From af91cefd8b0ad8fe98e9ef318d337636b3f54a19 Mon Sep 17 00:00:00 2001 From: Karl Berry Date: Thu, 9 Jan 2014 23:59:41 +0000 Subject: xint (9jan14) git-svn-id: svn://tug.org/texlive/trunk@32618 c570f23f-e606-0410-a88d-b1316a301751 --- Master/texmf-dist/source/generic/xint/xint.dtx | 4330 +++++++++++++++--------- Master/texmf-dist/source/generic/xint/xint.ins | 6 +- 2 files changed, 2814 insertions(+), 1522 deletions(-) (limited to 'Master/texmf-dist/source/generic/xint') diff --git a/Master/texmf-dist/source/generic/xint/xint.dtx b/Master/texmf-dist/source/generic/xint/xint.dtx index 2148abb6c4e..7d46a1c9278 100644 --- a/Master/texmf-dist/source/generic/xint/xint.dtx +++ b/Master/texmf-dist/source/generic/xint/xint.dtx @@ -1,16 +1,16 @@ % -*- coding: iso-latin-1; time-stamp-format: "%02d-%02m-%:y %02H:%02M:%02S %Z" -*- -% File: xint.dtx, package: 1.09i (2013/12/18), documentation: 2013/12/18 +% File: xint.dtx, package: 1.09j (2014/01/09), documentation: 2014/01/09 % License: LaTeX Project Public License 1.3c or later. -% Copyright (C) 2013 by Jean-Francois Burnol +% Copyright (C) 2013-2014 by Jean-Francois Burnol %<*dtx> -\def\lasttimestamp{Time-stamp: <18-12-2013 11:32:32 CET>} +\def\lasttimestamp{Time-stamp: <09-01-2014 19:14:30 CET>} % %<*drv> -\def\xintdate {2013/12/18} -\def\xintversion {1.09i} +\def\xintdate {2014/01/09} +\def\xintversion {1.09j} % %%---------------------------------------------------------------- -%% The xint bundle (version 1.09i of December 18, 2013) +%% The xint bundle (version 1.09j of January 9, 2014) %%% xinttools: Expandable and non-expandable utilities %%% xint: Expandable operations on long numbers %%% xintfrac: Expandable operations on fractions @@ -19,7 +19,7 @@ %%% xintgcd: Euclidean algorithm with xint package %%% xintseries: Expandable partial sums with xint package %%% xintcfrac: Expandable continued fractions with xint package -%% Copyright (C) 2013 by Jean-Francois Burnol +%% Copyright (C) 2013-2014 by Jean-Francois Burnol %%---------------------------------------------------------------- % Installation % ============ @@ -169,7 +169,7 @@ %% \input docstrip.tex \askforoverwritefalse -\generate{\usepreamble\nopreamble +\generate{\nopreamble \file{xint.tex}{\from{xint.dtx}{drv}} \usepreamble\defaultpreamble \file{xinttools.sty}{\from{xint.dtx}{xinttools}} @@ -280,7 +280,7 @@ % no use of docstrip to extract files if latex compilation was on etoc.tex \ifdefined\MessageDeFin\AtEndDocument{\MessageDeFin}\fi %------------------------------------------------------------------------------- -\documentclass[abstract]{scrdoc} +\documentclass {scrdoc} \ifnum\NoSourceCode=1 \OnlyDescription\fi \makeatletter \ifnum\Withdvipdfmx=1 @@ -299,6 +299,42 @@ \makeatother \pagestyle{headings} +\makeatletter +% January 4, 2014 +% took me a while to pinpoint yesterday evening the origin of the problem, if +% only I had visited +% http://www.komascript.de/release3.12 immediately! +% +% as I subscribe to c.t.tex and d.c.t.tex I thought a problem with KOMA scrartcl +% would have been mentioned there, if as crippling as is this one, so I +% initially thought something related to TOCs had changed in KOMA and that etoc +% was now incompatible, and thus I started examining this, until finally +% understanding this had nothing to do with the TOC but originated in a +% buggy \sectionmark, revealed with pagestyle headings. +% +% This morning I see this is fixed in the experimental archive +% http://www.komascript.de/~mkohm/texlive-KOMA/archive/ and appears in the +% CHANGELOG as r1584. It is a bit hard for me to understand why such a typo with +% big consequences is not yet fixed in the CTAN distributed version. I did waste +% 90 minutes on that, at a time I was concentrating on xint things. Bugs are +% unavoidable, especially typos like this originating from modifying earlier +% code, but this tiny typo is severely annoying to users (*) and in my humble +% opinion a CTAN update should have been done sooner. Ok, this was a +% turn-of-year time... +% +% (*) compiling old documents is broken, and one sometimes does not want to +% modify the source files. +% +\def\buggysectionmark #1{% KOMA 3.12 as released to CTAN December 2013 + \if@twoside\expandafter\markboth\else\expandafter\markright\fi + {\MakeMarkcase{\ifnumbered{section}{\sectionmarkformat\fi}{}#1}}{}} +\ifx\buggysectionmark\sectionmark +\def\sectionmark #1{% + \if@twoside\expandafter\markboth\else\expandafter\markright\fi + {\MakeMarkcase{\ifnumbered{section}{\sectionmarkformat}{}#1}}{}} +\fi +\makeatother + \usepackage[T1]{fontenc} \usepackage[latin1]{inputenc} @@ -336,8 +372,8 @@ \etocsetstyle{section}{} {} - {\ifnum\etocthenumber=26 \gdef\sectioncouleur{{joli}}\fi - \ifnum\etocthenumber=34 \gdef\sectioncouleur{[named]{RoyalPurple}}\fi + {\ifnum\etocthenumber=27 \gdef\sectioncouleur{{joli}}\fi + \ifnum\etocthenumber=35 \gdef\sectioncouleur{[named]{RoyalPurple}}\fi \savedsectionline{\numberline{\expandafter\textcolor\sectioncouleur {\etocnumber}}\etocname} {{\mdseries\etocpage}}% @@ -375,6 +411,7 @@ %--- TXFONTS: TXTT WILL BE MADE SMALLER AND WILL ALLOW HYPHENATION \usepackage{txfonts} +\usepackage{pifont} % malheureusement, comme j'utilise des diacritiques dans mes % parties commentées, imprimées verbatim, je ne pourrai pas @@ -430,7 +467,8 @@ \def\digitstt {\bgroup\fontfamily {lmtt}\selectfont\let\next=} \usepackage{xspace} -\usepackage[dvipsnames]{color} +%\usepackage[dvipsnames]{color} +\usepackage[dvipsnames]{xcolor} \usepackage{framed} \definecolor{joli}{RGB}{225,95,0} @@ -444,10 +482,13 @@ \definecolor{INERT}{RGB}{199,200,194} \definecolor{PIVOT}{RGB}{109,8,57} +\usepackage[para]{footmisc} + \usepackage[english]{babel} \usepackage[autolanguage,np]{numprint} \AtBeginDocument{\npthousandsep{,\hskip .5pt plus .1pt minus .1pt}} + \usepackage[pdfencoding=pdfdoc]{hyperref} \hypersetup{% linktoc=all,% @@ -463,6 +504,11 @@ pdfstartview=FitH,% pdfpagemode=UseOutlines} \usepackage{bookmark} +\usepackage{picture} % permet d'utiliser des unités dans les dimensions de la + % picture et dans \put +\usepackage{graphicx} +\usepackage{eso-pic} + %---- \MyMarginNote: a simple macro for some margin notes with no fuss % je m'aperçois que je peux l'utiliser dans les footnotes... @@ -488,6 +534,11 @@ pdfpagemode=UseOutlines} \smash{\hbox to 0pt {\hss\color[named]{PineGreen}% \itshape \xintListWithSep{\,}{#1}\ $\star$\quad }}% \vskip\dp\strutbox }\strut{}} +\def\retype #1{% + \vadjust{\vskip-\dp\strutbox + \smash{\hbox to 0pt {\hss\color[named]{PineGreen}% + \itshape \xintListWithSep{\,}{#1}\ \ding{73}\quad }}% + \vskip\dp\strutbox }\strut{}} \def\ntype #1{% \vadjust{\vskip-\dp\strutbox \smash{\hbox to 0pt {\hss\color[named]{PineGreen}% @@ -690,9 +741,9 @@ pdfpagemode=UseOutlines} \ifx #1\relax \else #1\hskip 0pt plus 1pt\relax \expandafter\allowsplits\fi }% -\def\printnumber #1% -{\expandafter\expandafter\expandafter - \allowsplits #1\relax }% Expands twice before printing. +\def\printnumber #1% first ``fully'' expands its argument. +{\expandafter\allowsplits \romannumeral-`0#1\relax }% + %--- counts used in particular in the samples from the documentation of the % xintseries.sty package @@ -712,15 +763,56 @@ pdfpagemode=UseOutlines} % 22 octobre 2013 \newcommand\fexpan {\textit{f}-expan} +\catcode`_ 11 +% December 7, 2013. Expandably computing a big Fibonacci number +% with the help of TeX+\numexpr+\xintexpr, (c) Jean-François Burnol +% added January 7 to xint.dtx +\def\Fibonacci #1{% + \expandafter\Fibonacci_a\expandafter + {\the\numexpr #1\expandafter}\expandafter + {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 0\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 0\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 1\relax}} +% +\def\Fibonacci_a #1{% + \ifcase #1 + \expandafter\Fibonacci_end_i + \or + \expandafter\Fibonacci_end_ii + \else + \ifodd #1 + \expandafter\expandafter\expandafter\Fibonacci_b_ii + \else + \expandafter\expandafter\expandafter\Fibonacci_b_i + \fi + \fi {#1}% +}% +\def\Fibonacci_b_i #1#2#3#4{\expandafter\Fibonacci_a\expandafter + {\the\numexpr #1/2\expandafter}\expandafter + {\romannumeral0\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval (#2+#4)*#3\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval sqr(#3)+sqr(#4)\relax}% +}% end of Fibonacci_b_i +\def\Fibonacci_b_ii #1#2#3#4#5#6#7{\expandafter\Fibonacci_a\expandafter + {\the\numexpr (#1-1)/2\expandafter}\expandafter + {\romannumeral0\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval (#2+#4)*#3\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval sqr(#3)+sqr(#4)\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval #2*#5+#3*#6\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval #2*#6+#3*#7\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval #3*#6+#4*#7\relax}% +}% end of Fibonacci_b_ii +\def\Fibonacci_end_i #1#2#3#4#5#6#7{\xintthe#6} +\def\Fibonacci_end_ii #1#2#3#4#5#6#7{\xinttheiiexpr #2*#6+#3*#7\relax} +\catcode`_ 8 + +\def\Fibo #1.{\Fibonacci {#1}} + \begin{document}\thispagestyle{empty}\rmfamily \pdfbookmark[1]{Title page}{TOP} - -% Octobre 2013: le & est devenu assez pénible puisque j'en ai besoin dans mes -% exemples de \xintApplyInline/\xintFor avec des tabulars. Donc je décide -% (après avoir temporairement fait des choses un peu lourdes avec \lverb) de -% le remplacer par @ car il n'y en a quasi pas dans la partie user manual; -% idem pour \dverb. Cependant je dois faire attention avec un @ actif par -% exemple dans les tables de matières. Bon on va voir. \makeatletter \begingroup\lccode`\~=`@ @@ -731,6 +823,25 @@ pdfpagemode=UseOutlines} \catcode`\@ \active \def\jfendshrtverb #1@{#1\endgroup } +% nice background added for 1.09j release, January 7, 2014. +% superbe, non? moi très content! +\AddToShipoutPicture*{% + \put(10.5cm,14.85cm) + {\makebox(0,0) + {\resizebox{17cm}{!}{\vbox + {\hsize 8cm\Huge\baselineskip.8\baselineskip\color{black!10}% + \digitstt{F(1250)=\printnumber{\romannumeral-`0\Fibonacci{1250}}}\par}}% + } + }% +} + +% Octobre 2013: le & est devenu assez pénible puisque j'en ai besoin dans mes +% exemples de \xintApplyInline/\xintFor avec des tabulars. Donc je décide +% (après avoir temporairement fait des choses un peu lourdes avec \lverb) de +% le remplacer par @ car il n'y en a quasi pas dans la partie user manual; +% idem pour \dverb. Cependant je dois faire attention avec un @ actif par +% exemple dans les tables de matières. Bon on va voir. + {\normalfont\Large\parindent0pt \parfillskip 0pt\relax \leftskip 2cm plus 1fil \rightskip 2cm plus 1fil The \xintname bundle\par}% @@ -746,7 +857,157 @@ pdfpagemode=UseOutlines} \setcounter{footnote}{0} \bigskip + +% comme \dverb ne fait pas un \par à la fin, il y a un problème avec le +% \baselineskip si on ne le spécifie pas en plus; il faudra que je voie si +% vraiment j'utilise \dverb sans terminer un paragraphe, il doit y avoir au plus +% quelque cas. +\begingroup\footnotesize\def\MacroFont {\ttfamily\baselineskip10pt\relax} +\baselineskip 10pt +\dverb|@ +\input xintexpr.sty +\catcode`_ 11 +% December 7, 2013. Expandably computing a big Fibonacci number +% using TeX+\numexpr+\xintexpr, (c) Jean-François Burnol +\def\Fibonacci #1{% + \expandafter\Fibonacci_a\expandafter + {\the\numexpr #1\expandafter}\expandafter + {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 0\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 0\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 1\relax}}% +\def\Fibonacci_a #1{% + \ifcase #1 + \expandafter\Fibonacci_end_i + \or + \expandafter\Fibonacci_end_ii + \else + \ifodd #1 + \expandafter\expandafter\expandafter\Fibonacci_b_ii + \else + \expandafter\expandafter\expandafter\Fibonacci_b_i + \fi + \fi {#1}% +}% + +\def\Fibonacci_b_i #1#2#3#4{\expandafter\Fibonacci_a\expandafter + {\the\numexpr #1/2\expandafter}\expandafter + {\romannumeral0\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval (#2+#4)*#3\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval sqr(#3)+sqr(#4)\relax}% +}% + +\def\Fibonacci_b_ii #1#2#3#4#5#6#7{\expandafter\Fibonacci_a\expandafter + {\the\numexpr (#1-1)/2\expandafter}\expandafter + {\romannumeral0\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval (#2+#4)*#3\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval sqr(#3)+sqr(#4)\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval #2*#5+#3*#6\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval #2*#6+#3*#7\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval #3*#6+#4*#7\relax}% +}% + +\def\Fibonacci_end_i #1#2#3#4#5#6#7{\xintthe#6}% +\def\Fibonacci_end_ii #1#2#3#4#5#6#7{\xinttheiiexpr #2*#6+#3*#7\relax}% +\catcode`_ 8 + +% This \Fibonacci macro is designed to compute *one* Fibonacci number, not a +% whole sequence of them. Let's reap the fruits of our work: + +\message{F(1250)=\Fibonacci {1250}} +\bye |\ttfamily\% see \autoref{ssec:fibonacci} for some explanations and +more.\par +\endgroup + +\clearpage +\pdfbookmark[1]{Snapshot}{SNAPSHOT} + +The title page illustrates that \xintname is dedicated to do computations on +numbers exceeding the \TeX{} limit of \digitstt{\number"7FFFFFFF} (already +@9876543210@ and @F(47)@\digitstt{=\Fibonacci {47}} for example are too big for +\TeX{} and \eTeX{}), in an \emph{expandable} way, hence the package macros can +be used inside an |\edef| or |\write| for example, as here within |\message|. + +What is more important is that they can be nested one within the other, because +(1.)~each one completely expands under the sole process of repeated expansion of +the first token (two expansions suffice), and (2.)