From b1cb51f192b8dbb8b7d8aff485320845fae110f4 Mon Sep 17 00:00:00 2001 From: Karl Berry Date: Thu, 12 Jan 2006 23:56:06 +0000 Subject: formula git-svn-id: svn://tug.org/texlive/trunk@936 c570f23f-e606-0410-a88d-b1316a301751 --- Master/texmf-dist/tex/latex/formula/formula.sty | 372 ++++++++++++++++++++++++ 1 file changed, 372 insertions(+) create mode 100644 Master/texmf-dist/tex/latex/formula/formula.sty (limited to 'Master/texmf-dist/tex') diff --git a/Master/texmf-dist/tex/latex/formula/formula.sty b/Master/texmf-dist/tex/latex/formula/formula.sty new file mode 100644 index 00000000000..2678c1d62c5 --- /dev/null +++ b/Master/texmf-dist/tex/latex/formula/formula.sty @@ -0,0 +1,372 @@ +%% +%% This is file `formula.sty', +%% generated with the docstrip utility. +%% +%% The original source files were: +%% +%% formula.dtx (with options: `formula') +%% +%% Copyleft 1997 Andreas Tille +%% +%% Usage without any waranty +%% + +\csname @ifundefined\endcsname{formuladef}{}{\endinput} +\NeedsTeXFormat{LaTeX2e}[1997/12/01] +\ProvidesPackage{formula} +\RequirePackage{amsfonts} +\RequirePackage{amstext} +\RequirePackage{textcomp}[1998/03/05 v1.9n] +\RequirePackage{xspace} +\def\formuladef#1 #2 #3 #4{% + \globaldefs=1% + \expandafter\newcommand\expandafter{\csname#1\endcsname} + {\relax\ensuremath{#2}\xspace}% + \expandafter\newcommand\expandafter{\csname#1doc\endcsname} + {\csname#1\endcsname & #3\\}% + \expandafter\newcommand\expandafter{\csname#1art\endcsname} + {#4\xspace}% der Artikel + \expandafter\newcommand\expandafter{\csname#1txt\endcsname} + {#3\xspace}% der beschreibende Text + \expandafter\newcommand\expandafter{\csname#1my\endcsname} + {{\tt\char92#1} & \csname#1doc\endcsname} + \globaldefs=0}% +\def\formulaarg#1 #2 #3 #4 #5{% + \globaldefs=1% + \expandafter\newcommand\expandafter{\csname#1\endcsname}[1]% + {\relax\ensuremath{#2{##1}}\xspace}% + \expandafter\newcommand\expandafter{\csname#1doc\endcsname}% + {\csname#1\endcsname{#5} & #3\\}% + \expandafter\newcommand\expandafter{\csname#1art\endcsname}% + {#4}% der Artikel + \expandafter\newcommand\expandafter{\csname#1txt\endcsname}% + {#3}% der beschreibende Text + \expandafter\newcommand\expandafter{\csname#1my\endcsname}% + {{\tt\char92#1\{}{\em #5}{\tt \}} & \csname#1doc\endcsname} + \globaldefs=0}% +\def\formulamit#1 #2 #3 #4 #5 #6{% + \globaldefs=1% + \expandafter\newcommand\expandafter{\csname#1\endcsname}[1]% + {\relax\ensuremath{#2{##1}#3}\xspace}% + \expandafter\newcommand\expandafter{\csname#1doc\endcsname} + {\csname#1\endcsname{#6} & #4\\}% + \expandafter\newcommand\expandafter{\csname#1art\endcsname} + {#5}% der Artikel + \expandafter\newcommand\expandafter{\csname#1txt\endcsname} + {#4}% der beschreibende Text + \expandafter\newcommand\expandafter{\csname#1my\endcsname}% + {{\tt\char92#1\{}{\em #6}{\tt \}} & \csname#1doc\endcsname} + \globaldefs=0}% +\def\formuladiff#1 #2 #3 #4 #5 #6{% + \globaldefs=1% + \expandafter\newcommand\expandafter{\csname#1\endcsname}[1]% + {\relax\ensuremath{\frac{#2^{##1}#3}{#2#4^{##1}}}\xspace}% + \expandafter\newcommand\expandafter{\csname#1doc\endcsname}% + {\csname#1\endcsname{n} & #5\\}% + \expandafter\newcommand\expandafter{\csname#1art\endcsname}% + {#6}% der Artikel + \expandafter\newcommand\expandafter{\csname#1txt\endcsname}% + {#5}% der beschreibende Text + \expandafter\newcommand\expandafter{\csname#1my\endcsname}% + {{\tt\char92#1\{}{\em n}{\tt \}} & \csname#1doc\endcsname} + \globaldefs=0}% +\newcommand{\eorg}[2]{% + \expandafter\ifx\csname l@german\endcsname\relax #1% + \else \ifnum\csname l@german\endcsname=\language #2% + \else #1\fi\fi} +\newif\ifpredefinition +\predefinitiontrue +\newcommand{\NoPreDefinition}{\predefinitionfalse} +\DeclareOption{nopredefinition}{\NoPreDefinition} +\ProcessOptions +\ifpredefinition +\formuladef MA {\text{\bf A}} + {\eorg{m}{M}atrix A} {\eorg{the}{die}} +\formuladef Cmess {\text{C}_m} + {\eorg{linear capacitor for measurement} + {linearer Me\ss{}kondensator}} {} +\formuladef Cnl {C_{nl}} + {\eorg{nonlinear capacity of the sample} + {nichtlineare Kapazit\"at der Probe}} {\eorg{the}{die}} +\formulaarg Cr {\mathbb{C}^} + {\eorg{set of r times continuous differentiable functions} + {Menge der r-mal stetig differenzierbaren Funktionen}} + {} {r} +\formuladef dPR {d} + {\eorg{d}{D}imension \eorg{of phase space}{des Phasenraums}} {die} +\formuladef DV {D} + {dielektrische Verschiebung} {die} +\formuladef Det {\text{det}} + {Determinante einer Matrix} {die} +\formuladef Dx {\text{\bf D}_x} + {Jakobimatrix} {die} +\formuladef EF {E} + {elektrische Feldst\"arke} {die} +\formuladef EC {E_C} + {Koerzitivfeldst\"arke} {die} +\formuladef ECnl {E_{\Cnl}} + {elektrische Feldst\"arke \"uber der Probe} {die} +\formuladef dynSys {\vec{f}(\vec{x},\vp)} + {beliebiges dynamisches System} {ein} +\formulamit Effi {f_} {(\cdot,\cdot)} + {} {} {i} +\formuladef falles {\Effi{1}, \Effi{2}, \cdots} + {Komponenten des beliebigen dynamischen Systems} {} +\formuladef F {\text{F}} + {Probenfl\"ache} {die} +\formuladef Fouri {\mathcal{F}} + {Fouriertransformation} {die} +\formuladef Fourin {\text{F}_{i,n}} + {$n$-te Fourierkomponente von \Effi{i}} {die} +\formuladef FOp {\Fouri_{n}} + {Operator f\"ur die $n$-te Fourierkomponente} {der} +\formuladef FB {\text{f}} + {Brennweite} {die} +\formuladef freq {f} + {Frequenz} {die} +\formuladef vf {\vec{f}} + {Vektorfeld} {ein} +\formuladef fa {\freq_a} + {Abtastfrequenz} {die} +\formuladef fgrund {\freq_{ext}} + {Anregungsfrequenz der Schwingung} {die} +\formuladef fstrob {\freq_s} + {Blitzfrequenz des Stroboskops} {die} +\formuladef fvirt {\freq_v} + {virtuelle Frequenz} {die} +\formuladef vfO {\vf(\vO)} + {Vektorfeld f im Ursprung} {} +\formuladef FE {G} + {freie Enthalpie} {die} +\formuladef FEO {\FE_0} + {temperaturunabh\"angiger Anteil der freien Energie} {} +\formuladef h {\text{h}} + {Probendicke} {die} +\formuladef Hrel {H_r} + {relative Helligkeit eines Videobildes} {die} +\formuladef IH {I} + {elektrische Stromst\"arke} {die} +\formuladef Itot {\IH_{tot}} + {Gesamtstromst\"arke} {die} +\formuladef ICnl {\IH_{\Cnl}} + {Strom durch die nichtlineare Kapazit\"at} {der} +\formuladef IRp {\IH_{\Rp}} + {Strom durch den Parallelverlustwiderstand \Rp} {der} +\formuladef je {j} + {Stromdichte} {die} +\formuladef Lx {\text{L}} + {Induktivit\"at der linearen Spule} {die} +\formuladef vO {\vec{o}} + {Nullvektor} {der} +\formuladef Par {p} + {} {} +\formuladef vp {\vec{\Par}} + {Modellparameter} {die} +\formulaarg Para {\Par_} + {} {} {i} +\formuladef Parai {\Para{1}, \Para{2}, \cdots} + {Komponenten der Modellparameter} {die} +\formuladef Pol {P} + {Polarisation} {die} +\formuladef Poinc {\mathfrak{P}} + {Poincar\'e-Ebene} {die} +\formuladef Pols {\Pol_s} + {spontane Polarisation} {die} +\formuladef Lad {Q} + {elektrische Ladung} {die} +\formuladef Rz {\mathbb{R}} + {reeller Raum} {} +\formuladef Rx {\text{R}} + {Widerstand} {} +\formuladef RCnl {\Rx_{\Cnl}} + {linearer Widerstand in der Ersatzschaltung der Probe} {} +\formuladef RL {\Rx_{\Lx}} + {Verlustwiderstand der Spule} {der} +\formuladef Rlin {\Rx_{lin}} + {linearer Verlustwiderstand; \Rlin = \RL + \Rmess} {} +\formuladef Rmess {\Rx_m} + {linearer Me\ss{}widerstand} {} +\formulaarg Rn {\Rz^} + {n-dimensionaler reeller Raum} {} {n} +\formuladef Rp {\Rx_p} + {Parallelverlustwiderstand der nichtlinearen Kapazit\"at} {der} +\formuladef Rs {\Rx_s} + {Serienverlustwiderstand der nichtlinearen Kapazit\"at} {der} +\formuladef Spur {\text{Spur}} + {Spur einer Matrix} {die} +\formuladef tx {t} + {Zeit} {die} +\formuladef T {T} + {Periodendauer} {die} +\formuladef Te {\text{T}} + {Temperatur} {die} +\formuladef ta {\tx_a} + {Abtastzeit} {die} +\formuladef te {\tx_e} + {Delay-Zeit} {die} +\formuladef Tgrund {\T_0} + {Periodendauer der Anregung} {die} +\formuladef TC {\Te_C} + {absolute Curie-Temperatur} {die} +\formuladef TCrit {\Te_{crit}} + {kritische absolute Temperatur} {die} +\formuladef Ux {U} + {Spannung} {die} +\formuladef Umg {\mathbb{U}} + {Umgebung} {} +\formuladef Ueff {\Ux_{ef\kern-1pt{f}}} + {Effektivwert der Anregungsspannung} {der} +\formuladef Uext {\Ux_{ext}} + {externe Spannung} {die} +\formuladef UCnl {\Ux_{\Cnl}} + {Spannung \"uber \Cnl} {die} +\formuladef URL {\Ux_{\RL}} + {Spannung \"uber \RL} {die} +\formuladef URs {\Ux_{\Rs}} + {Spannung \"uber \Rs} {die} +\formuladef Vnl {V_{nl}} + {nichtlineares Potential} {} +\formuladef x {x} + {beliebige skalare physikalische Gr\"o\ss{}e} {} +\formuladef dxdt {\dot x} + {Ableitung von x nach der Zeit} {} +\formuladef vx {\vec{x}} + {beliebige vektorielle