From cc862e582aa0dd7c0dee16bb5475394338a07641 Mon Sep 17 00:00:00 2001 From: Karl Berry Date: Wed, 6 Dec 2017 23:56:06 +0000 Subject: l3 (7dec17) git-svn-id: svn://tug.org/texlive/trunk@46003 c570f23f-e606-0410-a88d-b1316a301751 --- .../source/latex/l3kernel/l3fp-extended.dtx | 78 +++++++++++----------- 1 file changed, 39 insertions(+), 39 deletions(-) (limited to 'Master/texmf-dist/source/latex/l3kernel/l3fp-extended.dtx') diff --git a/Master/texmf-dist/source/latex/l3kernel/l3fp-extended.dtx b/Master/texmf-dist/source/latex/l3kernel/l3fp-extended.dtx index 044133c8932..d4b82639a68 100644 --- a/Master/texmf-dist/source/latex/l3kernel/l3fp-extended.dtx +++ b/Master/texmf-dist/source/latex/l3kernel/l3fp-extended.dtx @@ -1,13 +1,13 @@ % \iffalse meta-comment % -%% File: l3fp-extended.dtx Copyright (C) 2011-2014,2016,2017 The LaTeX3 Project +%% File: l3fp-extended.dtx Copyright (C) 2011-2017 The LaTeX3 Project % % It may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this % license or (at your option) any later version. The latest version % of this license is in the file % -% http://www.latex-project.org/lppl.txt +% https://www.latex-project.org/lppl.txt % % This file is part of the "l3kernel bundle" (The Work in LPPL) % and all files in that bundle must be distributed together. @@ -21,7 +21,7 @@ % for those people who are interested. % %<*driver> -\documentclass[full]{l3doc} +\documentclass[full,kernel]{l3doc} \begin{document} \DocInput{\jobname.dtx} \end{document} @@ -38,7 +38,7 @@ % {latex-team@latex-project.org}^^A % }^^A % } -% \date{Released 2017/11/14} +% \date{Released 2017/12/05} % % \maketitle % @@ -108,7 +108,7 @@ % % \subsection{Helpers for numbers with extended precision} % -% \begin{variable}[int]{\c_@@_one_fixed_tl} +% \begin{variable}{\c_@@_one_fixed_tl} % The fixed-point number~$1$, used in \pkg{l3fp-expo}. % \begin{macrocode} \tl_const:Nn \c_@@_one_fixed_tl @@ -116,14 +116,14 @@ % \end{macrocode} % \end{variable} % -% \begin{macro}[int, EXP]{\@@_fixed_continue:wn} +% \begin{macro}[EXP]{\@@_fixed_continue:wn} % This function simply calls the next function. % \begin{macrocode} \cs_new:Npn \@@_fixed_continue:wn #1; #2 { #2 #1; } % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_fixed_add_one:wN} +% \begin{macro}[EXP]{\@@_fixed_add_one:wN} % \begin{syntax} % \cs{@@_fixed_add_one:wN} \meta{a} |;| \meta{continuation} % \end{syntax} @@ -139,7 +139,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_fixed_div_myriad:wn} +% \begin{macro}[EXP]{\@@_fixed_div_myriad:wn} % Divide a fixed point number by $10000$. This is a little bit more % subtle than just removing the last group and adding a leading group % of zeros: the first group~|#1| may have any number of digits, and we @@ -158,7 +158,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[aux, EXP]{\@@_fixed_mul_after:wwn} +% \begin{macro}[EXP]{\@@_fixed_mul_after:wwn} % The fixed point operations which involve multiplication end by % calling this auxiliary. It braces the last block of digits, and % places the \meta{continuation} |#3| in front. @@ -169,7 +169,7 @@ % % \subsection{Multiplying a fixed point number by a short one} % -% \begin{macro}[int, EXP]{\@@_fixed_mul_short:wwn} +% \begin{macro}[EXP]{\@@_fixed_mul_short:wwn} % \begin{syntax} % \cs{@@_fixed_mul_short:wwn} % \ \ \Arg{a_1} \Arg{a_2} \Arg{a_3} \Arg{a_4} \Arg{a_5} \Arg{a_6} |;| @@ -213,8 +213,8 @@ % % \subsection{Dividing a fixed point number by a small integer} % -% \begin{macro}[int, EXP]{\@@_fixed_div_int:wwN} -% \begin{macro}[aux, EXP] +% \begin{macro}[EXP]{\@@_fixed_div_int:wwN} +% \begin{macro}[EXP] % { % \@@_fixed_div_int:wnN, \@@_fixed_div_int_auxi:wnn, % \@@_fixed_div_int_auxii:wnn, \@@_fixed_div_int_pack:Nw, @@ -301,8 +301,8 @@ % % \subsection{Adding and subtracting fixed points} % -% \begin{macro}[int, EXP]{\@@_fixed_add:wwn, \@@_fixed_sub:wwn} -% \begin{macro}[aux, EXP] +% \begin{macro}[EXP]{\@@_fixed_add:wwn, \@@_fixed_sub:wwn} +% \begin{macro}[EXP] % { % \@@_fixed_add:Nnnnnwnn, % \@@_fixed_add:nnNnnnwn, @@ -354,8 +354,8 @@ % \subsection{Multiplying fixed points} % % ^^A todo: may a_1 or b_1 be = 10000? Used in ediv_epsi later. -% \begin{macro}[int, EXP]{\@@_fixed_mul:wwn} -% \begin{macro}[aux, EXP]{\@@_fixed_mul:nnnnnnnw} +% \begin{macro}[EXP]{\@@_fixed_mul:wwn} +% \begin{macro}[EXP]{\@@_fixed_mul:nnnnnnnw} % \begin{syntax} % \cs{@@_fixed_mul:wwn} \meta{a} |;| \meta{b} |;| \Arg{continuation} % \end{syntax} @@ -431,7 +431,7 @@ % % \subsection{Combining product and sum of fixed points} % -% \begin{macro}[int, EXP] +% \begin{macro}[EXP] % { % \@@_fixed_mul_add:wwwn, % \@@_fixed_mul_sub_back:wwwn, @@ -515,7 +515,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[aux, EXP]{\@@_fixed_mul_add:Nwnnnwnnn} +% \begin{macro}[EXP]{\@@_fixed_mul_add:Nwnnnwnnn} % \begin{syntax} % \cs{@@_fixed_mul_add:Nwnnnwnnn} \meta{op} |+| \meta{c_3} \meta{c_4} |;| % ~~\meta{b} |;| \meta{a} |;| \meta{b} |;| \meta{op} @@ -549,7 +549,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[aux, EXP]{\@@_fixed_mul_add:nnnnwnnnn} +% \begin{macro}[EXP]{\@@_fixed_mul_add:nnnnwnnnn} % \begin{syntax} % \cs{@@_fixed_mul_add:nnnnwnnnn} \meta{a} |;| \meta{b} |;| \meta{op} % ~~|+| \meta{c_5} \meta{c_6} |;| @@ -585,7 +585,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[aux, EXP]{\@@_fixed_mul_add:nnnnwnnwN} +% \begin{macro}[EXP]{\@@_fixed_mul_add:nnnnwnnwN} % \begin{syntax} % \cs{@@_fixed_mul_add:nnnnwnnwN} \Arg{partial_1} \Arg{partial_2} % ~~\Arg{a_1} \Arg{a_5} \Arg{a_6} |;| \Arg{b_1} \Arg{b_5} \Arg{b_6} |;| @@ -621,8 +621,8 @@ % corresponding value is $0.\meta{digits}\cdot 10^{\meta{exponent}}$. % This convention differs from floating points. % -% \begin{macro}[int, EXP]{\@@_ep_to_fixed:wwn} -% \begin{macro}[aux, EXP] +% \begin{macro}[EXP]{\@@_ep_to_fixed:wwn} +% \begin{macro}[EXP] % {\@@_ep_to_fixed_auxi:www, \@@_ep_to_fixed_auxii:nnnnnnnwn} % Converts an extended-precision number with an exponent at most~$4$ % and a first block less than $10^{8}$ to a fixed point number whose @@ -651,9 +651,9 @@ % \end{macro} % % ^^A todo: make it work when the arg is zero. -% \begin{macro}[aux, EXP]{\@@_ep_to_ep:wwN} -% \begin{macro}[aux, rEXP]{\@@_ep_to_ep_loop:N, \@@_ep_to_ep_end:www} -% \begin{macro}[aux, EXP]{\@@_ep_to_ep_zero:ww} +% \begin{macro}[EXP]{\@@_ep_to_ep:wwN} +% \begin{macro}[rEXP]{\@@_ep_to_ep_loop:N, \@@_ep_to_ep_end:www} +% \begin{macro}[EXP]{\@@_ep_to_ep_zero:ww} % Normalize an extended-precision number. More precisely, leading % zeros are removed from the mantissa of the argument, decreasing its % exponent as appropriate. Then the digits are packed into $6$~groups @@ -708,8 +708,8 @@ % \end{macro} % \end{macro} % -% \begin{macro}[int, EXP]{\@@_ep_compare:wwww} -% \begin{macro}[aux, EXP]{\@@_ep_compare_aux:wwww} +% \begin{macro}[EXP]{\@@_ep_compare:wwww} +% \begin{macro}[EXP]{\@@_ep_compare_aux:wwww} % In \pkg{l3fp-trig} we need to compare two extended-precision % numbers. This is based on the same function for positive floating % point numbers, with an extra test if comparing only $16$ decimals is @@ -737,7 +737,7 @@ % \end{macro} % % ^^A todo: doc that neither operand may be zero (or fix ep_to_ep