~the package macros (dealing +with computations) apply this \fexpan sion to each of their arguments. The +|\Fibonacci| macro from this document front page is \fexpan dable (although not +in only two steps but this does not matter), thus if we are interested in +knowing how many digits @F(1250)@ has, suffices to use |\xintLen {\Fibonacci + {1250}}| (which expands to \digitstt{\xintLen {\Fibonacci {1250}}}), or if we +want to check the formula @gcd(F(1859),F(1573))=F(gcd(1859,1573))=F(143)@, we +only need\footnote{The \csa{xintGCD} macro is provided by the \xintgcdname + package.} +\centeredline{|\xintGCD{\Fibonacci{1859}}{\Fibonacci{1573}}=\Fibonacci{\xintGCD{1859}{1573}}|} +\centeredline{\digitstt{\printnumber{\xintGCD{\Fibonacci{1859}}{\Fibonacci{1573}}}=\printnumber{\Fibonacci{\xintGCD{1859}{1573}}}}} + +The |\Fibonacci| macro expanded its +|\xintGCD{}{}| argument via the services of |\numexpr|: this step requires +something obeying the \TeX{} bound, naturally! (but +\digitstt{F(\xintiiPow2{31}}) would be rather big anyhow...). \`A propos, the +\eTeX{} extensions must be enabled for \xintname, this is the case by default +except if you invoke \TeX{} under the name |tex| in command line (|etex| should +be used then, or |pdftex| in |DVI| output mode). + +Computations with @100@ or @200@ digits are still reasonably fast, but +the situation then deteriorates swiftly, it takes of the order of +seconds for the package to multiply exactly two numbers each of @1000@ +digits and it would take hours for numbers each of @20000@ digits. +Perhaps some faster routines could emerge from an approach which, while +maintaining expandability would renounce at \fexpan dability (without +impacting the input save stack). There is one such routine +\csbxint{XTrunc} which is able to write to a file (or inside an |\edef|) +tens of thousands of digits of a (reasonably-sized) fraction. + +There is also the possibility to use ``Float'' routines, although no attempt has +been made to implement float-standards such as |NaN|s, apart from certifying +exact rounding for the basic operations (the only non-algebraic operation +currently implemented is square root extraction). I doubt one could do the +following on a pocket calculator:\smallskip +\centeredline{$(1.1547)^{2^{35}}=(1.1547)^{\xintiiPow {2}{35}}\approx\hbox + \bgroup|\xintFloatPower [48] {1.1547}{\xintiiPow {2}{35}}|}$} +\centeredline{\digitstt{=\np{\xintFloatPower [48] {1.1547}{\xintiiPow + {2}{35}}}}} +% +Notice that @2^35@ exceeds \TeX's bound, but \csa{xintFloatPower} allows it, +what counts is the exponent of the result which, while dangerously close to +@2^31@ is not quite there yet. The printing of the result was done via the +|\numprint| command from the \href{http://ctan.org/pkg/numprint}{numprint} +package\footnote{\url{http://ctan.org/pkg/numprint}}. + +\footnotesize +When producing very long numbers there is the question of printing them on + the page, without going beyond the page limits. In this document, I have most + of the time made use of these macros (not provided by the package:) + +\begingroup\baselineskip10pt\def\MacroFont{\footnotesize\ttfamily\relax }% +\dverb|@ +\def\allowsplits #1{\ifx #1\relax \else #1\hskip 0pt plus 1pt\relax + \expandafter\allowsplits\fi}% +\def\printnumber #1{\expandafter\allowsplits \romannumeral-`0#1\relax }% +% \printnumber first ``fully'' expands its argument.| +\par\endgroup +An alternative (\autoref{fn:np}) is to suitably configure the thousand separator +with the \href{http://ctan.org/pkg/numprint}{numprint} package (does not work in +math mode; I also tried \href{http://ctan.org/pkg/siunitx}{siunitx} but even in +text mode could not get it to break numbers accross lines). Recently I became +aware of the +\href{http://ctan.org/pkg/seqsplit}{seqsplit} +package\footnote{\url{http://ctan.org/pkg/seqsplit}} +which can be used to achieve this splitting accross lines, and does work +in inline math mode.\par +\normalsize + +\pagebreak[3] +%\phantomsection\etoctoccontentsline*{toctobookmark}{Abstract}{1} +\pdfbookmark[1]{Abstract}{ABSTRACT} + \begin{addmargin}{1cm}\footnotesize + \begin{center} \bfseries\large Description of the packages\par\smallskip + \end{center}\medskip \makeatletter \renewenvironment{description} {\list{}{\topsep\z@ \parsep\z@ \labelwidth\z@ \itemindent-\leftmargin @@ -797,7 +1058,10 @@ pdfpagemode=UseOutlines} load the package components. \end{addmargin} + \bigskip + +% \clearpage % 18 octobre 2013, je remets la TOC ici. % je ne veux pas non plus que la main toc se liste elle-même donc je passe pour @@ -887,46 +1151,78 @@ But one will presumably prefer to use the (expandable!) \csbxint{expr}| ... boolean operators, 2way and 3way conditionals, unpacking of count and dimen registers or variables... -\footnotesize -When producing very long numbers there is the question of printing them on - the page, without going beyond the page limits. In this document, I have most - of the time made use of these macros (not provided by the package:) - -\begingroup\baselineskip10pt\def\MacroFont{\footnotesize\ttfamily\relax }% -\dverb|@ -\def\allowsplits #1% - {\ifx #1\relax \else #1\hskip 0pt plus 1pt\relax\expandafter\allowsplits\fi}% -\def\printnumber #1{\expandafter\expandafter\expandafter\allowsplits #1\relax }% -%% (all macros from the xint bundle expand in two steps to their final output).|\par\endgroup -An alternative (\autoref{fn:np}) is to suitably configure the thousand separator -with the \href{http://ctan.org/pkg/numprint}{numprint} package (does not work in -math mode; I also tried \href{http://ctan.org/pkg/siunitx}{siunitx} but even in -text mode could not get it to break numbers accross lines). Recently I became -aware of the -\href{http://ctan.org/pkg/seqsplit}{seqsplit} -package\footnote{\url{http://ctan.org/pkg/seqsplit}} -which can be used to achieve this splitting accross lines, and does work -in inline math mode. +\section {Interesting illustrations} +\label{sec:awesome} + -\normalsize The utilities provided by \xinttoolsname (\autoref{sec:tools}), some -completely expandable, others not, are of independent interest. Their use is -illustrated through various examples: among those, it is shown in -\autoref{ssec:quicksort} how to implement in a completely expandable way the -quick sort algorithm and also how to illustrate it graphically. Other examples -include some dynamically constructed alignments with automatically computed -prime number cells (\autoref{ssec:primesI}, \autoref{ssec:primesIII}). - -Some other computational examples are \hyperref[ssec:Machin]{the - computations of $\pi$ and $\log 2$} using \xintname and the computation of the -\hyperlink{e-convergents}{convergents of $e$} with the further help of the -\xintcfracname package. - +completely expandable, others not, are of independent interest. Their +use is illustrated through various examples: among those, it is shown in +\autoref{ssec:quicksort} how to implement in a completely expandable way +the \hyperref[quicksort]{Quick Sort algorithm} and also how to +illustrate it graphically. Other examples include some dynamically +constructed alignments with automatically computed prime number cells: +one using a completely expandable prime test and \csbxint{ApplyUnbraced} +(\autoref{ssec:primesI}), another one with \csbxint{For*} +(\autoref{ssec:primesIII}). + +One has also a \hyperref[edefprimes]{computation of primes + within an \csa{edef}} (\autoref{xintiloop}), with the help of +\csbxint{iloop}. Also with \csbxint{iloop} an +\hyperref[ssec:factorizationtable]{automatically generated table of + factorizations} (\autoref{ssec:factorizationtable}). + +The title page fun with Fibonacci numbers is continued in +\autoref{ssec:fibonacci} with \csbxint{For*} joining the game,. + +The computations of \hyperref[ssec:Machin]{ $\pi$ and $\log 2$} +(\autoref{ssec:Machin}) using \xintname and the computation of the +\hyperlink{e-convergents}{convergents of $e$} with the further help of +the \xintcfracname package are among further examples. + +There is also an example of an \hyperref[xintXTrunc]{interactive + session}, where results are output to the log or to a file. \section{Recent changes} \footnotesize +\noindent Release |1.09j| (|[2014/01/09]|) +\begin{itemize} +\item The core division routines have been re-written for some (limited) + efficiency gain, more pronounced for small divisors. As a result the + \hyperlink{Machin1000}{computation of one thousand digits of $\pi$} + is close to three times faster than with earlier releases. +\item Some various other small improvements, particularly in the power routines. +\item A new macro \csbxint{XTrunc} is designed to produce thousands or even tens + of thousands of digits of the decimal expansion of a fraction. Although + completely expandable it has its use limited to inside an |\edef|, |\write|, + |\message|, \dots. It + can thus not be nested as argument to another package macro. +\item the tacit multiplication done in \csbxint{expr}|..\relax| on encountering + a count register or variable, or a |\numexpr|, while scanning a (decimal) + number, is extended to the case of a sub |\xintexpr|-ession. +\item \csbxint{expr} can now be used in an |\edef| with no |\xintthe| + prefix; it will execute completely the computation, and the error + message about a missing |\xintthe| will be inhibited. Previously, in + the absence of |\xintthe|, expansion could only be a full one (with + |\romannumeral-`0|), not a complete one (with |\edef|). Note that this + differs from the behavior of the non-expandable |\numexpr|: |\the| or + |\number| are needed not only to print but also to trigger the + computation, whereas |\xintthe| is mandatory only for the printing step. +\item the default behavior of \csbxint {Assign} is changed, it now does not do + any further expansion beyond the initial full-expansion which provided the + list of items to be assigned to macros. +\item bug-fix: |1.09i| did an unexplainable change to |\XINT_infloat_zero| which + broke the floating point routines for vanishing operands =:((( +\item dtx bug-fix: the |1.09i .ins| file produced a buggy |.tex| file. +\end{itemize} + + + +For a more detailed change history, see \autoref{sec:releases}. Main recent +additions: \smallskip + \noindent Release |1.09i| (|[2013/12/18]|) \begin{itemize} \item \csbxint{iiexpr} is a variant of \csbxint{expr} which is optimized to deal @@ -938,39 +1234,16 @@ Some other computational examples are \hyperref[ssec:Machin]{the count, dimen, and skip registers or variables without explicit |\the/\number|: the parser inserts automatically |\number| and a tacit multiplication is implied when a register or variable immediately follows a number or fraction. - Regarding dimensions and |\number|, see the further discussion in - \autoref{sec:Dimensions}. -\item new conditional \csbxint{ifOne}; |\xintifTrueFalse| renamed to - \csbxint{ifTrueAelseB}; new macros \csbxint{TFrac} (`fractional part', mapped - to function |frac| in |\xintexpr|-essions), \csbxint{FloatE}. -\item \csbxint{Assign} admits an optional argument to specify the expansion type - to be used: |[]| (none), |[o]| (once), |[oo]| (twice), |[f]| (full), others, - to - define the macros (the default is |[e]| which means to use |\edef|). -\item related to the previous item, \xinttoolsname defines (only if the names - have not already been assigned) \hyperref[odef]{\ttfamily\char92odef}, +\item \xinttoolsname defines \hyperref[odef]{\ttfamily\char92odef}, \hyperref[oodef]{\ttfamily\char92oodef}, \hyperref[fdef]{\ttfamily\char92fdef}. These tools are provided for the case one uses the package macros in a non-expandable context, particularly \hyperref[oodef]{\ttfamily\char92oodef} which expands twice the macro - replacement text and is thus a faster alternative to |\edef| taking into - account that the \xintname bundle macros expand already completely in only two - steps. This can be significant when repeatedly making (re)-definitions - expanding to hundreds of digits. -\item some across the board slight efficiency improvement as a result of - modifications of various types to ``fork'' macros and ``branching - conditionals'' which are used internally. -\item bug-fix: |\xintAND| and |\xintOR| inserted a space token in some cases and - did not expand as promised in two steps (bug dating back to |1.09a| I think; - this bug was without consequences when using |&| and \verb+|+ in - \csa{xintexpr-}essions, it affected only the macro form) - |:-((|. -\item bug-fix: \csbxint{FtoCCv} still ended fractions with the |[0]|'s which - were supposed to have been removed since release |1.09b|. + replacement text and is thus a faster alternative to |\edef|. This can be + significant when repeatedly making |\def|-initions expanding to hundreds of + digits. \end{itemize} -For a more detailed change history, see \autoref{sec:releases}. Main recent -additions: \noindent Release |1.09h| (|[2013/11/28]|): \begin{itemize} @@ -1024,7 +1297,8 @@ additions: \csbxint{expr} syntax; also added \csbxint{boolexpr} and \csbxint{ifboolexpr}. \item \csbxint{For} is a new type of loop, whose replacement text inserts the comma separated values or list items via macro parameters, rather than - encapsulated in macros; the loops are nestable up to four levels, + encapsulated in macros; the loops are nestable up to four levels (nine + levels since |1.09f|), and their replacement texts are allowed to close groups as happens with the tabulation in alignments, \item \csbxint{ApplyInline} has been enhanced in order to be usable for @@ -1076,9 +1350,10 @@ The main characteristics are: have to compute the length of the inputs and these lengths must be treatable as \TeX{} integers, which are at most \digitstt{\number "7FFFFFFF} in absolute value. - This is a distant theoretical upper bound, + This is a distant irrelevant upper bound, as no such thing can fit + in \TeX's memory! And besides, the true limitation is from the \emph{time} taken by the -expansion-compatible algorithms, this will be commented upon soon. +expansion-compatible algorithms, as will be commented upon soon. As just recalled, ten-digits numbers starting with a @3@ already exceed the \TeX{} bound on integers; and \TeX{} does not have a native processing of @@ -1190,11 +1465,11 @@ of the \xintexprname package. Computation of a Bezout identity with |7^200-3^200| and |2^200-1|:}\par {\color[named]{Purple} \dverb|@ -\xintAssign [oo]\xintBezout {\xinttheiexpr 7^200-3^200\relax} +\xintAssign \xintBezout {\xinttheiexpr 7^200-3^200\relax} {\xinttheiexpr 2^200-1\relax}\to\A\B\U\V\D|% \centeredline {|\U$\times$(7^200-3^200)+\xintiOpp\V$\times$(2^200-1)=\D|}}% % -\xintAssign [oo]\xintBezout {\xinttheiexpr 7^200-3^200\relax} +\xintAssign \xintBezout {\xinttheiexpr 7^200-3^200\relax} {\xinttheiexpr 2^200-1\relax}\to\A\B\U\V\D \digitstt {\printnumber\U$\times$(@7^200-3^200@)+% @@ -1229,7 +1504,7 @@ $\frac{\pi^2}{144}-\frac1{162}={}$% lines works only in text mode. The number itself was (of course...) computed initially with \xintname, with 30 digits of $\pi$ as input. See - \hyperref[ssec:Machin]{{how \xintname may compute $\pi$ + \hyperref[ssec:Machin]{{how {\xintname} may compute $\pi$ from scratch}}.