 8, 74, 200, 53, 221, 109, 14, 230, 93, 242, 247, 171, 210, 0}, + [24] = { 21, 227, 96, 87, 232, 117, 0, 111, 218, 228, 226, 192, 152, 169, 180, 159, 126, 251, 117, 211, 48, 135, 121, 229, 0}, + [26] = { 70, 218, 145, 153, 227, 48, 102, 13, 142, 245, 21, 161, 53, 165, 28, 111, 201, 145, 17, 118, 182, 103, 2, 158, 125, 173, 0}, + [28] = {123, 9, 37, 242, 119, 212, 195, 42, 87, 245, 43, 21, 201, 232, 27, 205, 147, 195, 190, 110, 180, 108, 234, 224, 104, 200, 223, 168, 0}, + [30] = {180, 192, 40, 238, 216, 251, 37, 156, 130, 224, 193, 226, 173, 42, 125, 222, 96, 239, 86, 110, 48, 50, 182, 179, 31, 216, 152, 145, 173, 41, 0}} + + +-- Turn a binary string of length 8*x into a table size x of numbers. +local function convert_bitstring_to_bytes(data) + local msg = {} + string.gsub(data,"(........)",function(x) + msg[#msg+1] = tonumber(x,2) + end) + return msg +end + +-- Return a table that has 0's in the first entries and then the alpha +-- representation of the generator polynominal +local function get_generator_polynominal_adjusted(num_ec_codewords,highest_exponent) + local gp_alpha = {[0]=0} + for i=0,highest_exponent - num_ec_codewords - 1 do + gp_alpha[i] = 0 + end + local gp = generator_polynomial[num_ec_codewords] + for i=1,num_ec_codewords + 1 do + gp_alpha[highest_exponent - num_ec_codewords + i - 1] = gp[i] + end + return gp_alpha +end + +--- These converter functions use the log/antilog table above. +--- We could have created the table programatically, but I like fixed tables. +-- Convert polynominal in int notation to alpha notation. +local function convert_to_alpha( tab ) + local new_tab = {} + for i=0,#tab do + new_tab[i] = int_alpha[tab[i]] + end + return new_tab +end + +-- Convert polynominal in alpha notation to int notation. +local function convert_to_int(tab) + local new_tab = {} + for i=0,#tab do + new_tab[i] = alpha_int[tab[i]] + end + return new_tab +end + +-- That's the heart of the error correction calculation. +local function calculate_error_correction(data,num_ec_codewords) + local mp + if type(data)=="string" then + mp = convert_bitstring_to_bytes(data) + elseif type(data)=="table" then + mp = data + else + assert(false,string.format("Unknown type for data: %s",type(data))) + end + local len_message = #mp + + local highest_exponent = len_message + num_ec_codewords - 1 + local gp_alpha,tmp + local he + local gp_int, mp_alpha + local mp_int = {} + -- create message shifted to left (highest exponent) + for i=1,len_message do + mp_int[highest_exponent - i + 1] = mp[i] + end + for i=1,highest_exponent - len_message do + mp_int[i] = 0 + end + mp_int[0] = 0 + + mp_alpha = convert_to_alpha(mp_int) + + while highest_exponent >= num_ec_codewords do + gp_alpha = get_generator_polynominal_adjusted(num_ec_codewords,highest_exponent) + + -- Multiply generator polynomial by first coefficient of the above polynomial + + -- take the highest exponent from the message polynom (alpha) and add + -- it to the generator polynom + local exp = mp_alpha[highest_exponent] + for i=highest_exponent,highest_exponent - num_ec_codewords,-1 do + if exp ~= 256 then + if gp_alpha[i] + exp >= 255 then + gp_alpha[i] = math.fmod(gp_alpha[i] + exp,255) + else + gp_alpha[i] = gp_alpha[i] + exp + end + else + gp_alpha[i] = 256 + end + end + for i=highest_exponent - num_ec_codewords - 1,0,-1 do + gp_alpha[i] = 256 + end + + gp_int = convert_to_int(gp_alpha) + mp_int = convert_to_int(mp_alpha) + + + tmp = {} + for i=highest_exponent,0,-1 do + tmp[i] = bit_xor(gp_int[i],mp_int[i]) + end + -- remove leading 0's + he = highest_exponent + for i=he,0,-1 do + -- We need to stop if the length of the codeword is matched + if i < num_ec_codewords then break end + if tmp[i] == 0 then + tmp[i] = nil + highest_exponent = highest_exponent - 1 + else + break + end + end + mp_int = tmp + mp_alpha = convert_to_alpha(mp_int) + end + local ret = {} + + -- reverse data + for i=#mp_int,0,-1 do + ret[#ret + 1] = mp_int[i] + end + return ret +end + +--- #### Arranging the data +--- Now we arrange the data into smaller chunks. This table is taken from the spec. +-- ecblocks has 40 entries, one for each version. Each version entry has 4 entries, for each LMQH +-- ec level. Each entry has two or four fields, the odd files are the number of repetitions for the +-- folowing block info. The first entry of the block is the total number of codewords in the block, +-- the second entry is the number of data codewords. The third is not important. +local ecblocks = { + {{ 1,{ 26, 19, 2} }, { 1,{26,16, 4}}, { 1,{26,13, 6}}, { 1, {26, 9, 8} }}, + {{ 1,{ 44, 34, 4} }, { 1,{44,28, 8}}, { 1,{44,22,11}}, { 1, {44,16,14} }}, + {{ 1,{ 70, 55, 7} }, { 1,{70,44,13}}, { 2,{35,17, 9}}, { 2, {35,13,11} }}, + {{ 1,{100, 80,10} }, { 2,{50,32, 9}}, { 2,{50,24,13}}, { 4, {25, 9, 8} }}, + {{ 1,{134,108,13} }, { 2,{67,43,12}}, { 2,{33,15, 9}, 2,{34,16, 9}}, { 2, {33,11,11}, 2,{34,12,11}}}, + {{ 2,{ 86, 68, 9} }, { 4,{43,27, 8}}, { 4,{43,19,12}}, { 4, {43,15,14} }}, + {{ 2,{ 98, 78,10} }, { 4,{49,31, 9}}, { 2,{32,14, 9}, 4,{33,15, 9}}, { 4, {39,13,13}, 1,{40,14,13}}}, + {{ 2,{121, 97,12} }, { 2,{60,38,11}, 2,{61,39,11}}, { 4,{40,18,11}, 2,{41,19,11}}, { 4, {40,14,13}, 2,{41,15,13}}}, + {{ 2,{146,116,15} }, { 3,{58,36,11}, 2,{59,37,11}}, { 4,{36,16,10}, 4,{37,17,10}}, { 4, {36,12,12}, 4,{37,13,12}}}, + {{ 2,{ 86, 68, 9}, 2,{ 87, 69, 9}}, { 4,{69,43,13}, 