physikalische Gr\"o\ss{}e} {} +\formuladef vX {\vec{X}} + {Fouriertransformierte der vektoriellen Gr\"o\ss{}e \vx} {} +\formuladef xO {x_0} + {} {} +\formuladef vxO {\vec{\xO}} + {} {} +\formulaarg PotK {\alpha_} + {} {} {i} +\formuladef PotKo {\PotK{2}, \PotK{4}} + {Koeffizienten des nichtlinearen Potentials \Vnl} {die} +\formulaarg LanK {\tilde{\alpha}_} + {} {} {i} +\formuladef LanKo {\LanK{1}, \LanK{2}, \cdots} + {Entwicklungskoeffizienten der Landau-Entwicklung} {die} +\formuladef Feige {\delta} + {Feigenbaum-Konstante} {die} +\formuladef Abli {\partial_i} + {Ableitungsoperator nach der $i$-ten Koordinate} {der} +\formuladef eps {\varepsilon} + {Dielektrizit\"atskonstante} {die} +\formuladef epsO {\eps_0} + {Influenzkonstante $\epsO = 8.84\cdot 10^{-12}\AsVm$} {die} +\formuladef epsr {\eps_r} + {relative Dielektrizit\"atskonstante} {die} +\formuladef OP {\eta} + {Ordnungsparameter} {der} +\formuladef Ev {\eta} + {mit Index: Komponente des Eigenvektors} {der} +\formuladef vEv {\vec{\Ev}} + {Eigenvektor} {der} +\formuladef GOP {\OP^{*}} + {Gleichgewichtswert des Ordnungsparameters} {der} +\formuladef Ewl {\lambda} + {Eigenwert} {der} +\formuladef phistrob {\varphi_s} + {Phasenwinkel des Stroboskops} {der} +\formuladef TGrdC {\vartheta} + {Temperatur in Celsius} {die} +\formuladef ThC {\TGrdC_C} + {Curie-Temperatur} {die} +\formuladef ThCrit {\TGrdC_{crit}} + {kritische Temperatur} {die} +\formuladef oC {\omega} + {Kreisfrequenz $\oC = 2\pi\freq$} {die} +\formuladef oO {\oC_0} + {Grundfrequenz} {die} +\formuladef siehe {\rightarrow} + {siehe} {} +\formuladef drf {\Rightarrow} + {daraus folgt} {} +\fi% end of predefinition +\def\formulaunit#1 #2 #3 #4 #5{% + \globaldefs=1% + \expandafter\newcommand\expandafter{\csname#1\endcsname}% + {\relax\ensuremath{\text{\,#2}#3\text{#4}}\xspace}% + \expandafter\newcommand\expandafter{\csname#1doc\endcsname} + {{\em x}\csname#1\endcsname & #5\\}% + \expandafter\newcommand\expandafter{\csname#1txt\endcsname} + {#5}% description of units in words + \expandafter\newcommand\expandafter{\csname#1my\endcsname}% + {{\em x\tt\char92#1} & \csname#1doc\endcsname} + \globaldefs=0}% +\ifpredefinition +\formulaunit mn {} {} min {\eorg{minute}{Minute}} +\formulaunit sek {} {} s {\eorg{second}{Sekunde}} +\formulaunit msek {m} {} s {Millisekunde} +\formulaunit musek {} {\text{\textmu}} s {Mikrosekunde} +\formulaunit m {} {} m {Meter} +\formulaunit cm {c} {} m {Zentimeter} +\formulaunit mm {m} {} m {Millimeter} +\formulaunit mum {} {\text{\textmu}} m {Mikrometer} +\formulaunit nm {n} {} m {Nanometer} +\formulaunit li {} {} l {Liter} +\formulaunit ml {m} {} l {Milliliter} +\formulaunit g {} {} g {Gramm} +\formulaunit kg {k} {} g {Kilogramm} +\formulaunit Hz {} {} Hz {Hertz} +\formulaunit kHz {k} {} Hz {Kilohertz} +\formulaunit MHz {M} {} Hz {Megahertz} +\formulaunit MV {M} {} V {Megavolt} +\formulaunit kV {k} {} V {Kilovolt} +\formulaunit Vo {} {} V {Volt} +\formulaunit mV {m} {} V {Millivolt} +\formulaunit Ohm {} {\text{\textohm}} {} {Ohm} +\formulaunit kOhm {k} {\text{\textohm}} {} {Kiloohm} +\formulaunit MOhm {M} {\text{\textohm}} {} {Megaohm} +\formulaunit muF {} {\text{\textmu}} F {Mikrofarad} +\formulaunit nF {n} {} F {Nanofarad} +\formulaunit pF {p} {} F {Picofarad} +\formulaunit He {} {} H {Henry} +\formulaunit mH {m} {} H {Millihenry} +\formulaunit K {} {} K {Kelvin} +\formulaunit grd {} {\text{\textdegree}} {} {Grad} +\formulaunit grdC {} {\text{\textcelsius}} {} {Grad Celsius} +\formulaunit J {} {} {J} {Joule} +\formulaunit muJ {} {\text{\textmu}} {J} {Mikrojoule} +\formulaunit mW {m} {} {W} {Milliwatt} +\formulaunit W {} {} {W} {Watt} +\formulaunit Bit {} {} Bit {Bit} +\formulaunit Byte {} {} HByte {Byte} +\formulaunit kByte {k} {} Byte {Kilobyte} +\formulaunit MByte {M} {} Byte {Megabyte} +\formulaunit Bilderprosek {} {} {\eorg{images}{Bilder}/s} {\eorg{Bilder pro Sekunde}{images per second}} +\formulaunit Bilder {} {} {\eorg{images}{Bilder}} {\eorg{images}{Bilder}} +\formulaunit dpi {} {} {dpi} {\eorg{dots per inch}{Punkte pro Zoll}} +\formulaunit Prozent {} {} {\%} {\eorg{per cent}{Prozent}} +\formulaunit Upromin {} {} {U/min} {Umdrehungen pro Minute} +\formulaunit AsVm {} {} {\ensuremath{\frac{\text{As}}{\text{Vm}}}} + {Amperesekunden pro Voltmeter} +\formulaunit DM {} {} {DM} {DM} +\formulaunit TDM {T} {} {DM} {tausend DM} +\fi% end predefinition +\newcommand{\Odif}[2]{\frac{\partial #1}{\partial #2}} +\newcommand{\odif}[2]{\relax\ensuremath{\Odif{#1}{#2}}} +\newcommand{\Pdif}[2]{\left( \odif{#1}{#2} \right)} +\newcommand{\pdif}[2]{\relax\ensuremath{\Pdif{#1}{#2}}} +\newcommand{\OSdif}[2]{\frac{\partial^2 #1}{\partial #2^2}} +\newcommand{\osdif}[2]{\relax\ensuremath{\OSdif{#1}{#2}}} +\newcommand{\OOdif}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}} +\newcommand{\oodif}[3]{\relax\ensuremath{\OOdif{#1}{#2}{#3}}} +\newcommand{\PPdif}[3]{\left( \oodif{#1}{#2}{#3} \right)} +\newcommand{\ppdif}[3]{\relax\ensuremath{\PPdif{#1}{#2}{#3}}} +\newcommand{\OOOdif}[4]{\frac{\partial^3 #1}{\partial #2 \partial #3 \partial #4}} +\newcommand{\ooodif}[4]{\relax\ensuremath{\OOOdif{#1}{#2}{#3}{#4}}} +\newcommand{\PPPdif}[4]{\left( \ooodif{#1}{#2}{#3}{#4} \right)} +\newcommand{\pppdif}[4]{\relax\ensuremath{\PPPdif{#1}{#2}{#3}{#4}}} +\newcommand{\OOSdif}[3]{\frac{\partial^3 #1}{\partial #2^2\partial #3}} +\newcommand{\oosdif}[3]{\relax\ensuremath{\OOSdif{#1}{#2}{#3}}} +\newcommand{\beq}{\begin{equation}} +\newcommand{\eeq}{\end{equation}} +\newcommand{\bea}{\begin{eqnarray}} +\newcommand{\eea}{\end{eqnarray}} +\def\be*{\begin{eqnarray*}} +\def\ee*{\end{eqnarray*}} +\def\buildrul#1\over #2{\mathrel {\mathop {#1}\limits_{#2}}} +\endinput +%% +%% End of file `formula.sty'. -- cgit v1.2.3