} I also used (this is a lengthier computation than the one above) \xintseriesname to evaluate the sum with \np{100000} terms, obtaining 16 @@ -1982,7 +2257,7 @@ length command defined by \csa{newlength} with \csa{number} will thus discard the |plus| and |minus| glue components and return the dimension component as described above, and usable in the \xintname bundle macros. -This conversion\MyMarginNote{New!} is done automatically inside an +This conversion is done automatically inside an |\xintexpr|-essions, with tacit multiplication implied if prefixed by some (integral or decimal) number. @@ -2180,7 +2455,7 @@ package. \section{Assignments}\label{sec:assign} -\xintAssign [oo]\xintBezout{357}{323}\to\tmpA\tmpB\tmpU\tmpV\tmpD +\xintAssign \xintBezout{357}{323}\to\tmpA\tmpB\tmpU\tmpV\tmpD It might not be necessary to maintain at all times complete expandability. For example why not allow oneself the two definitions @@ -2207,13 +2482,13 @@ and |\D| to \digitstt{\tmpD}. And indeed Thus, what |\xintAssign| does is to first apply an \hyperref[sec:expansions]{\fexpan sion} to what comes next; it then defines one -after the other (using |\edef|; an optional argument allows to modify the +after the other (using |\def|; an optional argument allows to modify the expansion type, see \autoref{xintAssign} for details), the macros found after |\to| to correspond to the successive braced contents (or single tokens) located prior to |\to|. \xintAssign -[oo]\xintBezout{3570902836026}{200467139463}\to\tmpA\tmpB\tmpU\tmpV\tmpD +\xintBezout{3570902836026}{200467139463}\to\tmpA\tmpB\tmpU\tmpV\tmpD \centeredline{\csbxint{Assign}\csa{xintBezout}|{3570902836026}{200467139463}|% \csbnolk{to}|\A\B\U\V\D|} @@ -2406,7 +2681,6 @@ sequences: \xintError:ignored \xintError:removed \xintError:inserted -\xintError:use_xintthe! \xintError:bigtroubleahead \xintError:unknownfunction| @@ -2461,7 +2735,7 @@ and is not touched. \xinttoolsname defines \hyperref[odef]{\ttfamily\char92odef}, \hyperref[oodef]{\ttfamily\char92oodef}, \hyperref[fdef]{\ttfamily\char92fdef}, -but only if macros with these names do not already exist (|\XINT_oodef| etc... +but only if macros with these names do not already exist (|\xintoodef| etc... are defined anyhow for use in \csbxint{Assign} and \csbxint{AssignArray}). \section{Loading and usage} @@ -2519,7 +2793,7 @@ get the tokens). In an |\xintexpr|-ession, the `e' may be uppercased: `E'. \makeatother The \xintname packages presuppose that the \csa{space}, -\csa{empty}, |\m@ne|, |\z@|\MyMarginNote{New!} and |\@ne| control sequences +\csa{empty}, |\m@ne|, |\z@| and |\@ne| control sequences have their meanings as in Plain \TeX{} or \LaTeX2e. \catcode`@ \active @@ -2669,7 +2943,7 @@ with @8@ digits after the decimal mark, and printed. This does the same thing as the hand-written version from the previous item. The use even thousands of times of such an |\xintNewExpr|-generated |\formula| has no memory impact. -\item count registers\MyMarginNote{New!} and |\numexpr|-essions are accepted +\item count registers and |\numexpr|-essions are accepted (LaTeX{}'s counters can be inserted using |\value|) without needing |\the| or |\number| as prefix. Also dimen registers and control sequences, skip registers and control sequences (\LaTeX{}'s @@ -2677,7 +2951,10 @@ has no memory impact. using |\number|, discarding the stretch and shrink components and giving the dimension value in |sp| units (@1/65536@th of a \TeX{} point). Furthermore, tacit multiplication is implied, when immediately prefixed by a (decimal) - number. + number. +\item The tacit multiplication is done also when the parser encounters a + sub-|\xintexpr|-ession.\MyMarginNote{New!} (but not in front of an + unexpected opening parenthesis). \item like a |\numexpr|, an |\xintexpr| is not directly printable, one uses equivalently |\xintthe\xintexpr| or \csbxint{theexpr}. One may for example define: \centeredline{|\def\x {\xintexpr \a + \b \relax} @@ -2690,7 +2967,7 @@ has no memory impact. syntax as \csbxint{iexpr}| ... \relax|. There is also \csbxint{theiexpr}. The rounding is applied to the final result only. -\item \csbxint{iiexpr}| ... \relax|\MyMarginNote{New!} (\csbxint{theiiexpr}) is +\item \csbxint{iiexpr}| ... \relax| (\csbxint{theiiexpr}) is another variant which deals only with (long) integers and skips the overhead of the fraction internal format. The infix operator |/| does euclidean division. @@ -2797,7 +3074,7 @@ use |\xinttheexpr| inside an |\xintexpr|: this gives a number in |A/B[n]| format which requires protection by braces. Do not put within braces numbers in scientific notation. -See \autoref{xintiiexpr}\MyMarginNote{New!} for the speed-optimized variant +See \autoref{xintiiexpr} for the speed-optimized variant \csbxint{iiexpr} which deals only with long integers. Here is, listed from the highest priority to the lowest, the complete @@ -2829,16 +3106,36 @@ The |\relax| at the end of an expression is absolutely \emph{mandatory}. \labelwidth\parindent \itemindent\labelwidth}% \item - Functions are at the same top level of priority. + Functions are at the same top level of priority. All functions even + |?| and |!| (as prefix) require parentheses around their argument + (possiblty a comma separated list). + \begin{framed} + \ctexttt{floor, ceil, frac, reduce, sqr, abs, sgn, ?, !, not, bool, + togl, round, trunc, float, sqrt, quo, rem, if, ifsgn, all, any, + xor, add (=sum), mul (=prd), max, min, gcd, lcm.} + + |quo| and |rem| + operate only on integers; |gcd| and |lcm| also and require + \xintgcdname loaded; |togl| requires the |etoolbox| package. + \end{framed} \begin{description} \item[functions with one (numeric) argument] (numeric: any expression leading to an integer, decimal number, fraction, or floating number in scientific notation) \ctexttt{floor, ceil, frac, reduce, sqr, abs, sgn, ?, !, not}. The |?(x)| function returns the truth value, @1@ if |x<>0|, @0@ if |x=0|. The |!(x)| is the logical not. The |reduce| function puts the fraction in - irreducible form. The |frac|\MyMarginNote{New} function is fractional part - (same sign as the number, complements truncation towards zero). Like the - other functions |!| and |?| \emph{must} use parentheses. + irreducible form. The |frac| function is fractional part, + same sign as the number:\newline + \null\quad\quad|\xinttheexpr + frac(-3.57)\relax|$\to$\digitstt{\xinttheexpr frac(-3.57)\relax}\newline + \null\quad\quad|\xinttheexpr + trunc(frac(-3.57),2)\relax|$\to$\digitstt{\xinttheexpr + trunc(frac(-3.57),2)\relax}\newline + \null\quad\quad|\xintthefloatexpr + frac(-3.57)\relax|$\to$\digitstt{\xintthefloatexpr + frac(-3.57)\relax}.\newline + Like + the other functions |!| and |?| \emph{must} use parentheses. \item[functions with one (alphabetical) argument] \hypertarget{item:bool} {\ctexttt{bool,togl}}. @@ -2926,7 +3223,7 @@ The |\relax| at the end of an expression is absolutely \emph{mandatory}. the vocabulary |all| and |any|. They must have at least one argument. \end{description} -\item The three postfix operators: +\item The three postfix operators \ctexttt{!, ?, :}. \begin{description} \item[{\color[named]{DarkOrchid}!}] computes the factorial of an integer. |sqrt(36)!| evaluates to |6!| (\digitstt{=\np{\xinttheexpr sqrt(36)!\relax}}) and not to the square root of @@ -2979,11 +3276,12 @@ The |\relax| at the end of an expression is absolutely \emph{mandatory}. associative: \begingroup\def\MicroFont{\ttfamily}% |\xinttheiexpr 100-50-2\relax| evaluates to \xinttheiexpr 100-50-2\relax, not \xinttheiexpr 100-(50-2)\relax.\endgroup -\item Comparison operators |<|, |>|, |=|. -\item Conjunction (logical and): |&|. -\item Inclusive disjunction (logical or): \verb$|$. +\item Comparison operators |<|, |>|, |=| (currently, no @<=@, @>=@, + \dots! ). +\item Conjunction (logical and): |&|. (no @&&@\,!) +\item Inclusive disjunction (logical or): \verb$|$. (no @||@\,!) \item The comma |,|. \def\MicroFont{\ttfamily}% - One can thus do |\xinttheiexpr 2^3,3^4,5^6\relax| and obtain as output + With |\xinttheiexpr 2^3,3^4,5^6\relax| one obtains as output \xinttheiexpr 2^3,3^4,5^6\relax. \item The parentheses. \endlist @@ -2999,6 +3297,48 @@ See \autoref{ssec:countinexpr} for count and dimen registers and variables. \footnotesize +\noindent Release |1.09i| (|[2013/12/18]|) +\begin{itemize} +\item \csbxint{iiexpr} is a variant of \csbxint{expr} which is optimized to deal + only with (long) integers, |/| does a euclidean quotient. +\item |\xintnumexpr|, |\xintthenumexpr|, |\xintNewNumExpr| are renamed, + respectively, \csbxint{iexpr}, \csbxint{theiexpr}, \csbxint{NewIExpr}. The + earlier denominations are kept but to be removed at some point. +\item it is now possible within |\xintexpr...\relax| and its variants to use + count, dimen, and skip registers or variables without explicit |\the/\number|: + the parser inserts automatically |\number| and a tacit multiplication is + implied when a register or variable immediately follows a number or fraction. + Regarding dimensions and |\number|, see the further discussion in + \autoref{sec:Dimensions}. +\item new conditional \csbxint{ifOne}; |\xintifTrueFalse| renamed to + \csbxint{ifTrueAelseB}; new macros \csbxint{TFrac} (`fractional part', mapped + to function |frac| in |\xintexpr|-essions), \csbxint{FloatE}. +\item \csbxint{Assign} admits an optional argument to specify the expansion + type to be used: |[]| (none, default), |[o]| (once), |[oo]| (twice), |[f]| + (full), |[e]| (|\edef|),... to define the macros +\item related to the previous item, \xinttoolsname defines + \hyperref[odef]{\ttfamily\char92odef}, + \hyperref[oodef]{\ttfamily\char92oodef}, + \hyperref[fdef]{\ttfamily\char92fdef} (if the names have already been + assigned, it uses |\xintoodef| etc...). These tools are provided for the + case one uses the package macros in a non-expandable context, particularly + \hyperref[oodef]{\ttfamily\char92oodef} which expands twice the macro + replacement text and is thus a faster alternative to |\edef| taking into + account that the \xintname bundle macros expand already completely in only + two steps. This can be significant when repeatedly making |\def|-initions + expanding to hundreds of digits. +\item some across the board slight efficiency improvement as a result of + modifications of various types to ``fork'' macros and ``branching + conditionals'' which are used internally. +\item bug-fix: |\xintAND| and |\xintOR| inserted a space token in some cases and + did not expand as promised in two steps (bug dating back to |1.09a| I think; + this bug was without consequences when using |&| and \verb+|+ in + \csa{xintexpr-}essions, it affected only the macro form) + |:-((|. +\item bug-fix: \csbxint{FtoCCv} still ended fractions with the |[0]|'s which + were supposed to have been removed since release |1.09b|. +\end{itemize} + \noindent Release |1.09h| (|[2013/11/28]|): \begin{itemize} \item parts of the documentation have been re-written or re-organized, @@ -3051,7 +3391,7 @@ See \autoref{ssec:countinexpr} for count and dimen registers and variables. for big integers, but do parse their inputs via \csbxint{Num} (since release |1.09a|). They too may have doubled-|i| variants for matters of programming optimization when working only with (big) integers and not fractions or - decimal numbers, interested advanced users should check the code source. + decimal numbers. \end{itemize} @@ -3099,9 +3439,9 @@ version \fexpan ds the un-braced list items. After \item added |\xintNewNumExpr| (now \csbxint{NewIExpr} and \csbxint{NewBoolExpr}, \item \csbxint{For} is a new type of loop, whose replacement text inserts the comma separated values or list items via macro parameters, rather than - encapsulated in macros; the loops are nestable up to four levels, - and their replacement texts are allowed to close groups as happens with the - tabulation in alignments, + encapsulated in macros; the loops are nestable up to four levels (nine + levels since |1.09f|) and their replacement texts are allowed to close + groups as happens with the tabulation in alignments, \item \csbxint{Forpair}, \csbxint{Forthree}, \csbxint{Forfour} are experimental variants of \csbxint{For}, \item \csbxint{ApplyInline} has been enhanced in order to be usable for @@ -3256,6 +3596,8 @@ This section contains various concrete examples and ends with a \hyperref[ssec:quicksort]{completely expandable implementation of the Quick Sort algorithm} together with a graphical illustration of its action. +\clearpage + \localtableofcontents @@ -3838,6 +4180,8 @@ character. The \csbxint{For*} macro would be more elegant here. \end{tabular} There are \arabic{primecount} prime numbers up to 1000.? +The table has been put in \hyperref[primesupto1000]{float} which appears +\vpageref{primesupto1000}. We had to be careful to use in the last row \csbxint{Seq} with its optional argument |[1]| so as to not generate a decreasing sequence from |1| to |0|, but really an empty sequence in case the row turns out to already have all its @@ -3872,6 +4216,7 @@ cells (which doesn't happen here but would with a number of columns dividing \newcommand{\OneTab}[1]{&} \begin{figure*}[ht!] \centering + \phantomsection\label{primesupto1000} \begin{tabular}{|*{\NbOfColumns}{r}|} \hline 2\setcounter{cellcount}{1}\setcounter{primecount}{1}% @@ -3893,22 +4238,29 @@ cells (which doesn't happen here but would with a number of columns dividing % {\small New with release |1.09g|. Release |1.09h| % makes them long macros.