1,{70,44,13}}, { 6,{43,19,12}, 2,{44,20,12}}, { 6, {43,15,14}, 2,{44,16,14}}}, + {{ 4,{101, 81,10} }, { 1,{80,50,15}, 4,{81,51,15}}, { 4,{50,22,14}, 4,{51,23,14}}, { 3, {36,12,12}, 8,{37,13,12}}}, + {{ 2,{116, 92,12}, 2,{117, 93,12}}, { 6,{58,36,11}, 2,{59,37,11}}, { 4,{46,20,13}, 6,{47,21,13}}, { 7, {42,14,14}, 4,{43,15,14}}}, + {{ 4,{133,107,13} }, { 8,{59,37,11}, 1,{60,38,11}}, { 8,{44,20,12}, 4,{45,21,12}}, { 12, {33,11,11}, 4,{34,12,11}}}, + {{ 3,{145,115,15}, 1,{146,116,15}}, { 4,{64,40,12}, 5,{65,41,12}}, { 11,{36,16,10}, 5,{37,17,10}}, { 11, {36,12,12}, 5,{37,13,12}}}, + {{ 5,{109, 87,11}, 1,{110, 88,11}}, { 5,{65,41,12}, 5,{66,42,12}}, { 5,{54,24,15}, 7,{55,25,15}}, { 11, {36,12,12}, 7,{37,13,12}}}, + {{ 5,{122, 98,12}, 1,{123, 99,12}}, { 7,{73,45,14}, 3,{74,46,14}}, { 15,{43,19,12}, 2,{44,20,12}}, { 3, {45,15,15}, 13,{46,16,15}}}, + {{ 1,{135,107,14}, 5,{136,108,14}}, { 10,{74,46,14}, 1,{75,47,14}}, { 1,{50,22,14}, 15,{51,23,14}}, { 2, {42,14,14}, 17,{43,15,14}}}, + {{ 5,{150,120,15}, 1,{151,121,15}}, { 9,{69,43,13}, 4,{70,44,13}}, { 17,{50,22,14}, 1,{51,23,14}}, { 2, {42,14,14}, 19,{43,15,14}}}, + {{ 3,{141,113,14}, 4,{142,114,14}}, { 3,{70,44,13}, 11,{71,45,13}}, { 17,{47,21,13}, 4,{48,22,13}}, { 9, {39,13,13}, 16,{40,14,13}}}, + {{ 3,{135,107,14}, 5,{136,108,14}}, { 3,{67,41,13}, 13,{68,42,13}}, { 15,{54,24,15}, 5,{55,25,15}}, { 15, {43,15,14}, 10,{44,16,14}}}, + {{ 4,{144,116,14}, 4,{145,117,14}}, { 17,{68,42,13}}, { 17,{50,22,14}, 6,{51,23,14}}, { 19, {46,16,15}, 6,{47,17,15}}}, + {{ 2,{139,111,14}, 7,{140,112,14}}, { 17,{74,46,14}}, { 7,{54,24,15}, 16,{55,25,15}}, { 34, {37,13,12} }}, + {{ 4,{151,121,15}, 5,{152,122,15}}, { 4,{75,47,14}, 14,{76,48,14}}, { 11,{54,24,15}, 14,{55,25,15}}, { 16, {45,15,15}, 14,{46,16,15}}}, + {{ 6,{147,117,15}, 4,{148,118,15}}, { 6,{73,45,14}, 14,{74,46,14}}, { 11,{54,24,15}, 16,{55,25,15}}, { 30, {46,16,15}, 2,{47,17,15}}}, + {{ 8,{132,106,13}, 4,{133,107,13}}, { 8,{75,47,14}, 13,{76,48,14}}, { 7,{54,24,15}, 22,{55,25,15}}, { 22, {45,15,15}, 13,{46,16,15}}}, + {{ 10,{142,114,14}, 2,{143,115,14}}, { 19,{74,46,14}, 4,{75,47,14}}, { 28,{50,22,14}, 6,{51,23,14}}, { 33, {46,16,15}, 4,{47,17,15}}}, + {{ 8,{152,122,15}, 4,{153,123,15}}, { 22,{73,45,14}, 3,{74,46,14}}, { 8,{53,23,15}, 26,{54,24,15}}, { 12, {45,15,15}, 28,{46,16,15}}}, + {{ 3,{147,117,15}, 10,{148,118,15}}, { 3,{73,45,14}, 23,{74,46,14}}, { 4,{54,24,15}, 31,{55,25,15}}, { 11, {45,15,15}, 31,{46,16,15}}}, + {{ 7,{146,116,15}, 7,{147,117,15}}, { 21,{73,45,14}, 7,{74,46,14}}, { 1,{53,23,15}, 37,{54,24,15}}, { 19, {45,15,15}, 26,{46,16,15}}}, + {{ 5,{145,115,15}, 10,{146,116,15}}, { 19,{75,47,14}, 10,{76,48,14}}, { 15,{54,24,15}, 25,{55,25,15}}, { 23, {45,15,15}, 25,{46,16,15}}}, + {{ 13,{145,115,15}, 3,{146,116,15}}, { 2,{74,46,14}, 29,{75,47,14}}, { 42,{54,24,15}, 1,{55,25,15}}, { 23, {45,15,15}, 28,{46,16,15}}}, + {{ 17,{145,115,15} }, { 10,{74,46,14}, 23,{75,47,14}}, { 10,{54,24,15}, 35,{55,25,15}}, { 19, {45,15,15}, 35,{46,16,15}}}, + {{ 17,{145,115,15}, 1,{146,116,15}}, { 14,{74,46,14}, 21,{75,47,14}}, { 29,{54,24,15}, 19,{55,25,15}}, { 11, {45,15,15}, 46,{46,16,15}}}, + {{ 13,{145,115,15}, 6,{146,116,15}}, { 14,{74,46,14}, 23,{75,47,14}}, { 44,{54,24,15}, 7,{55,25,15}}, { 59, {46,16,15}, 1,{47,17,15}}}, + {{ 12,{151,121,15}, 7,{152,122,15}}, { 12,{75,47,14}, 26,{76,48,14}}, { 39,{54,24,15}, 14,{55,25,15}}, { 22, {45,15,15}, 41,{46,16,15}}}, + {{ 6,{151,121,15}, 14,{152,122,15}}, { 6,{75,47,14}, 34,{76,48,14}}, { 46,{54,24,15}, 10,{55,25,15}}, { 2, {45,15,15}, 64,{46,16,15}}}, + {{ 17,{152,122,15}, 4,{153,123,15}}, { 29,{74,46,14}, 14,{75,47,14}}, { 49,{54,24,15}, 10,{55,25,15}}, { 24, {45,15,15}, 46,{46,16,15}}}, + {{ 4,{152,122,15}, 18,{153,123,15}}, { 13,{74,46,14}, 32,{75,47,14}}, { 48,{54,24,15}, 14,{55,25,15}}, { 42, {45,15,15}, 32,{46,16,15}}}, + {{ 20,{147,117,15}, 4,{148,118,15}}, { 40,{75,47,14}, 7,{76,48,14}}, { 43,{54,24,15}, 22,{55,25,15}}, { 10, {45,15,15}, 67,{46,16,15}}}, + {{ 19,{148,118,15}, 6,{149,119,15}}, { 18,{75,47,14}, 31,{76,48,14}}, { 34,{54,24,15}, 34,{55,25,15}}, { 20, {45,15,15}, 61,{46,16,15}}} +} + +-- The bits that must be 0 if the version does fill the complete matrix. +-- Example: for version 1, no bits need to be added after arranging the data, for version 2 we need to add 7 bits at the end. +local remainder = {0, 7, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0} + +-- This is the formula for table 1 in the spec: +-- function get_capacity_remainder( version ) +-- local len = version * 4 + 17 +-- local size = len^2 +-- local function_pattern_modules = 192 + 2 * len - 32 -- Position Adjustment pattern + timing pattern +-- local count_alignemnt_pattern = #alignment_pattern[version] +-- if count_alignemnt_pattern > 0 then +-- -- add 25 for each aligment pattern +-- function_pattern_modules = function_pattern_modules + 25 * ( count_alignemnt_pattern^2 - 3 ) +-- -- but substract the timing pattern occupied by the aligment pattern on the top and left +-- function_pattern_modules = function_pattern_modules - ( count_alignemnt_pattern - 2) * 10 +-- end +-- size = size - function_pattern_modules +-- if version > 6 then +-- size = size - 67 +-- else +-- size = size - 31 +-- end +-- return math.floor(size/8),math.fmod(size,8) +-- end + + +--- Example: Version 5-H has four data and four error correction blocks. The table above lists +--- `2, {33,11,11}, 