above) -% \begin{macro}[int, EXP]{\@@_ep_mul:wwwwn, \@@_ep_mul_raw:wwwwN} +% \begin{macro}[EXP]{\@@_ep_mul:wwwwn, \@@_ep_mul_raw:wwwwN} % Multiply two extended-precision numbers: first normalize them to % avoid losing too much precision, then multiply the mantissas |#2| % and~|#4| as fixed point numbers, and sum the exponents |#1| @@ -886,7 +886,7 @@ % ^^A todo: provide ep_inv, not ep_div? % ^^A todo: make extra sure that the result's first block cannot be 99 % ^^A todo: doc that neither operand may be zero (or fix ep_to_ep) -% \begin{macro}[int, EXP]{\@@_ep_div:wwwwn} +% \begin{macro}[EXP]{\@@_ep_div:wwwwn} % Compute the ratio of two extended-precision numbers. The result is % an extended-precision number whose first block lies in the range % $[100,9999]$, and is placed after the \meta{continuation} once we @@ -907,7 +907,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[aux, EXP] +% \begin{macro}[EXP] % { % \@@_ep_div_esti:wwwwn, % \@@_ep_div_estii:wwnnwwn, @@ -953,7 +953,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[aux, EXP] +% \begin{macro}[EXP] % { % \@@_ep_div_epsi:wnNNNNNn, % \@@_ep_div_eps_pack:NNNNNw, @@ -1021,8 +1021,8 @@ % with $y^{-1/2}$ as $x^{-1/2} = 10^{-2} r y^{-1/2}$. % % ^^A todo: doc that the operand may not be zero (or fix ep_to_ep above) -% \begin{macro}[int, EXP]{\@@_ep_isqrt:wwn} -% \begin{macro}[aux, EXP] +% \begin{macro}[EXP]{\@@_ep_isqrt:wwn} +% \begin{macro}[EXP] % {\@@_ep_isqrt_aux:wwn, \@@_ep_isqrt_auxii:wwnnnwn} % First normalize the input, then check the parity of the % exponent~|#1|. If it is even, the result's exponent will be @@ -1063,7 +1063,7 @@ % \end{macro} % \end{macro} % -% \begin{macro}[aux, EXP] +% \begin{macro}[EXP] % { % \@@_ep_isqrt_esti:wwwnnwn, % \@@_ep_isqrt_estii:wwwnnwn, @@ -1111,7 +1111,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[aux, EXP]{\@@_ep_isqrt_epsi:wN, \@@_ep_isqrt_epsii:wwN} +% \begin{macro}[EXP]{\@@_ep_isqrt_epsi:wN, \@@_ep_isqrt_epsii:wwN} % Here, we receive a fixed point number $y/2$ with $y\in[1,1.0201]$. % Starting from $z = 1$ we iterate $z \mapsto z(3/2 - z^2 y/2)$. In % fact, we start from the first iteration $z=3/2-y/2$ to avoid useless @@ -1143,7 +1143,7 @@ % floating point format. The functions here should be called within an % integer expression for the overall exponent of the floating point. % -% \begin{macro}[int, rEXP]{\@@_ep_to_float_o:wwN, \@@_ep_inv_to_float_o:wwN} +% \begin{macro}[rEXP]{\@@_ep_to_float_o:wwN, \@@_ep_inv_to_float_o:wwN} % An extended-precision number is simply a comma-delimited exponent % followed by a fixed point number. Leave the exponent in the current % integer expression then convert the fixed point number. @@ -1158,7 +1158,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[rEXP, int]{\@@_fixed_inv_to_float_o:wN} +% \begin{macro}[rEXP]{\@@_fixed_inv_to_float_o:wN} % Another function which reduces to converting an extended precision % number to a float. % \begin{macrocode} @@ -1167,7 +1167,7 @@ % \end{macrocode} % \end{macro} % -% \begin{macro}[rEXP, int]{\@@_fixed_to_float_rad_o:wN} +% \begin{macro}[rEXP]{\@@_fixed_to_float_rad_o:wN} % Converts the fixed point number~|#1| from degrees to radians then to % a floating point number. This could perhaps remain in % \pkg{l3fp-trig}. @@ -1181,7 +1181,7 @@ % \end{macro} % % ^^A todo: make exponents end in ',' consistently throughout l3fp -% \begin{macro}[int, rEXP] +% \begin{macro}[rEXP] % {\@@_fixed_to_float_o:wN, \@@_fixed_to_float_o:Nw} % \begin{syntax} % \ldots{} \cs{__int_eval:w} \meta{exponent} \cs{@@_fixed_to_float_o:wN} \Arg{a_1} \Arg{a_2} \Arg{a_3} \Arg{a_4} \Arg{a_5} \Arg{a_6} |;| \meta{sign} -- cgit v1.2.3