\par} -|\xintloop|\meta{stuff}|\if...\repeat|\etype{} is an expandable loop -compatible with nesting. If a sub-loop is to be used all the material from the -start and up to the complete subloop inclusive should be braced; these braces -will be removed and do not create a group. +|\xintloop|\meta{stuff}|\if...\repeat|\retype{} is an expandable loop +compatible with nesting. However to break out of the loop one almost always need +some un-expandable step. The cousin \csbxint{iloop} is \csbxint{loop} with an +embedded expandable mechanism allowing to exit from the loop. The iterated +commands may contain |\par| tokens or empty lines. + +If a sub-loop is to be used all the material from the start of the main loop and +up to the end of the entire subloop should be braced; these braces will be +removed and do not create a group. The simplest to allow the nesting of one or +more sub-loops is to brace everything between \csa{xintloop} and \csa{repeat}, +being careful not to leave a space between the closing brace and |\repeat|. As this loop and \csbxint{iloop} will primarily be of interest to experienced \TeX{} macro programmers, my description will assume that the user is -knowledgeable enough. The iterated commands may contain |\par| tokens or empty -lines. +knowledgeable enough. Some examples in this document will be perhaps more +illustrative than my attemps at explanation of use. -One can abort the loop with \csbxint{breakloop}; this should not be used in the -final test, and one should expand the |\fi| from the corresponding test before. -One has also \csbxint{breakloopanddo} whose first argument will be inserted in -the token stream after the loop; one may need a macro such as |\xint_afterfi| to -move the whole thing after the |\fi|, as a simple |\expandafter| will not be -enough. +One can abort the loop with \csbxint{breakloop}; this should not be used inside +the final test, and one should expand the |\fi| from the corresponding test +before. One has also \csbxint{breakloopanddo} whose first argument will be +inserted in the token stream after the loop; one may need a macro such as +|\xint_afterfi| to move the whole thing after the |\fi|, as a simple +|\expandafter| will not be enough. One will usually employ some count registers to manage the exit test from the loop; this breaks expandability, see \csbxint{iloop} for an expandable integer @@ -4117,14 +4469,18 @@ illustrate use of the nesting capabilities of |\xintloop|.\footnote{for a more \label{xintouteriloopindex} %{\small New with release |1.09g|.\par} -\csa{xintiloop}|[start+delta]|\meta{stuff}|\if ... \repeat|\etype{} is a -completely expandable nestable loop having access via \csbxint{iloopindex} to -the integer index of the iteration, with starting value |start| (which may be a -|\count|) and increment |delta| (\emph{id.}). Currently |[start+delta]| is a -\emph{mandatory argument}, it is an error to omit it; perhaps a future release -will make it optional with default |1+1|. A space after the closing square -bracket is not significant, it will be ignored. Spaces inside the square -brackets will also be ignored as the two arguments are first given to a +\csa{xintiloop}|[start+delta]|\meta{stuff}|\if ... \repeat|\retype{} is a +completely expandable nestable loop. complete expandability depends naturally on +the actual iterated contents, and complete expansion will not be achievable +under a sole \fexpan sion, as is indicated by the hollow star in the margin; +thus the loop can be used inside an |\edef| but not inside arguments to the +package macros. It can be used inside an |\xintexpr..\relax|. + +This loop benefits via \csbxint{iloopindex} to (a limited access to) the integer +index of the iteration. The starting value |start| (which may be a |\count|) and +increment |delta| (\emph{id.}) are mandatory arguments. A space after the +closing square bracket is not significant, it will be ignored. Spaces inside the +square brackets will also be ignored as the two arguments are first given to a |\numexpr...\relax|. Empty lines and explicit |\par| tokens are accepted. As with \csbxint{loop}, this tool will mostly be of interest to advanced users. @@ -4188,12 +4544,13 @@ of |\endtemplate|; in such cases one can always either replace |&| by a macro expanding to it or replace it by a suitable |\firstofone{&}|, and similarly for |\cr|. +\phantomsection\label{edefprimes} As an example, let us construct an |\edef\z{...}| which will define |\z| to be a list of prime numbers: \dverb|@ \edef\z -{\xintiloop [10001+2]% - {\xintiloop [3+2]% +{\xintiloop [10001+2] + {\xintiloop [3+2] \ifnum\xintouteriloopindex<\numexpr\xintiloopindex*\xintiloopindex\relax \xintouteriloopindex, \expandafter\xintbreakiloop @@ -4207,8 +4564,8 @@ list of prime numbers: \meaning\z| \begingroup%\ttfamily \edef\z -{\xintiloop [10001+2]% - {\xintiloop [3+2]% +{\xintiloop [10001+2] + {\xintiloop [3+2] \ifnum\xintouteriloopindex<\numexpr\xintiloopindex*\xintiloopindex\relax \xintouteriloopindex, \expandafter\xintbreakiloop @@ -4372,6 +4729,7 @@ which is described later; none of this uses count registers. \end{tabular}\par } \subsection{A table of factorizations} +\label{ssec:factorizationtable} As one more example with \csbxint{iloop} let us use an alignment to display the factorization of some numbers. The loop will actually only play a minor r\^ole @@ -4392,7 +4750,7 @@ To spare some fractions of a second in the compilation time of this document \tabskip1ex \halign {\hfil\strut#\hfil&&\hfil#\hfil\cr\noalign{\hrule} \xintiloop ["7FFFFFE0+1] - \expandafter\bf\xintiloopindex & + \expandafter\bfseries\xintiloopindex & \ifnum\xintiloopindex="7FFFFFED \number"7FFFFFED\cr\noalign{\hrule} \expandafter\xintiloopskiptonext @@ -4400,7 +4758,7 @@ To spare some fractions of a second in the compilation time of this document \expandafter\factorize\xintiloopindex.\cr\noalign{\hrule} \ifnum\xintiloopindex<"7FFFFFFE \repeat - \bf \number"7FFFFFFF&\number "7FFFFFFF\cr\noalign{\hrule} + \bfseries \number"7FFFFFFF&\number "7FFFFFFF\cr\noalign{\hrule} }|\par\smallskip \endgroup @@ -4477,7 +4835,7 @@ The reason for some strange looking expressions is to avoid arithmetic overflow. \tabskip1ex \centeredline{\vbox{\halign {\hfil\strut#\hfil&&\hfil#\hfil\cr\noalign{\hrule} \xintiloop ["7FFFFFE0+1] - \expandafter\bf\xintiloopindex & + \expandafter\bfseries\xintiloopindex & \ifnum\xintiloopindex="7FFFFFED \number"7FFFFFED\cr\noalign{\hrule} \expandafter\xintiloopskiptonext @@ -4485,7 +4843,7 @@ The reason for some strange looking expressions is to avoid arithmetic overflow. \expandafter\factorize\xintiloopindex.\cr\noalign{\hrule} \ifnum\xintiloopindex<"7FFFFFFE \repeat - \bf \number"7FFFFFFF&\number "7FFFFFFF\cr\noalign{\hrule} + \bfseries \number"7FFFFFFF&\number "7FFFFFFF\cr\noalign{\hrule} }}} \centeredline{A table of factorizations} \end{figure*} @@ -5161,8 +5519,276 @@ been put in a \hyperref[primes]{float}, which appears \end{tabular} \end{figure*}? +\subsection{Some arithmetic with Fibonacci numbers} +\label{ssec:fibonacci} + +Here is again the code employed on the title page to compute Fibonacci numbers: + +\begingroup\footnotesize\baselineskip10pt +\def\MacroFont {\ttfamily} +\dverb|@ +\def\Fibonacci #1{% \Fibonacci{N} computes F(N) with F(0)=0, F(1)=1. + \expandafter\Fibonacci_a\expandafter + {\the\numexpr #1\expandafter}\expandafter + {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 0\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 0\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval 1\relax}} +% +\def\Fibonacci_a #1{% + \ifcase #1 + \expandafter\Fibonacci_end_i + \or + \expandafter\Fibonacci_end_ii + \else + \ifodd #1 + \expandafter\expandafter\expandafter\Fibonacci_b_ii + \else + \expandafter\expandafter\expandafter\Fibonacci_b_i + \fi + \fi {#1}% +}% (* signs omitted from the next macros, 1.09j has tacit multiplication) +\def\Fibonacci_b_i #1#2#3#4{\expandafter\Fibonacci_a\expandafter + {\the\numexpr #1/2\expandafter}\expandafter + {\romannumeral0\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval (#2+#4)#3\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval sqr(#3)+sqr(#4)\relax}% +}% end of Fibonacci_b_i +\def\Fibonacci_b_ii #1#2#3#4#5#6#7{\expandafter\Fibonacci_a\expandafter + {\the\numexpr (#1-1)/2\expandafter}\expandafter + {\romannumeral0\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval (#2+#4)#3\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval sqr(#3)+sqr(#4)\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval #2#5+#3#6\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval #2#6+#3#7\expandafter\relax\expandafter}\expandafter + {\romannumeral0\xintiieval #3#6+#4#7\relax}% +}% end of Fibonacci_b_ii +\def\Fibonacci_end_i #1#2#3#4#5#6#7{{#5}{#6}}% {F(N+1)}{F(N)} in \xintexpr format +\def\Fibonacci_end_ii #1#2#3#4#5#6#7% + {\expandafter + {\romannumeral0\xintiieval #2#5+#3#6\expandafter\relax + \expandafter}\expandafter + {\romannumeral0\xintiieval #2#6+#3#7\relax}}% idem. +% \FibonacciN returns F(N) (also in encapsulated format: needs \xintthe for printing) +\def\FibonacciN {\expandafter\xint_secondoftwo\romannumeral-`0\Fibonacci }% +|\par\endgroup + +\catcode`_ 11 +\def\Fibonacci_end_i #1#2#3#4#5#6#7{{#5}{#6}}% +\def\Fibonacci_end_ii #1#2#3#4#5#6#7% + {\expandafter + {\romannumeral0\xintiieval #2#5+#3#6\expandafter\relax + \expandafter}\expandafter + {\romannumeral0\xintiieval #2#6+#3#7\relax}}% +% \Fibonacci returns {F(N+1)}{F(N)} (both in \xintexpr encapsulation) +% \FibonacciN returns F(N) (also in encapsulated format) +\def\FibonacciN {\expandafter\xint_secondoftwo\romannumeral-`0\Fibonacci }% +\catcode`_ 8 + +% ok +% \def\Fibo #1.{\xintthe\FibonacciN {#1}}% to use \xintiloopindex... +% \message{\xintiloop [0+1] +% \expandafter\Fibo\xintiloopindex., +% \ifnum\xintiloopindex<49 \repeat \xintthe\FibonacciN{50}.} + +I have modified the ending, as I now want not only one specific value |F(N)| but +a pair of successive values which can serve as starting point of another routine +devoted to compute a whole sequence |F(N), F(N+1), F(N+2),....|. This pair is, +for efficiency, kept in the encapsulated internal \xintexprname format. +|\FibonacciN| outputs the single |F(N)|, also as an |\xintexpr|-ession, and +printing it will thus need the |\xintthe| prefix. + +\begingroup\footnotesize\sffamily\baselineskip 10pt\let\MacroFont\ttfamily +Here a code snippet which +checks the routine via a \string\message\ of the first @51@ Fibonacci +numbers (this is not an efficient way to generate a sequence of such +numbers, it is only for validating \csa{FibonacciN}). +% +\dverb|@ +\def\Fibo #1.{\xintthe\FibonacciN {#1}}% +\message{\xintiloop [0+1] \expandafter\Fibo\xintiloopindex., + \ifnum\xintiloopindex<49 \repeat \xintthe\FibonacciN{50}.}|\par +\endgroup + +The various |\romannumeral0\xintiieval| could very well all have been +|\xintiiexpr|'s but then we would have needed more |\expandafter|'s. +Indeed the order of expansion must be controlled for the whole thing to work, +and |\romannumeral0\xintiieval| is the first expanded form of |\xintiiexpr|. + +The way we use |\expandafter|'s to chain successive |\xintexpr| evaluations is +exactly analogous to well-known expandable techniques made possible by +|\numexpr|. + +\begin{framed} + There is a difference though: |\numexpr| is \emph{NOT} expandable, and to + force its expansion we must prefix it with |\the| or |\number|. On the other + hand |\xintexpr|, |\xintiexpr|, ..., (or |\xinteval|, |\xintieval|, ...) + expand fully when prefixed by |\romannumeral-`0|: the computation is fully + executed and its result encapsulated in a private format. + + Using |\xintthe| as prefix is necessary to print the result (this is like + |\the| for |\numexpr|), but it is not necessary to get the computation done + (contrarily to the situation with |\numexpr|). + + And, starting with release |1.09j|, it is also allowed to expand a non + |\xintthe| prefixed |\xintexpr|-ession inside an |\edef|: the private format + is now protected, hence the error message complaining about a missing + |\xintthe| will not be executed, and the integrity of the format will be + preserved. + + This new possibility brings some efficiency gain, when one writes + non-expandable algorithms using \xintexprname. If |\xintthe| is + employed inside |\edef| the number or fraction will be un-locked into + its possibly hundreds of digits and all these tokens will possibly + weigh on the upcoming shuffling of (braced) tokens. The private + encapsulated format has only a few tokens, hence expansion will + proceed a bit faster. + + \indent see footnote\footnotemark +\end{framed} + +\footnotetext{To be completely honest the examination by \TeX{} of all + successive digits was not avoided, as it occurs already in the locking-up of + the result, what is avoided is to spend time un-locking, and then have + the macros shuffle around possibly hundreds of digit tokens rather + than a few control words.\par + Technical note: I decided (somewhat hesitantly) for + reasons of optimization purposes to skip in the private \csa{xintexpr} + format a \csa{protect}-ion for the \csa{.