2,{34,12,11}` for entry [5][4]. This means we take two blocks with 11 codewords +--- and two blocks with 12 codewords, and two blocks with 33 - 11 = 22 ec codes and another +--- two blocks with 34 - 12 = 22 ec codes. +--- Block 1: D1 D2 D3 ... D11 +--- Block 2: D12 D13 D14 ... D22 +--- Block 3: D23 D24 D25 ... D33 D34 +--- Block 4: D35 D36 D37 ... D45 D46 +--- Then we place the data like this in the matrix: D1, D12, D23, D35, D2, D13, D24, D36 ... D45, D34, D46. The same goes +--- with error correction codes. + +-- The given data can be a string of 0's and 1' (with #string mod 8 == 0). +-- Alternatively the data can be a table of codewords. The number of codewords +-- must match the capacity of the qr code. +local function arrange_codewords_and_calculate_ec( version,ec_level,data ) + if type(data)=="table" then + local tmp = "" + for i=1,#data do + tmp = tmp .. binary(data[i],8) + end + data = tmp + end + -- If the size of the data is not enough for the codeword, we add 0's and two special bytes until finished. + local blocks = ecblocks[version][ec_level] + local size_datablock_bytes, size_ecblock_bytes + local datablocks = {} + local final_ecblocks = {} + local count = 1 + local pos = 0 + local cpty_ec_bits = 0 + for i=1,#blocks/2 do + for _=1,blocks[2*i - 1] do + size_datablock_bytes = blocks[2*i][2] + size_ecblock_bytes = blocks[2*i][1] - blocks[2*i][2] + cpty_ec_bits = cpty_ec_bits + size_ecblock_bytes * 8 + datablocks[#datablocks + 1] = string.sub(data, pos * 8 + 1,( pos + size_datablock_bytes)*8) + local tmp_tab = calculate_error_correction(datablocks[#datablocks],size_ecblock_bytes) + local tmp_str = "" + for x=1,#tmp_tab do + tmp_str = tmp_str .. binary(tmp_tab[x],8) + end + final_ecblocks[#final_ecblocks + 1] = tmp_str + pos = pos + size_datablock_bytes + count = count + 1 + end + end + local arranged_data = "" + pos = 1 + repeat + for i=1,#datablocks do + if pos < #datablocks[i] then + arranged_data = arranged_data .. string.sub(datablocks[i],pos, pos + 7) + end + end + pos = pos + 8 + until #arranged_data == #data + -- ec + local arranged_ec = "" + pos = 1 + repeat + for i=1,#final_ecblocks do + if pos < #final_ecblocks[i] then + arranged_ec = arranged_ec .. string.sub(final_ecblocks[i],pos, pos + 7) + end + end + pos = pos + 8 + until #arranged_ec == cpty_ec_bits + return arranged_data .. arranged_ec +end + +--- Step 4: Generate 8 matrices with different masks and calculate the penalty +--- ========================================================================== +--- +--- Prepare matrix +--- -------------- +--- The first step is to prepare an _empty_ matrix for a given size/mask. The matrix has a +--- few predefined areas that must be black or blank. We encode the matrix with a two +--- dimensional field where the numbers determine which pixel is blank or not. +--- +--- The following code is used for our matrix: +--- 0 = not in use yet, +--- -2 = blank by mandatory pattern, +--- 2 = black by mandatory pattern, +--- -1 = blank by data, +--- 1 = black by data +--- +--- +--- To prepare the _empty_, we add positioning, alingment and timing patters. + +--- ### Positioning patterns ### +local function add_position_detection_patterns(tab_x) + local size = #tab_x + -- allocate quite zone in the matrix area + for i=1,8 do + for j=1,8 do + tab_x[i][j] = -2 + tab_x[size - 8 + i][j] = -2 + tab_x[i][size - 8 + j] = -2 + end + end + -- draw the detection pattern (outer) + for i=1,7 do + -- top left + tab_x[1][i]=2 + tab_x[7][i]=2 + tab_x[i][1]=2 + tab_x[i][7]=2 + + -- top right + tab_x[size][i]=2 + tab_x[size - 6][i]=2 + tab_x[size - i + 1][1]=2 + tab_x[size - i + 1][7]=2 + + -- bottom left + tab_x[1][size - i + 1]=2 + tab_x[7][size - i + 1]=2 + tab_x[i][size - 6]=2 + tab_x[i][size]=2 + end + -- draw the detection pattern (inner) + for i=1,3 do + for j=1,3 do + -- top left + tab_x[2+j][i+2]=2 + -- top right + tab_x[size - j - 1][i+2]=2 + -- bottom left + tab_x[2 + j][size - i - 1]=2 + end + end +end + +--- ### Timing patterns ### +-- The timing patterns (two) are the dashed lines between two adjacent positioning patterns on row/column 7. +local function add_timing_pattern(tab_x) + local line,col + line = 7 + col = 9 + for i=col,#tab_x - 8 do + if math.fmod(i,2) == 1 then + tab_x[i][line] = 2 + else + tab_x[i][line] = -2 + end + end + for i=col,#tab_x - 8 do + if math.fmod(i,2) == 1 then + tab_x[line][i] = 2 + else + tab_x[line][i] = -2 + end + end +end + + +--- ### Alignment patterns ### +--- The alignment patterns must be added to the matrix for versions > 1. The amount and positions depend on the versions and are +--- given by the spec. Beware: the patterns must not be placed where we have the positioning patterns +--- (that is: top left, top right and bottom left.) + +-- For each version, where should we place the alignment patterns? See table E.1 of the spec +local alignment_pattern = { + {},{6,18},{6,22},{6,26},{6,30},{6,34}, -- 1-6 + {6,22,38},{6,24,42},{6,26,46},{6,28,50},{6,30,54},{6,32,58},{6,34,62}, -- 7-13 + {6,26,46,66},{6,26,48,70},{6,26,50,74},{6,30,54,78},{6,30,56,82},{6,30,58,86},{6,34,62,90}, -- 14-20 + {6,28,50,72,94},{6,26,50,74,98},{6,30,54,78,102},{6,28,54,80,106},{6,32,58,84,110},{6,30,58,86,114},{6,34,62,90,118}, -- 21-27 + {6,26,50,74,98 ,122},{6,30,54,78,102,126},{6,26,52,78,104,130},{6,30,56,82,108,134},{6,34,60,86,112,138},{6,30,58,86,114,142},{6,34,62,90,118,146}, -- 