=digits/digits[digits]} + control sequences used internally. Thus in the improbable case that + some macro package (such control sequence names are unavailable to the + casual user) has given a meaning to one such control sequence, there + is a possibility of a crash when embedding an \csa{xintexpr} without + \csa{xintthe} prefix in an \csa{edef} (the computations by themselves + do proceed perfectly correctly even if these control sequences have + acquired some non \csa{relax} meaning).} + +Our |\Fibonacci| expands completely under \fexpan sion, +so we can use \hyperref[fdef]{\ttfamily\char92fdef} rather than |\edef| in a +situation such as \centeredline {|\fdef \X {\FibonacciN {100}}|} but for the +reasons explained above, it is as efficient to employ |\edef|. And if we want +\centeredline{|\edef \Y {(\FibonacciN{100},\FibonacciN{200})}|,} then |\edef| is +necessary. + +Allright, so let's now give the code to generate a sequence of braced Fibonacci +numbers |{F(N)}{F(N+1)}{F(N+2)}...|, using |\Fibonacci| for the first +two and then using the standard recursion |F(N+2)=F(N+1)+F(N)|: + +\catcode`_ 11 +\def\FibonacciSeq #1#2{%#1=starting index, #2>#1=ending index + \expandafter\Fibonacci_Seq\expandafter + {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2-1}% +}% +\def\Fibonacci_Seq #1#2{% + \expandafter\Fibonacci_Seq_loop\expandafter + {\the\numexpr #1\expandafter}\romannumeral0\Fibonacci {#1}{#2}% +}% +\def\Fibonacci_Seq_loop #1#2#3#4{% standard Fibonacci recursion + {#3}\unless\ifnum #1<#4 \Fibonacci_Seq_end\fi + \expandafter\Fibonacci_Seq_loop\expandafter + {\the\numexpr #1+1\expandafter}\expandafter + {\romannumeral0\xintiieval #2+#3\relax}{#2}{#4}% +}% +\def\Fibonacci_Seq_end\fi\expandafter\Fibonacci_Seq_loop\expandafter + #1\expandafter #2#3#4{\fi {#3}}% +\catcode`_ 8 + +\begingroup\footnotesize\baselineskip10pt +\def\MacroFont {\ttfamily} +\dverb|@ +\catcode`_ 11 +\def\FibonacciSeq #1#2{% + \expandafter\Fibonacci_Seq\expandafter + {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2-1}% +}% +\def\Fibonacci_Seq #1#2{% + \expandafter\Fibonacci_Seq_loop\expandafter + {\the\numexpr #1\expandafter}\romannumeral0\Fibonacci {#1}{#2}% +}% +\def\Fibonacci_Seq_loop #1#2#3#4{% standard Fibonacci recursion + {#3}\unless\ifnum #1<#4 \Fibonacci_Seq_end\fi + \expandafter\Fibonacci_Seq_loop\expandafter + {\the\numexpr #1+1\expandafter}\expandafter + {\romannumeral0\xintiieval #2+#3\relax}{#2}{#4}% +}% +\def\Fibonacci_Seq_end\fi\expandafter\Fibonacci_Seq_loop\expandafter + #1\expandafter #2#3#4{\fi {#3}}% +\catcode`_ 8 +|\par\endgroup + +Deliberately and for optimization, this |\FibonacciSeq| macro is +completely expandable but not \fexpan dable. It would be easy to modify +it to be so. But I wanted to check that the \csbxint{For*} does apply +full expansion to what comes next each time it fetches an item from its +list argument. Thus, there is no need to generate lists of braced +Fibonacci numbers beforehand, as \csbxint{For*}, without using any +|\edef|, still manages to generate the list via iterated full expansion. + +I initially used only one |\halign| in a three-column |multicols| +environment, but |multicols| only knows to divide the page horizontally +evenly, thus I employed in the end one |\halign| for each column (I +could have then used a |tabular| as no column break was then needed). +\begin{figure*}[ht!] + \phantomsection\label{fibonacci} + \newcounter{index} + \fdef\Fibxxx{\FibonacciN {30}}% + \setcounter{index}{30}% +\centeredline{\tabskip 1ex +\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr + \xintFor* #1 in {\FibonacciSeq {30}{59}}\do + {\theindex &\xintthe#1 & + \xintRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}% +}\vrule +\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr + \xintFor* #1 in {\FibonacciSeq {60}{89}}\do + {\theindex &\xintthe#1 & + \xintRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}% +}\vrule +\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr + \xintFor* #1 in {\FibonacciSeq {90}{119}}\do + {\theindex &\xintthe#1 & + \xintRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}% +}}% +% +\centeredline{Some Fibonacci numbers together with their residues modulo + |F(30)|\digitstt{=\xintthe\Fibxxx}} +\end{figure*} + +\begingroup\footnotesize\baselineskip10pt +\def\MacroFont {\ttfamily} +\dverb|@ +\newcounter{index} +\tabskip 1ex + \fdef\Fibxxx{\FibonacciN {30}}% + \setcounter{index}{30}% +\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr + \xintFor* #1 in {\FibonacciSeq {30}{59}}\do + {\theindex &\xintthe#1 & + \xintRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}% +}\vrule +\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr + \xintFor* #1 in {\FibonacciSeq {60}{89}}\do + {\theindex &\xintthe#1 & + \xintRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}% +}\vrule +\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr + \xintFor* #1 in {\FibonacciSeq {90}{119}}\do + {\theindex &\xintthe#1 & + \xintRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}% +}% +|\par\endgroup + +This produces the Fibonacci numbers from |F(30)| to |F(119)|, and +computes also all the +congruence classes modulo |F(30)|. The output has +been put in a \hyperref[fibonacci]{float}, which appears +\vpageref[above]{fibonacci}. I leave to the mathematically inclined +readers the task to explain the visible patterns\dots |;-)|. + \subsection{\csbh{xintForpair}, \csbh{xintForthree}, \csbh{xintForfour}}\label{xintForpair}\label{xintForthree}\label{xintForfour} % {\small New in |1.09c|. The \csa{xintifForFirst} % |1.09e| mechanism was missing and has been added for |1.09f|. The |1.09f| @@ -5203,41 +5829,52 @@ separated list and the replacement text. % substantially modified at some later stage. \subsection{\csbh{xintAssign}}\label{xintAssign} -%\small{ |1.09i| adds optional parameter.\par} +%\small{ |1.09i| adds optional parameter. |1.09j| has default optional +% parameter |[]| rather than |[e]|\par} \csa{xintAssign}\meta{braced things}\csa{to}% -\meta{as many cs as they are things}\ntype{{(f$\to$\lowast x)}{\lowast N}} -defines (without checking if -something gets overwritten) the control sequences on the right of -\csa{to} to be the complete expansions of the successive braced things found on -the left of \csa{to}. It is not expandable. +\meta{as many cs as they are things} %\ntype{{(f$\to$\lowast [x)}{\lowast N}} +% +defines (without checking if something gets overwritten) the control sequences +on the right of \csa{to} to expand to the successive tokens or braced items +found one after the otehr on the on the left of \csa{to}. It is not expandable. A `full' expansion is first applied to the material in front of \csa{xintAssign}, which may thus be a macro expanding to a list of braced items. -\xintAssign [oo]\xintiPow {7}{13}\to\SevenToThePowerThirteen -\xintAssign [oo]\xintDivision{1000000000000}{133333333}\to\Q\R +\xintAssign \xintiPow {7}{13}\to\SevenToThePowerThirteen +\xintAssign \xintDivision{1000000000000}{133333333}\to\Q\R Special case: if after this initial expansion no brace is found immediately after \csa{xintAssign}, it is assumed that there is only one control sequence following |\to|, and this control sequence is then defined via -|\edef|\ntype{xN} as the complete expansion of the material between -\csa{xintAssign} and \csa{to}. -\centeredline{|\xintAssign [oo]\xintDivision{1000000000000}{133333333}\to\Q\R|} +|\def| to expand to the material between +\csa{xintAssign} and \csa{to}. Other types of expansions are specified through +an optional parameter to \csa{xintAssign}, see \emph{infra}. +\centeredline{|\xintAssign \xintDivision{1000000000000}{133333333}\to\Q\R|} \centeredline{|\meaning\Q: |\digitstt{\meaning\Q}, |\meaning\R:| - \digitstt{\meaning\R}} \centeredline{|\xintAssign [oo]\xintiPow + \digitstt{\meaning\R}} \centeredline{|\xintAssign \xintiPow {7}{13}\to\SevenToThePowerThirteen|} \centeredline{|\SevenToThePowerThirteen|\digitstt{=\SevenToThePowerThirteen}} \centeredline{(same as |\edef\SevenToThePowerThirteen{\xintiPow {7}{13}}|)} -\noindent\csa{xintAssign}\MyMarginNote{New!} admits now an optional parameter, -for example |\xintAssign [oo]...|. This means that the definitions of the macros -initially on the right of |\to| will be made with -\hyperref[oodef]{\ttfamily\char92oodef} which expands twice the replacement -text. The default is |[e]|, which makes the definitions with |\edef|. Other -possibilities: |[], [x], [g], [o], [go], [oo], [goo], [f], [gf]|. +\noindent\csa{xintAssign}\MyMarginNote{Changed!} admits since |1.09i| an +optional parameter, for example |\xintAssign [e]...| or |\xintAssign [oo] +...|. The latter means that the definitions of the macros initially on the +right of |\to| will be made with \hyperref[oodef]{\ttfamily\char92oodef} which +expands twice the replacement text. The default is simply to make the +definitions with |\def|, corresponding to an empty optional paramter |[]|. +Possibilities: |[], [g], [e], [x], [o], [go], [oo], [goo], [f], [gf]|. +In all cases, recall that |\xintAssign| starts with an \fexpan sion of what +comes next; this produces some list of tokens or braced items, and the +optional parameter only intervenes to decide the expansion type to be applied +then to each one of these items. + +\emph{Note:} prior to release |1.09j|, |\xintAssign| did an |\edef| by +default, but it now does |\def|. Use the optional parameter |[e]| to force use +of |\edef|. % This % macro uses various \csa{edef}'s, thus is incompatible with expansion-only @@ -5248,47 +5885,50 @@ possibilities: |[], [x], [g], [o], [go], [oo], [goo], [f], [gf]|. % argument through a |\numexpr...\relax|. |1.09i| adds optional % parameter. \par} -\xintAssignArray [oo]\xintBezout {1000}{113}\to\Bez +\xintAssignArray \xintBezout {1000}{113}\to\Bez \csa{xintAssignArray}\meta{braced - things}\csa{to}\csa{myArray}\ntype{{(f$\to$\lowast x)}N} first expands -fully what comes immediately after |\xintAssignArray| and expects to find a list -of braced things |{A}{B}...| (or tokens). It then defines \csa{myArray} as a -macro with one parameter, such that \csa{myArray\x} expands to give the -completely expanded |x|th braced thing of this original list (the argument -\texttt{\x} itself is fed to a |\numexpr| by |\myArray|, and |\myArray| expands -in two steps to its output). With |0| as parameter, \csa{myArray}|{0}| returns -the number |M| of elements of the array so that the successive elements are -\csa{myArray}|{1}|, \dots, \csa{myArray}|{M}|. -\centeredline{|\xintAssignArray [oo]\xintBezout {1000}{113}\to\Bez|} will set + things}\csa{to}\csa{myArray} %\ntype{{(f$\to$\lowast x)}N} +% +first expands fully what comes immediately after |\xintAssignArray| and +expects to find a list of braced things |{A}{B}...| (or tokens). It then +defines \csa{myArray} as a macro with one parameter, such that \csa{myArray\x} +expands to give the |x|th braced thing of this original +list (the argument \texttt{\x} itself is fed to a |\numexpr| by |\myArray|, +and |\myArray| expands in two steps to its output). With |0| as parameter, +\csa{myArray}|{0}| returns the number |M| of elements of the array so that the +successive elements are \csa{myArray}|{1}|, \dots, \csa{myArray}|{M}|. +\centeredline{|\xintAssignArray \xintBezout {1000}{113}\to\Bez|} will set |\Bez{0}| to \digitstt{\Bez0}, |\Bez{1}| to \digitstt{\Bez1}, |\Bez{2}| to -\digitstt{\Bez2}, |\Bez{3}| to \digitstt{\Bez3}, |\Bez{4}| to \digitstt{\Bez4}, -and |\Bez{5}| to \digitstt{\Bez5}: +\digitstt{\Bez2}, |\Bez{3}| to \digitstt{\Bez3}, |\Bez{4}| to +\digitstt{\Bez4}, and |\Bez{5}| to \digitstt{\Bez5}: \digitstt{(\Bez3)${}\times{}$\Bez1${}-{}$(\Bez4)${}\times{}$\Bez2${}={}$\Bez5.} This macro is incompatible with expansion-only contexts. -\csa{xintAssignArray}\MyMarginNote{New!} admits now an optional parameter, for -example |\xintAssignArray [oo]...|. This means that the definitions of the -macros will be made with \hyperref[oodef]{\ttfamily\char92oodef} (defined -\emph{infra}), which expands twice the replacement text. This is more -efficient in terms of speed compared to an |\edef|. The default is |[e]|, which -makes the definitions with |\edef|. Other possibilities: |[], [o], [oo], [f]|. -Contrarily to \csbxint{Assign} one can not use the |g| here to make the -definitions global. For this, one should rather do |\xintAssignArray| within a -group starting with |\globaldefs 1|. +\csa{xintAssignArray}\MyMarginNote{Changed!} admits now an optional +parameter, for example |\xintAssignArray [e]...|. This means that the +definitions of the macros will be made with |\edef|. The default is +|[]|, which makes the definitions with |\def|. Other possibilities: |[], +[o], [oo], [f]|. Contrarily to \csbxint{Assign} one can not use the |g| +here to make the definitions global. For this, one should rather do +|\xintAssignArray| within a group starting with |\globaldefs 1|. + +Note that prior to release |1.09j| each item (token or braced material) was +submitted to an |\edef|, but the default is now to use |\def|. \subsection{\csbh{xintRelaxArray}}\label{xintRelaxArray} -\csa{xintRelaxArray}\csa{myArray}\ntype{N} (globally) sets to \csa{relax} all -macros which were defined by the previous \csa{xintAssignArray} -with \csa{myArray} as array macro. +\csa{xintRelaxArray}\csa{myArray} %\ntype{N} +% +(globally) sets to \csa{relax} all macros which were defined by the previous +\csa{xintAssignArray} with \csa{myArray} as array macro. \subsection{\csbh{odef}, \csbh{oodef}, \csbh{fdef}} \label{odef} \label{oodef} \label{fdef} -\csa{oodef}|\controlsequence {}|\MyMarginNote{New!} does +\csa{oodef}|\controlsequence {}| does \dverb|@ \expandafter\expandafter\expandafter\def \expandafter\expandafter\expandafter\controlsequence @@ -5593,6 +6233,7 @@ chunk as pivot. % \par } +\phantomsection\label{quicksort} \begingroup\offinterlineskip \small \QSinitialize {{1.0}{0.5}{0.3}{1.5}{1.8}{2.0}{1.7}{0.4}{1.2}{1.4}% @@ -6068,31 +6709,40 @@ integer is available as \csbxint{iiPrd}, also with \xintfracname loaded. \subsection{\csbh{xintPow}}\label{xintiPow}\label{xintiiPow} -\csa{xintPow\n\x}\etype{\Numf\numx} returns |N^x|. When |x| is zero, this is -1. If |N| is zero and |x<0|, if \verb+|N|>1+ and |x<0| negative, or if -\verb+|N|>1+ and |x>999999999|, then an error is raised. |2^999999999| has -\np{301029996} digits; each exact multiplication of two one thousand digits -numbers already takes a few seconds, so needless to say this bound is completely -irrealistic. Already |2^9999| has \np{3010} digits,\footnote{on my laptop - |\string\xintiPow \{2\}\{9999\}| obtains all |3010| digits in about ten or - eleven seconds. In contrast, the float versions for |8|, |16|, |24|, or even - more significant figures, do their jobs in circa one hundredth of a second - (|1.08b|). This is done without |log|/|exp| which are not (yet?) implemented - in \xintfracname. The \LaTeX3 - \href{http://www.ctan.org/tex-archive/macros/latex/contrib/l3kernel}{l3fp} - does this with |log|/|exp| and is ten times faster (|16| figures only).} so I -should perhaps lower the bound to |99999|. +\csa{xintPow\n\x}\etype{\Numf\numx} returns |N^x|. When |x| is zero, this is 1. +If |N| is zero and |x<0|, if \verb+|N|>1+ and |x<0| negative, or if \verb+|N|>1+ +and |x>100000|,\MyMarginNote{Changed!} then an error is raised. Indeed |2^50000| +already has \digitstt{\xintLen{\xintFloatPow [1]{2}{50000}}} digits; each exact +multiplication of two one thousand digits numbers already takes a few seconds, +and it would take hours for the expandable computation to conclude with two +numbers with each circa @15000@ digits. Perhaps some completely expandable but +not \fexpan dable variants could fare better? Extended by \xintfracname to fractions (\csbxint{Pow}) and to floats -(\csbxint{FloatPow}). Negative exponents do not then cause errors anymore. The -float version is able to deal with things such as |2^999999999| without any -problem. For example -|\xintFloatPow[4]{2}{9999}|\digitstt{=\xintFloatPow[4]{2}{9999}} and -|\xintFloatPow[4]{2}{999999999}| \digitstt{=\xintFloatPow[4]{2}{999999999}}. +(\csbxint{FloatPow}). Negative exponents do not then cause errors +anymore. The float version is able to deal with things such as +|2^999999999| without any problem. For example +|\xintFloatPow[4]{2}{50000}|\digitstt{=\xintFloatPow[4]{2}{50000}} and +|\xintFloatPow[4]{2}{999999999}| +\digitstt{=\xintFloatPow[4]{2}{999999999}}.\footnote{On my laptop + |\string\xintiiPow \{2\}\{9999\}| obtains all |3010| digits in about + ten or eleven seconds. In contrast, the float versions for |8|, |16|, + |24|, or even more significant figures, do their jobs in less than one + hundredth of a second (|1.09j|; we used in the text only four + significant digits only for reasons of space, not time.) This is done + without |log|/|exp| which are not (yet?) implemented in \xintfracname. + The \LaTeX3 + \href{http://www.ctan.org/tex-archive/macros/latex/contrib/l3kernel}{l3fp} + does this with |log|/|exp| and is ten times faster (|16| figures + only).} \csa{xintiPow} is a synonym not modified by \xintfracname, and \csa{xintiiPow} is an integer only variant skipping the \csbxint{Num} -overhead.\etype{f\numx} +overhead\etype{f\numx}, it produces the same result as \csa{xintiPow} +with stricter assumptions on the inputs, and is thus a tiny bit faster. +Within an \csbxint{iiexpr}|..\relax| the infix operator |^| is mapped +to \csa{xintiiPow} (in \csbxint{expr}, the \xintfracname routine +\csbxint{FloatPower} is used instead.) @@ -6212,7 +6862,7 @@ odd integer and in that case executes the |YES| branch. \subsection{\csbh{xintFac}}\label{xintiFac} \csa{xintFac\x}\etype{\numx} returns the factorial. It is an error if the -argument is negative or at least @10^6@. +argument is negative or at least @10^5@.% avant 1.09j c'était 1000000. With \xintfracname loaded, the macro is modified to accept a fraction as argument, as long as this fraction turns out to be an integer: |\xintFac @@ -6719,14 +7369,17 @@ when the output is an integer. \subsection{\csbh{xintTrunc}}\label{xintTrunc} -\csa{xintTrunc}|{x}{f}|\etype{\numx\Ff} returns the start of the decimal -expansion of the fraction |f|, with |x| digits after the decimal point. The -argument |x| should be non-negative. When |x=0|, the integer part of |f| -results, with an ending decimal point. Only when |f| evaluates to zero does -\csa{xintTrunc} not print a decimal point. When |f| is not zero, the sign is -maintained in the output, also when the digits are all zero. -\centeredline{|\xintTrunc {16}{-803.2028/20905.298}|\digitstt{=\xintTrunc - {16}{-803.2028/20905.298}}}% +\csa{xintTrunc}|{x}{f}|\etype{\numx\Ff} returns the integral part, a dot, and +then the first |x| digits of the decimal +expansion of the fraction |f|. The +argument |x| should be non-negative. + +In the special case when |f| evaluates to @0@, the output is @0@ with no decimal +point nor decimal digits, else the post decimal mark digits are always printed. +A non-zero negative |f| which is smaller in absolute value than |10^{-x}| will +give @-0.000...@. +\centeredline{|\xintTrunc + {16}{-803.2028/20905.298}|\digitstt{=\xintTrunc {16}{-803.2028/20905.298}}}% \centeredline{|\xintTrunc {20}{-803.2028/20905.298}|\digitstt{=\xintTrunc {20}{-803.2028/20905.298}}}% \centeredline{|\xintTrunc {10}{\xintPow {-11}{-11}}|\digitstt{=\xintTrunc @@ -6735,25 +7388,128 @@ maintained in the output, also when the digits are all zero. {12}{\xintPow {-11}{-11}}}}% \centeredline{|\xintTrunc {12}{\xintAdd {-1/3}{3/9}}|\digitstt{=\xintTrunc {12}{\xintAdd {-1/3}{3/9}}}} The digits printed are exact up to and -including the last one. The identity |\xintTrunc {x}{-f}=-\xintTrunc {x}{f}| -holds.\footnote{Recall that |-\string\macro| is not valid as argument to any - package macro, one must use |\string\xintOpp\string{\string\macro\string}| or - |\string\xintiOpp\string{\string\macro\string}|, except inside - |\string\xinttheexpr...\string\relax|.} +including the last one. + +% The identity |\xintTrunc {x}{-f}=-\xintTrunc {x}{f}| +% holds.\footnote{Recall that |-\string\macro| is not valid as argument to any +% package macro, one must use |\string\xintOpp\string{\string\macro\string}| or +% |\string\xintiOpp\string{\string\macro\string}|, except inside +% |\string\xinttheexpr...\string\relax|.} \subsection{\csbh{xintiTrunc}}\label{xintiTrunc} \csa{xintiTrunc}|{x}{f}|\etype{\numx\Ff} returns the integer equal to |10^x| -times what \csa{xintTrunc}|{x}{f}| would return. \centeredline{|\xintiTrunc +times what \csa{xintTrunc}|{x}{f}| would produce. +% +\centeredline{|\xintiTrunc {16}{-803.2028/20905.298}|\digitstt{=\xintiTrunc {16}{-803.2028/20905.298}}}% \centeredline{|\xintiTrunc {10}{\xintPow {-11}{-11}}|\digitstt{=\xintiTrunc {10}{\xintPow {-11}{-11}}}}% \centeredline{|\xintiTrunc {12}{\xintPow {-11}{-11}}|\digitstt{=\xintiTrunc {12}{\xintPow {-11}{-11}}}}% -Differences between \csa{xintTrunc}|{0}{f}| and \csa{xintiTrunc}|{0}{f}|: the -former cannot be used inside integer-only macros, and the latter removes the -decimal point, and never returns |-0| (and removes all superfluous leading -zeros.) +The difference between \csa{xintTrunc}|{0}{f}| and \csa{xintiTrunc}|{0}{f}| is +that the latter never has the decimal mark always present in the former except +for |f=0|. And \csa{xintTrunc}|{0}{-0.5}| returns ``\digitstt{\xintTrunc + 0{-0.5}}'' whereas \csa{xintiTrunc}|{0}{-0.5}| simply returns +``\digitstt{\xintiTrunc 0{-0.5}}''. + +\subsection{\csbh{xintXTrunc}}\label{xintXTrunc} + +%{\small New with release |1.09j|.\par} + +\csa{xintXTrunc}|{x}{f}|\retype{\numx\Ff} is completely expandable but not +\fexpan dable, as is indicated by the hollow star in the margin. It can not be +used as argument to the other package macros, but is designed to be used inside +an |\edef|, or rather a |\write|. Here is an example session where the user +after some warming up checks that @1/66049=1/257^2@ has period @257*256=65792@ +(it is also checked here that this is indeed the smallest period). +% +\begingroup\small +\dverb|@ +xxx:_xint $ etex -jobname worksheet-66049 +This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013) + restricted \write18 enabled. +**\relax +entering extended mode + +*\input xintfrac.sty +(./xintfrac.sty (./xint.sty (./xinttools.sty))) +*\message{\xintTrunc {100}{1/71}}% Warming up! + +0.01408450704225352112676056338028169014084507042253521126760563380281690140845 +07042253521126760563380 +*\message{\xintTrunc {350}{1/71}}% period is 35 + +0.01408450704225352112676056338028169014084507042253521126760563380281690140845 +0704225352112676056338028169014084507042253521126760563380281690140845070422535 +2112676056338028169014084507042253521126760563380281690140845070422535211267605 +6338028169014084507042253521126760563380281690140845070422535211267605633802816 +901408450704225352112676056338028169 +*\edef\Z {\xintXTrunc {65792}{1/66049}}% getting serious... + +*\def\trim 0.{}\oodef\Z {\expandafter\trim\Z}% removing 0. + +*\edef\W {\xintXTrunc {131584}{1/66049}}% a few seconds + +*\oodef\W {\expandafter\trim\W} + +*\oodef\ZZ {\expandafter\Z\Z}% doubling the period + +*\ifx\W\ZZ \message{YES!}\else\message{BUG!}\fi % xint never has bugs... +YES! +*\message{\xintTrunc {260}{1/66049}}% check visually that 256 is not a period + +0.00001514027464458205271843631243470756559523989765174340262532362337052794137 +6856576178291874214598252812306015231116292449545034746930309315810988811337037 +6538630410755651107511090251177156353616254598858423291798513225029902042423049 +5541189117170585474420505 +*\edef\X {\xintXTrunc {257*128}{1/66049}}% infix here ok, less than 8 tokens + +*\oodef\X {\expandafter\trim\X}% we now have the first 257*128 digits + +*\oodef\XX {\expandafter\X\X}% was 257*128 a period? + +*\ifx\XX\Z \message{257*128 is a period}\else \message{257 * 128 not a period}\fi +257 * 128 not a period +*\immediate\write-1 {1/66049=0.\Z... (repeat)} + +*\oodef\ZA {\xintNum {\Z}}% we remove the 0000, or we could use next \xintiMul + +*\immediate\write-1 {10\string^65792-1=\xintiiMul {\ZA}{66049}} + +*% This was slow :( I should write a multiplication, still completely + +*% expandable, but not f-expandable, which could be much faster on such cases. + +*\bye +No pages of output. +Transcript written on worksheet-66049.log. +xxx:_xint $ | +\endgroup + +Using |\xintTrunc| rather than |\xintXTrunc| would be hopeless on such long +outputs (and even |\xintXTrunc| needed of the order of seconds to complete +here). But it is not worth it to use |\xintXTrunc| for less than hundreds of +digits. + +Fraction arguments to |\xintXTrunc| corresponding to a |A/B[N]| with a negative +|N| are treated somewhat less efficiently (additional memory impact) than for positive or zero |N|. This is because the algorithm tries to work with the +smallest denominator hence does not extend |B| with zeroes, and technical +reasons lead to the use of some tricks.\footnote{Technical note: I do not + provide an |\char92 xintXFloat| because this would almost certainly mean + having to clone the entire core division routines into a ``long division'' + variant. But this could have given another approach to the implementation of + |\char 92 xintXTrunc|, especially for the case of a negative |N|. Doing these + things with \TeX{} is an effort. Besides an + |\char 92 xintXFloat| would be interesting only if also for example the square + root routine was provided in an |X| version (I have not given thought to + that). If feasible |X| routines would be interesting in the |\char 92 + xintexpr| context where things are expanded inside |\char92 csname..\char92 + endcsname|.} + +Contrarily to \csbxint{Trunc}, in the case of the second argument revealing +itself to be exactly zero, \csbxint{XTrunc} will output @0.000...@, not @0@. +Also, the first argument must be at least @1@. \subsection{\csbh{xintRound}}\label{xintRound} @@ -6974,26 +7730,18 @@ accept fractions on input. The output will now always be in the form |A/B[n]| {2/3}{0}|\digitstt{=\xintPow{2/3}{0}}). The original is available as \csbxint{iPow}. -% \xintDigits:= 3; - -The exponent is allowed to be input as a -fraction but it must simplify to an integer: |\xintPow -{2/3}{10/2}|\digitstt{=\xintPow {2/3}{10/2}}. This integer will be checked to -not exceed |999999999|; future releases will presumably lower this limit as -even much much smaller values already create gigantic numerators and -denominators which can not be computed exactly in a reasonable time. Indeed -|2^999999999| has \digitstt{\xintLen {\xintFloatPow [1]{2}{999999999}}} digits. - - - -% \xintDigits:= 16; +The exponent is allowed to be input as a fraction but it must simplify to an +integer: |\xintPow {2/3}{10/2}|\digitstt{=\xintPow {2/3}{10/2}}. This integer +will be checked to not exceed |100000|. Indeed |2^50000| already has +\digitstt{\xintLen {\xintFloatPow [1]{2}{50000}}} digits, and squaring such a +number would take hours (I think) with the expandable routine of \xintname. \subsection{\csbh{xintFloatPow}}\label{xintFloatPow} %{\small New with |1.07|.\par} |\xintFloatPow [P]{f}{x}|\etype{{\upshape[\numx]}\Ff\numx} uses either the optional argument |P| or the value of |\xintDigits|. It computes a floating -approximation to |f^x|. +approximation to |f^x|. The precision |P| must be at least |1|, naturally. The exponent |x| will be fed to a |\numexpr|, hence count registers are accepted on input for this |x|. And the absolute value \verb+|x|+ must obey the \TeX{} @@ -7261,6 +8009,10 @@ through the use of one of the functions |round|, |trunc|, |float|, \item a sub-expression |\xintexpr...