28-34 + {6,30,54,78,102,126,150}, {6,24,50,76,102,128,154},{6,28,54,80,106,132,158},{6,32,58,84,110,136,162},{6,26,54,82,110,138,166},{6,30,58,86,114,142,170} -- 35 - 40 +} + +--- The alignment pattern has size 5x5 and looks like this: +--- XXXXX +--- X X +--- X X X +--- X X +--- XXXXX +local function add_alignment_pattern( tab_x ) + local version = (#tab_x - 17) / 4 + local ap = alignment_pattern[version] + local pos_x, pos_y + for x=1,#ap do + for y=1,#ap do + -- we must not put an alignment pattern on top of the positioning pattern + if not (x == 1 and y == 1 or x == #ap and y == 1 or x == 1 and y == #ap ) then + pos_x = ap[x] + 1 + pos_y = ap[y] + 1 + tab_x[pos_x][pos_y] = 2 + tab_x[pos_x+1][pos_y] = -2 + tab_x[pos_x-1][pos_y] = -2 + tab_x[pos_x+2][pos_y] = 2 + tab_x[pos_x-2][pos_y] = 2 + tab_x[pos_x ][pos_y - 2] = 2 + tab_x[pos_x+1][pos_y - 2] = 2 + tab_x[pos_x-1][pos_y - 2] = 2 + tab_x[pos_x+2][pos_y - 2] = 2 + tab_x[pos_x-2][pos_y - 2] = 2 + tab_x[pos_x ][pos_y + 2] = 2 + tab_x[pos_x+1][pos_y + 2] = 2 + tab_x[pos_x-1][pos_y + 2] = 2 + tab_x[pos_x+2][pos_y + 2] = 2 + tab_x[pos_x-2][pos_y + 2] = 2 + + tab_x[pos_x ][pos_y - 1] = -2 + tab_x[pos_x+1][pos_y - 1] = -2 + tab_x[pos_x-1][pos_y - 1] = -2 + tab_x[pos_x+2][pos_y - 1] = 2 + tab_x[pos_x-2][pos_y - 1] = 2 + tab_x[pos_x ][pos_y + 1] = -2 + tab_x[pos_x+1][pos_y + 1] = -2 + tab_x[pos_x-1][pos_y + 1] = -2 + tab_x[pos_x+2][pos_y + 1] = 2 + tab_x[pos_x-2][pos_y + 1] = 2 + end + end + end +end + +--- ### Type information ### +--- Let's not forget the type information that is in column 9 next to the left positioning patterns and on row 9 below +--- the top positioning patterns. This type information is not fixed, it depends on the mask and the error correction. + +-- The first index is ec level (LMQH,1-4), the second is the mask (0-7). This bitstring of length 15 is to be used +-- as mandatory pattern in the qrcode. Mask -1 is for debugging purpose only and is the 'noop' mask. +local typeinfo = { + { [-1]= "111111111111111", [0] = "111011111000100", "111001011110011", "111110110101010", "111100010011101", "110011000101111", "110001100011000", "110110001000001", "110100101110110" }, + { [-1]= "111111111111111", [0] = "101010000010010", "101000100100101", "101111001111100", "101101101001011", "100010111111001", "100000011001110", "100111110010111", "100101010100000" }, + { [-1]= "111111111111111", [0] = "011010101011111", "011000001101000", "011111100110001", "011101000000110", "010010010110100", "010000110000011", "010111011011010", "010101111101101" }, + { [-1]= "111111111111111", [0] = "001011010001001", "001001110111110", "001110011100111", "001100111010000", "000011101100010", "000001001010101", "000110100001100", "000100000111011" } +} + +-- The typeinfo is a mixture of mask and ec level information and is +-- added twice to the qr code, one horizontal, one vertical. +local function add_typeinfo_to_matrix( matrix,ec_level,mask ) + local ec_mask_type = typeinfo[ec_level][mask] + + local bit + -- vertical from bottom to top + for i=1,7 do + bit = string.sub(ec_mask_type,i,i) + fill_matrix_position(matrix, bit, 9, #matrix - i + 1) + end + for i=8,9 do + bit = string.sub(ec_mask_type,i,i) + fill_matrix_position(matrix,bit,9,17-i) + end + for i=10,15 do + bit = string.sub(ec_mask_type,i,i) + fill_matrix_position(matrix,bit,9,16 - i) + end + -- horizontal, left to right + for i=1,6 do + bit = string.sub(ec_mask_type,i,i) + fill_matrix_position(matrix,bit,i,9) + end + bit = string.sub(ec_mask_type,7,7) + fill_matrix_position(matrix,bit,8,9) + for i=8,15 do + bit = string.sub(ec_mask_type,i,i) + fill_matrix_position(matrix,bit,#matrix - 15 + i,9) + end +end + +-- Bits for version information 7-40 +-- The reversed strings from https://www.thonky.com/qr-code-tutorial/format-version-tables +local version_information = {"001010010011111000", "001111011010000100", "100110010101100100", "110010110010010100", + "011011111101110100", "010001101110001100", "111000100001101100", "101100000110011100", "000101001001111100", + "000111101101000010", "101110100010100010", "111010000101010010", "010011001010110010", "011001011001001010", + "110000010110101010", "100100110001011010", "001101111110111010", "001000110111000110", "100001111000100110", + "110101011111010110", "011100010000110110", "010110000011001110", "111111001100101110", "101011101011011110", + "000010100100111110", "101010111001000001", "000011110110100001", "010111010001010001", "111110011110110001", + "110100001101001001", "011101000010101001", "001001100101011001", "100000101010111001", "100101100011000101" } + +-- Versions 7 and above need two bitfields with version information added to the code +local function add_version_information(matrix,version) + if version < 7 then return end + local size = #matrix + local bitstring = version_information[version - 6] + local x,y, bit + local start_x, start_y + -- first top right + start_x = size - 10 + start_y = 1 + for i=1,#bitstring do + bit = string.sub(bitstring,i,i) + x = start_x + math.fmod(i - 1,3) + y = start_y + math.floor( (i - 1) / 3 ) + fill_matrix_position(matrix,bit,x,y) + end + + -- now bottom left + start_x = 1 + start_y = size - 10 + for i=1,#bitstring do + bit = string.sub(bitstring,i,i) + x = start_x + math.floor( (i - 1) / 3 ) + y = start_y + math.fmod(i - 1,3) + fill_matrix_position(matrix,bit,x,y) + end +end + +--- Now it's time to use the methods above to create a prefilled matrix for the given mask +local function prepare_matrix_with_mask( version,ec_level, mask ) + local size + local tab_x = {} + + size = version * 4 + 17 + for i=1,size do + tab_x[i]={} + for j=1,size do + tab_x[i][j] = 0 + end + end + add_position_detection_patterns(tab_x) + add_timing_pattern(tab_x) + add_version_information(tab_x,version) + + -- black pixel above lower left position detection pattern + tab_x[9][size - 7] = 2 + add_alignment_pattern(tab_x) + add_typeinfo_to_matrix(tab_x,ec_level, mask) + return tab_x +end + +--- Finally we come to the place where we need to put the calculated data (remember step 3?) into the qr code. +--- We do this for each mask. BTW speaking of mask, this is what we find in the spec: +--- Mask Pattern Reference Condition +--- 000 (y + x) mod 2 = 0 +--- 001 y mod 2 = 0 +--- 010 x mod 3 = 0 +--- 011 (y + x) mod 3 = 0 +--- 100 ((y div 2) + (x div 3)) mod 2 = 0 +--- 101 (y x) mod 2 + (y x) mod 3 = 0 +--- 110 ((y x) mod 2 + (y x) mod 3) mod 2 = 0 +--- 111 ((y x) mod 3 + (y+x) mod 2) mod 2 = 0 + +-- Return 1 (black) or -1 (blank) depending on the mask, value and position. +-- Parameter mask is 0-7 (-1 for 'no mask'). x and y are 1-based coordinates, +-- 1,1 = upper left. tonumber(value) must be 0 or 1. +local function get_pixel_with_mask( mask, x,y,value ) + x = x - 1 + y = y - 1 + local invert = false + -- test purpose only: + if mask == -1 then -- luacheck: ignore + -- ignore, no masking applied + elseif mask == 0 then + if math.fmod(x + y,2) == 0 then invert = true end + elseif mask == 1 then + if math.fmod(y,2) == 0 then invert = true end + elseif mask == 2 then + if math.fmod(x,3) == 0 then invert = true end + elseif mask == 3 then + if math.fmod(x + y,3) == 0 then invert = true end + elseif mask == 4 then + if math.fmod(math.floor(y / 2) + math.floor(x / 3),2) == 0 then invert = true end + elseif mask == 5 then + if math.fmod(x * y,2) + math.fmod(x * y,3) == 0 then invert = true end + elseif mask == 6 then + if math.fmod(math.fmod(x * y,2) + math.fmod(x * y,3),2) == 0 then invert = true end + elseif mask == 7 then + if math.fmod(math.fmod(x * y,3) + math.fmod(x + y,2),2) == 0 then invert = true end + else + assert(false,"This can't happen (mask must be <= 7)") + end + if invert then + -- value = 1? -> -1, value = 0? -> 1 + return 1 - 2 * tonumber(value) + else + -- value = 1? -> 1, value = 0? -> -1 + return -1 + 2*tonumber(value) + end +end + + +-- We need up to 8 positions in the matrix. Only the last few bits may be less then 8. +-- The function returns a table of (up to) 8 entries with subtables where +-- the x coordinate is the first and the y coordinate is the second entry. +local function get_next_free_positions(matrix,x,y,dir,byte) + local ret = {} + local count = 1 + local mode = "right" + while count <= #byte do + if mode == "right" and matrix[x][y] == 0 then + ret[#ret + 1] = {x,y} + mode = "left" + count = count + 1 + elseif mode == "left" and matrix[x-1][y] == 0 then + ret[#ret + 1] = {x-1,y} + mode = "right" + count = count + 1 + if dir == "up" then + y = y - 1 + else + y = y + 1 + end + elseif mode == "right" and matrix[x-1][y] == 0 then + ret[#ret + 1] = {x-1,y} + count = count + 1 + if dir == "up" then + y = y - 1 + else + y = y + 1 + end + else + if dir == "up" then + y = y - 1 + else + y = y + 1 + end + end + if y < 1 or y > #matrix then + x = x - 2 + -- don't overwrite the timing pattern + if x == 7 then x = 6 end + if dir == "up" then + dir = "down" + y = 1 + else + dir = "up" + y = #matrix + end + end + end + return ret,x,y,dir +end + +-- Add the data string (0's and 1's) to the matrix for the given mask. +local function add_data_to_matrix(matrix,data,mask) + local size = #matrix + local x,y,positions + local _x,_y,m + local dir = "up" + local byte_number = 0 + x,y = size,size + string.gsub(data,".?.?.?.?.?.?.?.?",function ( byte ) + byte_number = byte_number + 1 + positions,x,y,dir = get_next_free_positions(matrix,x,y,dir,byte) + for i=1,#byte do + _x = positions[i][1] + _y = positions[i][2] + m = get_pixel_with_mask(mask,_x,_y,string.sub(byte,i,i)) + if debugging then + matrix[_x][_y] = m * (i + 10) + else + matrix[_x][_y] = m + end + end + end) +end + + +--- The total penalty of the matrix is the sum of four steps. The following steps are taken into account: +--- +--- 1. Adjacent modules in row/column in same color +--- 1. Block of modules in same color +--- 1. 1:1:3:1:1 ratio (dark:light:dark:light:dark) pattern in row/column +--- 1. Proportion of dark modules in entire symbol +--- +--- This all is done to avoid bad patterns in the code that prevent the scanner from +--- reading the code. +-- Return the penalty for the given matrix +local function calculate_penalty(matrix) + local penalty1, penalty2, penalty3 = 0,0,0 + local size = #matrix + -- this is for penalty 4 + local number_of_dark_cells = 0 + + -- 1: Adjacent modules in row/column in same color + -- -------------------------------------------- + -- No. of modules = (5+i) -> 3 + i + local last_bit_blank -- < 0: blank, > 0: black + local is_blank + local number_of_consecutive_bits + -- first: vertical + for x=1,size do + number_of_consecutive_bits = 0 + last_bit_blank = nil + for y = 1,size do + if matrix[x][y] > 0 then + -- small optimization: this is for penalty 4 + number_of_dark_cells = number_of_dark_cells + 1 + is_blank = false + else + is_blank = true + end + if last_bit_blank == is_blank then + number_of_consecutive_bits = number_of_consecutive_bits + 1 + else + if number_of_consecutive_bits >= 5 then + penalty1 = penalty1 + number_of_consecutive_bits - 2 + end + number_of_consecutive_bits = 1 + end + last_bit_blank = is_blank + end + if number_of_consecutive_bits >= 5 then + penalty1 = penalty1 + number_of_consecutive_bits - 2 + end + end + -- now horizontal + for y=1,size do + number_of_consecutive_bits = 0 + last_bit_blank = nil + for x = 1,size do + is_blank = matrix[x][y] < 0 + if last_bit_blank == is_blank then + number_of_consecutive_bits = number_of_consecutive_bits + 1 + else + if number_of_consecutive_bits >= 5 then + penalty1 = penalty1 + number_of_consecutive_bits - 2 + end + number_of_consecutive_bits = 1 + end + last_bit_blank = is_blank + end + if number_of_consecutive_bits >= 5 then + penalty1 = penalty1 + number_of_consecutive_bits - 2 + end + end + for x=1,size do + for y=1,size do + -- 2: Block of modules in same color + -- ----------------------------------- + -- Blocksize = m × n -> 3 × (m-1) × (n-1) + if (y < size - 1) and ( x < size - 1) and ( (matrix[x][y] < 0 and matrix[x+1][y] < 0 and matrix[x][y+1] < 0 and matrix[x+1][y+1] < 0) or (matrix[x][y] > 0 and matrix[x+1][y] > 0 and matrix[x][y+1] > 0 and matrix[x+1][y+1] > 0) ) then + penalty2 = penalty2 + 3 + end + + -- 3: 1:1:3:1:1 ratio (dark:light:dark:light:dark) pattern in row/column + -- ------------------------------------------------------------------ + -- Gives 40 points each + -- + -- I have no idea why we need the extra 0000 on left or right side. The spec doesn't mention it, + -- other sources do mention it. This is heavily inspired by zxing. + if (y + 6 < size and + matrix[x][y] > 0 and + matrix[x][y + 1] < 0 and + matrix[x][y + 2] > 0 and + matrix[x][y + 3] > 0 and + matrix[x][y + 4] > 0 and + matrix[x][y + 5] < 0 and + matrix[x][y + 6] > 0 and + ((y + 10 < size and + matrix[x][y + 7] < 0 and + matrix[x][y + 8] < 0 and + matrix[x][y + 9] < 0 and + matrix[x][y + 10] < 0) or + (y - 4 >= 1 and + matrix[x][y - 1] < 0 and + matrix[x][y - 2] < 0 and + matrix[x][y - 3] < 0 and + matrix[x][y - 4] < 0))) then penalty3 = penalty3 + 40 end + if (x + 6 <= size and + matrix[x][y] > 0 and + matrix[x + 1][y] < 0 and + matrix[x + 2][y] > 0 and + matrix[x + 3][y] > 0 and + matrix[x + 4][y] > 0 and + matrix[x + 5][y] < 0 and + matrix[x + 6][y] > 0 and + ((x + 10 <= size and + matrix[x + 7][y] < 0 and + matrix[x + 8][y] < 0 and + matrix[x + 9][y] < 0 and + matrix[x + 10][y] < 0) or + (x - 4 >= 1 and + matrix[x - 1][y] < 0 and + matrix[x - 2][y] < 0 and + matrix[x - 3][y] < 0 and + matrix[x - 4][y] < 0))) then penalty3 = penalty3 + 40 end + end + end + -- 4: Proportion of dark modules in entire symbol + -- ---------------------------------------------- + -- 50 ± (5 × k)% to 50 ± (5 × (k + 1))% -> 10 × k + local dark_ratio = number_of_dark_cells / ( size * size ) + local penalty4 = math.floor(math.abs(dark_ratio * 100 - 50)) * 2 + return penalty1 + penalty2 + penalty3 + penalty4 +end + +-- Create a matrix for the given parameters and calculate the penalty score. +-- Return both (matrix and penalty) +local function get_matrix_and_penalty(version,ec_level,data,mask) + local tab = prepare_matrix_with_mask(version,ec_level,mask) + add_data_to_matrix(tab,data,mask) + local penalty = calculate_penalty(tab) + return tab, penalty +end + +-- Return the matrix with the smallest penalty. To to this +-- we try out the matrix for all 8 masks and determine the +-- penalty (score) each. +local function get_matrix_with_lowest_penalty(version,ec_level,data) + local tab, penalty + local tab_min_penalty, min_penalty + + -- try masks 0-7 + tab_min_penalty, min_penalty = get_matrix_and_penalty(version,ec_level,data,0) + for i=1,7 do + tab, penalty = get_matrix_and_penalty(version,ec_level,data,i) + if penalty < min_penalty then + tab_min_penalty = tab + min_penalty = penalty + end + end + return tab_min_penalty +end + +--- The main function. We connect everything together. Remember from above: +--- +--- 1. Determine version, ec level and mode (=encoding) for codeword +--- 1. Encode data +--- 1. Arrange data and calculate error correction code +--- 1. Generate 8 matrices with different masks and calculate the penalty +--- 1. Return qrcode with least penalty +-- If ec_level or mode is given, use the ones for generating the qrcode. (mode is not implemented yet) +local function qrcode( str, ec_level, _mode ) -- luacheck: no unused args + local arranged_data, version, data_raw, mode, len_bitstring + version, ec_level, data_raw, mode, len_bitstring = get_version_eclevel_mode_bistringlength(str,ec_level) + data_raw = data_raw .. len_bitstring + data_raw = data_raw .. encode_data(str,mode) + data_raw = add_pad_data(version,ec_level,data_raw) + arranged_data = arrange_codewords_and_calculate_ec(version,ec_level,data_raw) + if math.fmod(#arranged_data,8) ~= 0 then + return false, string.format("Arranged data %% 8 != 0: data length = %d, mod 8 = %d",#arranged_data, math.fmod(#arranged_data,8)) + end + arranged_data = arranged_data .. string.rep("0",remainder[version]) + local tab = get_matrix_with_lowest_penalty(version,ec_level,arranged_data) + return true, tab +end + + +if testing then + return { + encode_string_numeric = encode_string_numeric, + encode_string_ascii = encode_string_ascii, + qrcode = qrcode, + binary = binary, + get_mode = get_mode, + get_length = get_length, + add_pad_data = add_pad_data, + get_generator_polynominal_adjusted = get_generator_polynominal_adjusted, + get_pixel_with_mask = get_pixel_with_mask, + get_version_eclevel_mode_bistringlength = get_version_eclevel_mode_bistringlength, + remainder = remainder, + --get_capacity_remainder = get_capacity_remainder, + arrange_codewords_and_calculate_ec = arrange_codewords_and_calculate_ec, + calculate_error_correction = calculate_error_correction, + convert_bitstring_to_bytes = convert_bitstring_to_bytes, + bit_xor = bit_xor, + } +end + +return { + qrcode = qrcode +} diff --git a/Master/texmf-dist/source/latex/qrbill/qrbill.dtx b/Master/texmf-dist/source/latex/qrbill/qrbill.dtx index 6d169404d5a..c7739d81d32 100644 --- a/Master/texmf-dist/source/latex/qrbill/qrbill.dtx +++ b/Master/texmf-dist/source/latex/qrbill/qrbill.dtx @@ -2,7 +2,7 @@ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % -% Copyright (C) 2020–2022 by Marei Peischl (peiTeX) +% Copyright (C) 2020–2023 by Marei Peischl (peiTeX) % % This work is a collaboration of % Marei Peischl (peiTeX) and Alex Antener (foobar LLC). @@ -54,7 +54,7 @@ % \fi % \iffalse %<*driver> -\ProvidesFile{qrbill.dtx}[2022/10/20 v1.07 \ create QR-bills based on the Swiss standard] +\ProvidesFile{qrbill.dtx}[2023/02/28 v2.00 \ create QR-bills based on the Swiss standard] \documentclass[english, parskip=half-]{scrartcl} \usepackage{iftex} \ifPDFTeX @@ -284,8 +284,8 @@ % \changes{v1.06}{2022/10/18}{Add ignore-if-empty option} % % \item[qrmode (package/lua) (package)] Selects the mechanism for QRcode generation. +% \changes{v2.00}{2023/02/28}{qrencode.lua now is part of the qrbill package} % With Version 2.0 the package supports usage of the the luaqrcode library \cite{luaqrcode}. This can be enabled by using the \latexinline{qmode=lua} option. -% In that case the luaqrcode libary has to be installed within the \verb+$LUAINPUTS+. % % \item[qrscheme (Name of a custom QRbill scheme) (swiss)] % Loads the definitions for the QRcode and the BillingInformation. Currently only the @@ -514,7 +514,7 @@ % \section{Implementation} % \begin{macrocode} \RequirePackage{expl3} -\ProvidesExplPackage{qrbill}{2022/10/20}{1.07}{ +\ProvidesExplPackage{qrbill}{2023/02/28}{2.00}{ Template for QR-bills based on the Swiss Payment Standards } \RequirePackage{iftex} @@ -866,7 +866,7 @@ \skip_vertical:n {\c_qrbill_sep_dim-\g__qrbill_rule_dim} \skip_horizontal:n {\c_qrbill_sep_dim-\g__qrbill_rule_dim} \begin{minipage}[c][95mm][t]{52mm} - \vbox_to_ht:nn {7mm} {\qrbill_title_font:\qrbillreceiptname} + \vbox_to_ht:nn {7mm} {\qrbill_title_font:\qrbillreceiptname\vfill} \par\nointerlineskip \vbox_to_ht:nn {56mm}{ {\qrbill_headingR_font:\qrbillaccountname\par} @@ -896,6 +896,7 @@ \par } } + \vfill } \par\nointerlineskip \vbox_to_ht:nn {14mm}{ @@ -918,12 +919,13 @@ \par\nointerlineskip \vbox_to_ht:nn {18mm} { \makebox[\linewidth][r]{\qrbill_headingR_font:\qrbillacceptantname}\par + \vfill } \end{minipage}% \skip_horizontal:n {2\c_qrbill_sep_dim} \begin{minipage}[c][95mm][t]{138mm} \begin{minipage}[c][85mm][t]{51mm} - \parbox[t][7mm][t]{\linewidth}{\qrbill_title_font:\qrbillpaymentpartname} + \parbox[t][7mm][t]{\linewidth}{\qrbill_title_font:\qrbillpaymentpartname\vfill} \par\nointerlineskip \skip_vertical:n {\c_qrbill_sep_dim} \qrcode_setup_QRcode: @@ -950,9 +952,10 @@ \tl_if_empty:NTF \l_qrbill_data_Amount_tl { \hfill \raisebox{\dimexpr-\height+\ht\strutbox}[\z@]{ - \llap{\__qrbill_placeholder:nn {40mm} {15mm} - }} + \llap{\__qrbill_placeholder:nn {40mm} {15mm}} + } } + \vfill } \end{minipage} \begin{minipage}[c][85mm][t]{87mm} @@ -964,6 +967,7 @@ \qrbill_insert_address:N \g__qrbill_creditorprefix_tl \par\vskip\baselineskip } + \raggedright \tl_if_empty:NF \l_qrbill_data_Reference_tl { {\qrbill_headingP_font:\qrbillreferencename\par} {\qrbill_valueP_font: @@ -1017,6 +1021,7 @@ {\rule{\g__qrbill_rule_dim}{\c_qrbill_height_dim}} {\rule{\g__qrbill_rule_dim}{\c_zero_dim}} } + \vfill } } \endgroup diff --git a/Master/texmf-dist/source/latex/qrbill/qrbill.ins b/Master/texmf-dist/source/latex/qrbill/qrbill.ins index 00a86976230..1fe8b6669ed 100644 --- a/Master/texmf-dist/source/latex/qrbill/qrbill.ins +++ b/Master/texmf-dist/source/latex/qrbill/qrbill.ins @@ -2,17 +2,17 @@ \preamble -Copyright (C) 2020–2022 by Marei Peischl (peiTeX) +Copyright (C) 2020–2023 by Marei Peischl (peiTeX) This work is a collaboration of Marei Peischl (peiTeX) and Alex Antener (foobar LLC). This work may be distributed and/or modified under the -conditions of the LaTeX Project Public License, either version 1.3 +conditions of the LaTeX Project Public License, either version 1.3c of this license or (at your option) any later version. The latest version of this license is in http://www.latex-project.org/lppl.txt -and version 1.3 or later is part of all distributions of LaTeX +and version 1.3c or later is part of all distributions of LaTeX version 2005/12/01 or later. This work has the LPPL maintenance status `maintained'. diff --git a/Master/texmf-dist/tex/latex/qrbill/epc.qrbill-cfg.tex b/Master/texmf-dist/tex/latex/qrbill/epc.qrbill-cfg.tex index b3963a20b8c..bdfd62f92df 100644 --- a/Master/texmf-dist/tex/latex/qrbill/epc.qrbill-cfg.tex +++ b/Master/texmf-dist/tex/latex/qrbill/epc.qrbill-cfg.tex @@ -6,17 +6,17 @@ %% %% qrbill.dtx (with options: `epc.qrbill-cfg.tex') %% -%% Copyright (C) 2020–2022 by Marei Peischl (peiTeX) +%% Copyright (C) 2020–2023 by Marei Peischl (peiTeX) %% %% This work is a collaboration of %% Marei Peischl (peiTeX) and Alex Antener (foobar LLC). %% %% This work may be distributed and/or modified under the -%% conditions of the LaTeX Project Public License, either version 1.3 +%% conditions of the LaTeX Project Public License, either version 1.3c %% of this license or (at your option) any later version. %% The latest version of this license is in %% http://www.latex-project.org/lppl.txt -%% and version 1.3 or later is part of all distributions of LaTeX +%% and version 1.3c or later is part of all distributions of LaTeX %% version 2005/12/01 or later. %% %% This work has the LPPL maintenance status `maintained'. diff --git a/Master/texmf-dist/tex/latex/qrbill/qrbill.sty b/Master/texmf-dist/tex/latex/qrbill/qrbill.sty index a4c16da040e..19048cbe269 100644 --- a/Master/texmf-dist/tex/latex/qrbill/qrbill.sty +++ b/Master/texmf-dist/tex/latex/qrbill/qrbill.sty @@ -6,17 +6,17 @@ %% %% qrbill.dtx (with options: `qrbill.sty,package') %% -%% Copyright (C) 2020–2022 by Marei Peischl (peiTeX) +%% Copyright (C) 2020–2023 by Marei Peischl (peiTeX) %% %% This work is a collaboration of %% Marei Peischl (peiTeX) and Alex Antener (foobar LLC). %% %% This work may be distributed and/or modified under the -%% conditions of the LaTeX Project Public License, either version 1.3 +%% conditions of the LaTeX Project Public License, either version 1.3c %% of this license or (at your option) any later version. %% The latest version of this license is in %% http://www.latex-project.org/lppl.txt -%% and version 1.3 or later is part of all distributions of LaTeX +%% and version 1.3c or later is part of all distributions of LaTeX %% version 2005/12/01 or later. %% %% This work has the LPPL maintenance status `maintained'. @@ -37,7 +37,7 @@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \RequirePackage{expl3} -\ProvidesExplPackage{qrbill}{2022/10/20}{1.07}{ +\ProvidesExplPackage{qrbill}{2023/02/28}{2.00}{ Template for QR-bills based on the Swiss Payment Standards } \RequirePackage{iftex} @@ -364,7 +364,7 @@ num, string = printQRcode("\lua_escape:n {#1}") \skip_vertical:n {\c_qrbill_sep_dim-\g__qrbill_rule_dim} \skip_horizontal:n {\c_qrbill_sep_dim-\g__qrbill_rule_dim} \begin{minipage}[c][95mm][t]{52mm} -\vbox_to_ht:nn {7mm} {\qrbill_title_font:\qrbillreceiptname} +\vbox_to_ht:nn {7mm} {\qrbill_title_font:\qrbillreceiptname\vfill} \par\nointerlineskip \vbox_to_ht:nn {56mm}{ {\qrbill_headingR_font:\qrbillaccountname\par} @@ -394,6 +394,7 @@ num, string = printQRcode("\lua_escape:n {#1}") \par } } + \vfill } \par\nointerlineskip \vbox_to_ht:nn {14mm}{ @@ -416,12 +417,13 @@ num, string = printQRcode("\lua_escape:n {#1}") \par\nointerlineskip \vbox_to_ht:nn {18mm} { \makebox[\linewidth][r]{\qrbill_headingR_font:\qrbillacceptantname}\par +\vfill } \end{minipage}% \skip_horizontal:n {2\c_qrbill_sep_dim} \begin{minipage}[c][95mm][t]{138mm} \begin{minipage}[c][85mm][t]{51mm} -\parbox[t][7mm][t]{\linewidth}{\qrbill_title_font:\qrbillpaymentpartname} +\parbox[t][7mm][t]{\linewidth}{\qrbill_title_font:\qrbillpaymentpartname\vfill} \par\nointerlineskip \skip_vertical:n {\c_qrbill_sep_dim} \qrcode_setup_QRcode: @@ -448,10 +450,11 @@ num, string = printQRcode("\lua_escape:n {#1}") \tl_if_empty:NTF \l_qrbill_data_Amount_tl { \hfill \raisebox{\dimexpr-\height+\ht\strutbox}[\z@]{ -\llap{\__qrbill_placeholder:nn {40mm} {15mm} -}} +\llap{\__qrbill_placeholder:nn {40mm} {15mm}} } } +\vfill +} \end{minipage} \begin{minipage}[c][85mm][t]{87mm} \par\nointerlineskip @@ -462,6 +465,7 @@ num, string = printQRcode("\lua_escape:n {#1}") \qrbill_insert_address:N \g__qrbill_creditorprefix_tl \par\vskip\baselineskip } +\raggedright \tl_if_empty:NF \l_qrbill_data_Reference_tl { {\qrbill_headingP_font:\qrbillreferencename\par} {\qrbill_valueP_font: @@ -515,6 +519,7 @@ num, string = printQRcode("\lua_escape:n {#1}") {\rule{\g__qrbill_rule_dim}{\c_qrbill_height_dim}} {\rule{\g__qrbill_rule_dim}{\c_zero_dim}} } +\vfill } } \endgroup diff --git a/Master/texmf-dist/tex/latex/qrbill/swiss.qrbill-cfg.tex b/Master/texmf-dist/tex/latex/qrbill/swiss.qrbill-cfg.tex index 8e02f34eac8..3ca4c8dd296 100644 --- a/Master/texmf-dist/tex/latex/qrbill/swiss.qrbill-cfg.tex +++ b/Master/texmf-dist/tex/latex/qrbill/swiss.qrbill-cfg.tex @@ -6,17 +6,17 @@ %% %% qrbill.dtx (with options: `swiss.qrbill-cfg.tex') %% -%% Copyright (C) 2020–2022 by Marei Peischl (peiTeX) +%% Copyright (C) 2020–2023 by Marei Peischl (peiTeX) %% %% This work is a collaboration of %% Marei Peischl (peiTeX) and Alex Antener (foobar LLC). %% %% This work may be distributed and/or modified under the -%% conditions of the LaTeX Project Public License, either version 1.3 +%% conditions of the LaTeX Project Public License, either version 1.3c %% of this license or (at your option) any later version. %% The latest version of this license is in %% http://www.latex-project.org/lppl.txt -%% and version 1.3 or later is part of all distributions of LaTeX +%% and version 1.3c or later is part of all distributions of LaTeX %% version 2005/12/01 or later. %% %% This work has the LPPL maintenance status `maintained'. -- cgit v1.2.3