\relax|, \item or within braces. \end{enumerate} + When a sub-expression is hit against in the midst of absorbing the + digits of a number, a |*| multiplication sign is tacitly + implied.\MyMarginNote{New!} No such tacit multiplication is implied + by an opening parenthesis. \item an expression can not be given as argument to the other package macros, nor printed, for this one must use |\xinttheexpr...\relax| or |\xintthe\xintexpr...\relax|, @@ -7272,16 +8024,20 @@ through the use of one of the functions |round|, |trunc|, |float|, \endlist \endgroup -% With defined macros destined to be re-used within another one, one has the -% choice between parentheses or |\xintexpr...\relax|: |\def\x {(\a+\b)}| or -% |\def\x {\xintexpr \a+\b\relax}|. The latter is better as it allows |\xintthe|. +In an algorithm implemented non-expandably, one may define macros to +expand to infix expressions to be used within others. One then has the +choice between parentheses or |\xintexpr...\relax|: |\def\x {(\a+\b)}| +or |\def\x {\xintexpr \a+\b\relax}|. The latter is the better choice as +it allows also to be prefixed with |\xintthe|. Furthemore, if |\a| and +|\b| are already defined |\oodef\x {\xintexpr \a+\b\relax}| will do the +computation on the spot. \subsection{\texorpdfstring{\texttt{\protect\string\numexpr}}{\textbackslash numexpr} or \texorpdfstring{\texttt{\protect\string\dimexpr}}{\textbackslash dimexpr} expressions, count and dimension registers and variables} \label{ssec:countinexpr} -Count registers,\MyMarginNote{New!} count control sequences, dimen registers, +Count registers, count control sequences, dimen registers, dimen control sequences, skips and skip control sequences, |\numexpr|, |\dimexpr|, |\glueexpr| can be inserted directly, they will be unpacked using |\number| (which gives the internal value in terms of scaled points for the @@ -7374,7 +8130,7 @@ is not the same within such macro arguments (or within braces used to protect square brackets). -\subsection{Expandability} +\subsection{Expandability, \csh{xinteval}} As is the case with all other package macros |\xintexpr| expands in two steps to its final (non-printable) result; and similarly for |\xinttheexpr|. @@ -7384,6 +8140,17 @@ except that braces are allowed when they enclose either a fraction (or decimal number) or something arbitrarily complicated but expanding (in a manner compatible to an expansion only context) to such a fraction or decimal number. +The once expanded |\xintexpr| is |\romannumeral0\xinteval|. And there is +similarly |\xintieval|, |\xintiieval|, and |\xintfloateval|. For the +other cases one can use |\romannumeral-`0| as prefix. + +For the construction of expandable algorithms using chains of +|\xinteval|-uations see \autoref{ssec:fibonacci}.\MyMarginNote{New!} + +An expression can only be legally finished by a |\relax| token, which +will be absorbed. + + \subsection{Memory considerations} The parser creates an undefined control sequence for each intermediate @@ -7394,13 +8161,19 @@ into a computation). So, a moderately sized expression might create 10, or 20 such control sequences. On my \TeX{} installation, the memory available for such things is of circa \np{200000} multi-letter control words. So this means that a document containing hundreds, perhaps even thousands of expressions will compile -with no problem. But, if the package is used for computing plots\footnote{this - is not very probable as so far \xintname does not include a mathematical - library with floating point calculations, but provides only the basic +with no problem. + +Besides the hash table, also \TeX{} main memory is impacted. Thus, if +\xintexprname is used for computing plots\footnote{this is not very + probable as so far \xintname does not include a mathematical library + with floating point calculations, but provides only the basic operations of algebra.}, this may cause a problem. + + There is a solution.\footnote{which convinced me that I could stick with the - parser implementation despite its potential impact on the hash-table.} + parser implementation despite its potential impact on the hash-table + and other parts of \TeX{}'s memory.} A document can possibly do tens of thousands of evaluations only @@ -7408,13 +8181,14 @@ if some formulas are being used repeatedly, for example inside loops, with counters being incremented, or with data being fetched from a file. So it is the same formula used again and again with varying numbers inside. -With the \csbxint{NewExpr} command, it is possible to convert once and for all -an expression containing parameters into an expandable macro with parameters. -Only this initial definition of this macro actually activates the \csbxint{expr} -parser and will (very moderately) impact the hash-table: once this unique -parsing is done, a macro with parameters is produced which is built-up -recursively from the \csbxint{Add}, \csbxint{Mul}, etc... macros, exactly as it -was necessary to do before the availability of the \xintexprname package. +With the \csbxint{NewExpr} command, it is possible to convert once and +for all an expression containing parameters into an expandable macro +with parameters. Only this initial definition of this macro actually +activates the \csbxint{expr} parser and will (very moderately) impact +the hash-table: once this unique parsing is done, a macro with +parameters is produced which is built-up recursively from the +\csbxint{Add}, \csbxint{Mul}, etc... macros, exactly as it would be +necessary to do without the facilities of the \xintexprname package. \subsection{The \csbh{xintNewExpr} command}\label{xintNewExpr} @@ -7630,7 +8404,7 @@ produce (long) integers. To input a fraction to |round|, |trunc|, |floor| or |ceil| one can use braces, else the |/| will do the euclidean quotient. -The minus sign should be put together with the fraction: |round(-{30/78})| is +The minus sign should be put together with the fraction: |round(-{30/18})| is illegal (even if the fraction had been an integer), use |round({-30/18})|\digitstt{=\xinttheiiexpr round({-30/18})\relax}. @@ -7802,6 +8576,11 @@ setting for |\xintDigits|. Like \csbxint{NewExpr} but using |\xinttheiexpr|. Former denomination was |\xintNewNumExpr| which is deprecated and should not be used. +\subsection{\csbh{xintNewIIExpr}}\label{xintNewIIExpr} +%{\small New in |1.09i|.\par } + +Like \csbxint{NewExpr} but using |\xinttheiiexpr|. + \subsection{\csbh{xintNewBoolExpr}}\label{xintNewBoolExpr} %{\small New in |1.09c|.\par } @@ -7820,14 +8599,27 @@ Obviously I should mention that \csa{xintNewExpr} itself can not be used in an expansion-only context, as it creates a macro. The |\escapechar| setting may be arbitrary when using -|\xintexpr|.\MyMarginNote{New!} +|\xintexpr|. -The format of the output of |\xintexpr|\meta{stuff}|\relax| is a |!| (with -catcode 11) followed by |\XINT_expr_usethe| which prints an error message in -the document and in the log file if it is executed, then a token doing the -actual printing and finally a token |\.=A/B[n]|. Using |\xinttheexpr| means -zapping the first two things, the third one will then recover |A/B[n]| from the -(presumably undefined, but it does not matter) control sequence |\.=A/B[n]|. +The format of the output\MyMarginNote{Changed!} of +|\xintexpr|\meta{stuff}|\relax| is a |!| (with catcode 11) followed by +|\XINT_expr_usethe| which prints an error message in the document and in +the log file if it is executed, then a |\xint_protect| token, a token +doing the actual printing and finally a token |\.=A/B[n]|. Using +|\xinttheexpr| means zapping the first three things, the fourth one will +then unlock |A/B[n]| from the (presumably undefined, but it does not +matter) control sequence |\.=A/B[n]|. + +Thanks to the release |1.09j| added |\xint_protect| token and the fact +that |\XINT_expr_usethe| is |\protected|, one can now use |\xintexpr| +inside an |\edef|, with no need of the |\xintthe| prefix. + +\begin{framed} + Note that |\xintexpr| is thus compatible to complete expansion, + contrarily to |\numexpr| which is non-expandable if not prefixed by + |\the|. See \autoref{ssec:fibonacci} for some illustration.% + \MyMarginNote[\kern\dimexpr\FrameSep+\FrameRule\relax]{New!} +\end{framed} I decided to put all intermediate results (from each evaluation of an infix operators, or of a parenthesized subpart of the expression, or from application @@ -7837,6 +8629,15 @@ expandably and encapsulates an arbitrarily long fraction in a single token (left with undefined meaning), thus providing tremendous relief to the programmer in his/her expansion control. +\begin{framed} + As the |\xintexpr| computations corresponding to functions and infix + or postfix operators are done inside |\csname...\endcsname|, the + \fexpan dability could possibly be dropped and one could imagine + implementing the basic operations with expandable but not \fexpan + dable macros (as \csbxint{XTrunc}.) I have not investigated that + possibility. +\end{framed} + % \begin{framed} % This implementation and user interface are still to be considered % \emph{experimental}. @@ -9078,16 +9879,14 @@ algorithm always gets better than |10^{-D}| precision, but again, strings of zeros or nines encountered in the decimal expansion may falsify the ending digits, nines may be zeros (and the last non-nine one should be increased) and zeros may be nine (and the last non-zero one should be decreased). + +\hypertarget{MachinCode}{} \dverb|@ % pi = 16 Arctg(1/5) - 4 Arctg(1/239) (John Machin's formula) \def\coeffarctg #1{\the\numexpr\ifodd#1 -1\else1\fi\relax/% \the\numexpr 2*#1+1\relax [0]}% % the above computes (-1)^n/(2n+1). -% Alternatives: -% \def\coeffarctg #1{1/\the\numexpr\xintiiMON{#1}*(2*#1+1)\relax }% -% The [0] can *not* be used above, as the denominator is signed. -% \def\coeffarctg #1{\xintiiMON{#1}/\the\numexpr 2*#1+1\relax [0]}% -\def\xa {1/25[0]}% 1/5^2, the [0] for faster parsing +\def\xa {1/25[0]}% 1/5^2, the [0] for (infinitesimally) faster parsing \def\xb {1/57121[0]}% 1/239^2, the [0] for faster parsing \def\Machin #1{% \Machin {\mycount} is allowed \romannumeral0\expandafter\MachinA \expandafter @@ -9104,7 +9903,7 @@ zeros may be nine (and the last non-zero one should be decreased). % #3=#4+3: digits for evaluation of the necessary number of terms % to be kept in the arctangent series, also used to truncate each % individual summand. -{\xinttrunc {#4} % must be lowercase to stop \romannumeral0! +{\xinttrunc {#4} % lowercase macro to match the initial \romannumeral0. {\xintSub {\xintMul {16/5}{\xintFxPtPowerSeries {0}{#1}{\coeffarctg}{\xa}{#3}}} {\xintMul {4/239}{\xintFxPtPowerSeries {0}{#2}{\coeffarctg}{\xb}{#3}}}% @@ -9188,32 +9987,49 @@ Let us use this variant for a loop showing the build-up of digits: \end{multicols} -You want more digits and have some time? Copy the |\Machin| -code to a Plain \TeX{} or \LaTeX{} document loading \xintseriesname, and -compile: -\dverb|@ -\newwrite\outfile -\immediate\openout\outfile \jobname-out\relax -\immediate\write\outfile {\Machin {1000}} -\immediate\closeout\outfile| - -This will create a file with the correct first 1000 digits of $\pi$ -after the decimal point. On my laptop (a 2012 model) this took about 42 -seconds last time I tried (and for 200 digits it is less than 1 second). -As mentioned in the introduction, the file -\href{http://www.ctan.org/pkg/pi}{pi.tex} by \textsc{D. - Roegel} shows that orders of magnitude faster computations are -possible within \TeX{}, but recall our constraints of complete -expandability and be merciful, please. - -% \newwrite\outfile -% \immediate\openout\outfile \jobname-out\relax -% \pdfresettimer -% \immediate\write\outfile {\Machin {1000}} -% \edef\temps{\the\pdfelapsedtime} -% \immediate\closeout\outfile - -% \temps: \xintRound {2}{\temps/65536} secondes +\hypertarget{Machin1000}{} +% +You want more digits and have some time? Copy the +\hyperlink{MachinCode}{|\char 92 Machin|} code to a \TeX{} file, and compile it +with |etex| (or |pdftex|): +\dverb|@ +% Compile with e-TeX extensions enabled (etex, pdftex, ...) +\input xintfrac.sty +\input xintseries.sty +% pi = 16 Arctg(1/5) - 4 Arctg(1/239) (John Machin's formula) +\def\coeffarctg #1{\the\numexpr\ifodd#1 -1\else1\fi\relax/% + \the\numexpr 2*#1+1\relax [0]}% +\def\xa {1/25[0]}% +\def\xb {1/57121[0]}% +\def\Machin #1{% + \romannumeral0\expandafter\MachinA \expandafter + {\the\numexpr (#1+3)*5/7\expandafter}\expandafter + {\the\numexpr (#1+3)*10/45\expandafter}\expandafter + {\the\numexpr #1+3\expandafter}\expandafter + {\the\numexpr #1\relax }}% +\def\MachinA #1#2#3#4% +{\xinttrunc {#4} + {\xintSub + {\xintMul {16/5}{\xintFxPtPowerSeries {0}{#1}{\coeffarctg}{\xa}{#3}}} + {\xintMul {4/239}{\xintFxPtPowerSeries {0}{#2}{\coeffarctg}{\xb}{#3}}}% +}}% +\pdfresettimer +\oodef\Z {\Machin {1000}} +\odef\W {\the\pdfelapsedtime} +\message{\Z} +\message{computed in \xintRound {2}{\W/65536} seconds.} +\bye | + +This will log the first 1000 digits of $\pi$ after the decimal point. On my +laptop (a 2012 model) this took about @16@ seconds last time I tried. +\footnote{With \texttt{1.09i} and earlier \xintname releases, this used to be + \digitstt{42} seconds; the \texttt{1.09j} division is much faster with small + denominators as occurs here with \digitstt{\char92xa=1/25}, and I believe this + to be the main explanation for the speed gain.} As mentioned in the +introduction, the file \href{http://www.ctan.org/pkg/pi}{pi.tex} by \textsc{D. + Roegel} shows that orders of magnitude faster computations are possible within +\TeX{}, but recall our constraints of complete expandability and be merciful, +please. \textbf{Why truncating rather than rounding?} One of our main competitors @@ -10039,7 +10855,7 @@ first place. \fi \XINT_providespackage \ProvidesPackage {xinttools}% - [2013/12/18 v1.09i Expandable and non-expandable utilities (jfB)]% + [2014/01/09 v1.09j Expandable and non-expandable utilities (jfB)]% % \end{macrocode} % \subsection{Token management, constants} % \lverb|In 1.09e \xint_undef replaced everywhere by \xint_bye. @@ -10058,9 +10874,9 @@ first place. \xint_firstofone{\let\XINT_sptoken= } %<- space here! \long\def\xint_firstoftwo #1#2{#1}% \long\def\xint_secondoftwo #1#2{#2}% -\long\def\xint_firstoftwo_afterstop #1#2{ #1}% -\long\def\xint_secondoftwo_afterstop #1#2{ #2}% -\def\xint_minus_afterstop { -}% +\long\def\xint_firstoftwo_thenstop #1#2{ #1}% +\long\def\xint_secondoftwo_thenstop #1#2{ #2}% +\def\xint_minus_thenstop { -}% \long\def\xint_gob_til_R #1\R {}% \long\def\xint_gob_til_W #1\W {}% \long\def\xint_gob_til_Z #1\Z {}% @@ -10073,7 +10889,16 @@ first place. \chardef\xint_c_viii 8 \newtoks\XINT_toks % \end{macrocode} -% \subsection{ \csh{XINT\_odef}, \csh{XINT\_godef}, \csh{odef}} +% \subsection{ \csh{xintodef}, \csh{xintgodef}, \csh{odef}} +% \lverb|1.09i. For use in \xintAssign. No parameter text! 1.09j uses \xint... +% rather than \XINT_.... \xintAssign [o] will use the preexisting \odef if there +% was one before xint' loading.| +% \begin{macrocode} +\def\xintodef #1{\expandafter\def\expandafter#1\expandafter }% +\ifdefined\odef\else\let\odef\xintodef\fi +\def\xintgodef {\global\xintodef }% +% \end{macrocode} +% \subsection{ \csh{xintoodef}, \csh{xintgoodef}, \csh{oodef}} % \lverb|1.09i. Can be prefixed with \global. No parameter text. The alternative % $\ % $null \def\oodef #1#{\def\XINT_tmpa{#1}%$\ @@ -10082,28 +10907,22 @@ first place. % $null $quad $quad $quad \expandafter\expandafter\expandafter\XINT_tmpa$\ % $null $quad $quad $quad \expandafter\expandafter\expandafter }%$\ % could not be prefixed by \global. Anyhow, macro parameter tokens would have to -% somehow not be seen by expanded stuff, except if designed for it.| +% somehow not be seen by expanded stuff, except if designed for it. +% \xintAssign [oo] (etc...) uses the pre-existing \oodef if there was one. | % \begin{macrocode} -\def\XINT_odef #1{\expandafter\def\expandafter#1\expandafter }% -\ifdefined\odef\else\let\odef\XINT_odef\fi -\def\XINT_godef {\global\XINT_odef }% -% \end{macrocode} -% \subsection{ \csh{XINT\_oodef}, \csh{XINT\_goodef}, \csh{oodef}} -% \lverb|1.09i. For use in \xintAssign. No parameter text!| -% \begin{macrocode} -\def\XINT_oodef #1{\expandafter\expandafter\expandafter\def +\def\xintoodef #1{\expandafter\expandafter\expandafter\def \expandafter\expandafter\expandafter#1% \expandafter\expandafter\expandafter }% -\ifdefined\oodef\else\let\oodef\XINT_oodef\fi -\def\XINT_goodef {\global\XINT_oodef }% +\ifdefined\oodef\else\let\oodef\xintoodef\fi +\def\xintgoodef {\global\xintoodef }% % \end{macrocode} -% \subsection{ \csh{XINT\_fdef}, \csh{XINT\_gfdef}, \csh{fdef}} +% \subsection{ \csh{xintfdef}, \csh{xintgfdef}, \csh{fdef}} % \lverb|1.09i. No parameter text! | % \begin{macrocode} -\def\XINT_fdef #1#2{\expandafter\def\expandafter#1\expandafter +\def\xintfdef #1#2{\expandafter\def\expandafter#1\expandafter {\romannumeral-`0#2}}% -\ifdefined\fdef\else\let\fdef\XINT_fdef\fi -\def\XINT_gfdef {\global\XINT_fdef }% +\ifdefined\fdef\else\let\fdef\xintfdef\fi +\def\xintgfdef {\global\xintfdef }% should be \global\fdef if \fdef pre-exists? % \end{macrocode} % \subsection{ \csh{xintReverseOrder}} % \lverb|\xintReverseOrder: does NOT expand its argument.| @@ -10656,7 +11475,7 @@ first place. \def\XINT_seq #1#2% {% \ifcase\ifnum #1=#2 0\else\ifnum #2>#1 1\else -1\fi\fi\space - \expandafter\xint_firstoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop \or \expandafter\XINT_seq_p \else @@ -10667,20 +11486,20 @@ first place. \def\XINT_seq_p #1#2% {% \ifnum #1>#2 - \xint_afterfi{\expandafter\XINT_seq_p}% + \expandafter\expandafter\expandafter\XINT_seq_p \else \expandafter\XINT_seq_e \fi - \expandafter{\the\numexpr #1-1}{#2}{#1}% + \expandafter{\the\numexpr #1-\xint_c_i}{#2}{#1}% }% \def\XINT_seq_n #1#2% {% \ifnum #1<#2 - \xint_afterfi{\expandafter\XINT_seq_n}% + \expandafter\expandafter\expandafter\XINT_seq_n \else \expandafter\XINT_seq_e \fi - \expandafter{\the\numexpr #1+1}{#2}{#1}% + \expandafter{\the\numexpr #1+\xint_c_i}{#2}{#1}% }% \def\XINT_seq_e #1#2#3{ }% \def\XINT_seq_opt [\xint_bye #1]#2#3% @@ -11248,19 +12067,32 @@ first place. % 1.09i allows an optional parameter \xintAssign [oo] for example, then \oodef % rather than \edef is used. Idem for \xintAssignArray. However in the latter % case, the global variant is not available, one should use \globaldefs for -% that. | +% that. +% +% 1.09j: I decide that the default behavior of \xintAssign should be to use +% \def, not \edef when assigning to a cs an item of the list. This is a +% breaking change but I don't think anybody on earth is using xint anyhow. +% Also use of the optional parameter was broken if it was [], [g], [e], [x] as +% the corresponding \XINT_... macros had not been defined (in the initial +% version I did not have the XINT_ prefix; then I added it in case \oodef was +% pre-existing and thus was not redefined by the package which instead had +% \XINT_oodef, now \xintoodef.)| % \begin{macrocode} \def\xintAssign{\def\XINT_flet_macro {\XINT_assign_fork}\XINT_flet_zapsp }% \def\XINT_assign_fork {% - \let\XINT_assign_def\edef + \let\XINT_assign_def\def \ifx\XINT_token[\expandafter\XINT_assign_opt \else\expandafter\XINT_assign_a \fi }% \def\XINT_assign_opt [#1]% {% - \expandafter\let\expandafter\XINT_assign_def \csname XINT_#1def\endcsname + \ifcsname #1def\endcsname + \expandafter\let\expandafter\XINT_assign_def \csname #1def\endcsname + \else + \expandafter\let\expandafter\XINT_assign_def \csname xint#1def\endcsname + \fi \XINT_assign_a }% \long\def\XINT_assign_a #1\to @@ -11304,15 +12136,19 @@ first place. \XINT_flet_zapsp }% \def\XINT_assignarray_fork {% - \let\XINT_assignarray_def\edef + \let\XINT_assignarray_def\def \ifx\XINT_token[\expandafter\XINT_assignarray_opt \else\expandafter\XINT_assignarray \fi }% \def\XINT_assignarray_opt [#1]% {% - \expandafter\let\expandafter\XINT_assignarray_def - \csname XINT_#1def\endcsname + \ifcsname #1def\endcsname + \expandafter\let\expandafter\XINT_assignarray_def \csname #1def\endcsname + \else + \expandafter\let\expandafter\XINT_assignarray_def + \csname xint#1def\endcsname + \fi \XINT_assignarray }% \long\def\XINT_assignarray #1\to #2% @@ -11424,8 +12260,7 @@ first place. \else \ifx\x\relax % plain-TeX, first loading of xint.sty \ifx\w\relax % but xinttools.sty not yet loaded. - \y{xint}{Package xinttools is required}% - \y{xint}{Will try \string\input\space xinttools.sty}% + \y{xint}{now issuing \string\input\space xinttools.sty}% \def\z{\endgroup\input xinttools.sty\relax}% \fi \else @@ -11433,8 +12268,7 @@ first place. \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xinttools.sty not yet loaded. - \y{xint}{Package xinttools is required}% - \y{xint}{Will try \string\RequirePackage{xinttools}}% + \y{xint}{now issuing \string\RequirePackage{xinttools}}% \def\z{\endgroup\RequirePackage{xinttools}}% \fi \else @@ -11483,16 +12317,16 @@ first place. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xint}% - [2013/12/18 v1.09i Expandable operations on long numbers (jfB)]% + [2014/01/09 v1.09j Expandable operations on long numbers (jfB)]% % \end{macrocode} % \subsection{Token management, constants} % \begin{macrocode} \long\def\xint_firstofthree #1#2#3{#1}% \long\def\xint_secondofthree #1#2#3{#2}% \long\def\xint_thirdofthree #1#2#3{#3}% -\long\def\xint_firstofthree_afterstop #1#2#3{ #1}% 1.09i -\long\def\xint_secondofthree_afterstop #1#2#3{ #2}% -\long\def\xint_thirdofthree_afterstop #1#2#3{ #3}% +\long\def\xint_firstofthree_thenstop #1#2#3{ #1}% 1.09i +\long\def\xint_secondofthree_thenstop #1#2#3{ #2}% +\long\def\xint_thirdofthree_thenstop #1#2#3{ #3}% \def\xint_gob_til_zero #10{}% \def\xint_gob_til_zeros_iii #1000{}% \def\xint_gob_til_zeros_iv #10000{}% @@ -11501,7 +12335,7 @@ first place. \def\xint_gob_til_minus #1-{}% \def\xint_gob_til_relax #1\relax {}% \def\xint_exchangetwo_keepbraces #1#2{{#2}{#1}}% -\def\xint_exchangetwo_keepbraces_afterstop #1#2{ {#2}{#1}}% +\def\xint_exchangetwo_keepbraces_thenstop #1#2{ {#2}{#1}}% \def\xint_UDzerofork #10#2#3\krof {#2}% \def\xint_UDsignfork #1-#2#3\krof {#2}% \def\xint_UDwfork #1\W#2#3\krof {#2}% @@ -11509,17 +12343,21 @@ first place. \def\xint_UDonezerofork #110#2#3\krof {#2}% \def\xint_UDzerominusfork #10-#2#3\krof {#2}% \def\xint_UDsignsfork #1--#2#3\krof {#2}% -% \chardef\xint_c_ 0 % done in xinttools +% \chardef\xint_c_ 0 % already done in xinttools \chardef\xint_c_i 1 \chardef\xint_c_ii 2 \chardef\xint_c_iii 3 \chardef\xint_c_iv 4 \chardef\xint_c_v 5 -% \chardef\xint_c_vi 6 % done in xintfrac -% \chardef\xinf_c_vii 7 % done in xintfrac -% \chardef\xint_c_viii 8 % done in xinttools -\chardef\xint_c_ix 9 -\chardef\xint_c_x 10 +% \chardef\xint_c_vi 6 % will be done in xintfrac +% \chardef\xinf_c_vii 7 % will be done in xintfrac +% \chardef\xint_c_viii 8 % already done in xinttools +\chardef\xint_c_ix 9 +\chardef\xint_c_x 10 +\chardef\xint_c_ii^v 32 % not used in xint, common to xintfrac and xintbinhex +\chardef\xint_c_ii^vi 64 +\mathchardef\xint_c_ixixixix 9999 +\mathchardef\xint_c_x^iv 10000 \newcount\xint_c_x^viii \xint_c_x^viii 100000000 % \end{macrocode} % \subsection{\csh{xintRev}} @@ -11542,7 +12380,7 @@ first place. \def\XINT_rev_fork #1% {% \xint_UDsignfork - #1{\expandafter\xint_minus_afterstop\romannumeral0\XINT_rord_main {}}% + #1{\expandafter\xint_minus_thenstop\romannumeral0\XINT_rord_main {}}% -{\XINT_rord_main {}#1}% \krof }% @@ -11674,7 +12512,7 @@ first place. {% \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4\relax }% -\def\xint_cleanupzeros_nospace #1#2#3#4% +\def\xint_cleanupzeros_nostop #1#2#3#4% {% \the\numexpr #1#2#3#4\relax }% @@ -11800,11 +12638,12 @@ first place. \def\XINT_num_keepsign_b #1{\XINT_num_loop -}% \def\XINT_num_finish #1\xint_relax #2\Z { #1}% % \end{macrocode} -% \subsection{\csh{xintSgn}, \csh{xintiiSgn}, \csh{XINT\_Sgn}, \csh{XINT\_\_Sgn}} +% \subsection{\csh{xintSgn}, \csh{xintiiSgn}, \csh{XINT\_Sgn}, \csh{XINT\_cntSgn}} % \lverb|& % Changed in 1.05. Earlier code was unnecessarily strange. 1.09a with \xintnum % -% 1.09i defines \XINT_Sgn and \XINT__Sgn for reasons of internal optimizations| +% 1.09i defines \XINT_Sgn and \XINT_cntSgn (was \XINT__Sgn in 1.09i) for reasons +% of internal optimizations| % \begin{macrocode} \def\xintiiSgn {\romannumeral0\xintiisgn }% \def\xintiisgn #1% @@ -11832,7 +12671,7 @@ first place. 0-{1}% \krof }% -\def\XINT__Sgn #1#2\Z +\def\XINT_cntSgn #1#2\Z {% \xint_UDzerominusfork #1-\z@ @@ -11849,24 +12688,23 @@ first place. \def\xintToggle #1{\romannumeral-`0\iftoggle{#1}{1}{0}}% % \end{macrocode} % \subsection{\csh{xintSgnFork}} -% \lverb|& -% Expandable three-way fork added in 1.07. The argument #1 -% must expand to -1,0 or 1. 1.09i has _afterstop things for efficiency| +% \lverb|Expandable three-way fork added in 1.07. The argument #1 must expand +% to -1,0 or 1. 1.09i has _afterstop, renamed _thenstop later, for efficiency.| % \begin{macrocode} \def\xintSgnFork {\romannumeral0\xintsgnfork }% \def\xintsgnfork #1% {% - \ifcase #1 \expandafter\xint_secondofthree_afterstop - \or\expandafter\xint_thirdofthree_afterstop - \else\expandafter\xint_firstofthree_afterstop + \ifcase #1 \expandafter\xint_secondofthree_thenstop + \or\expandafter\xint_thirdofthree_thenstop + \else\expandafter\xint_firstofthree_thenstop \fi }% % \end{macrocode} -% \subsection{\csh{XINT\_\_SgnFork}} +% \subsection{\csh{XINT\_cntSgnFork}} % \lverb|1.09i. Used internally, #1 must expand to \m@ne, \z@, or \@ne or -% equivalent. Does not insert a \romannumeral0 stopping space token.| +% equivalent. Does not insert a space token to stop a romannumeral0 expansion.| % \begin{macrocode} -\def\XINT__SgnFork #1% +\def\XINT_cntSgnFork #1% {% \ifcase #1\expandafter\xint_secondofthree \or\expandafter\xint_thirdofthree @@ -11882,15 +12720,16 @@ first place. % to the transformation of the ternary operator : in \xintNewExpr. I hope I have % explained there the details because right now off hand I can't recall why. % -% 1.09i has \xint_firstofthreeafterstop etc for faster expansion.| +% 1.09i has \xint_firstofthreeafterstop (now _thenstop) etc for faster +% expansion.| % \begin{macrocode} \def\xintifSgn {\romannumeral0\xintifsgn }% \def\xintifsgn #1% {% \ifcase \romannumeral0\xintsgn{#1} - \expandafter\xint_secondofthree_afterstop - \or\expandafter\xint_thirdofthree_afterstop - \else\expandafter\xint_firstofthree_afterstop + \expandafter\xint_secondofthree_thenstop + \or\expandafter\xint_thirdofthree_thenstop + \else\expandafter\xint_firstofthree_thenstop \fi }% % \end{macrocode} @@ -11905,18 +12744,18 @@ first place. \def\xintifzero #1% {% \if0\xintSgn{#1}% - \expandafter\xint_firstoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop \else - \expandafter\xint_secondoftwo_afterstop + \expandafter\xint_secondoftwo_thenstop \fi }% \def\xintifNotZero {\romannumeral0\xintifnotzero }% \def\xintifnotzero #1% {% \if0\xintSgn{#1}% - \expandafter\xint_secondoftwo_afterstop + \expandafter\xint_secondoftwo_thenstop \else - \expandafter\xint_firstoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop \fi }% % \end{macrocode} @@ -11927,9 +12766,9 @@ first place. \def\xintifone #1% {% \if1\xintIsOne{#1}% - \expandafter\xint_firstoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop \else - \expandafter\xint_secondoftwo_afterstop + \expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} @@ -11945,42 +12784,42 @@ first place. % \subsection{\csh{xintifCmp}} % \lverb|& % 1.09e -% \xintifCmp {n}{m}{if nm}. _afterstop in 1.09i.| +% \xintifCmp {n}{m}{if nm}.| % \begin{macrocode} \def\xintifCmp {\romannumeral0\xintifcmp }% \def\xintifcmp #1#2% {% \ifcase\xintCmp {#1}{#2} - \expandafter\xint_secondofthree_afterstop - \or\expandafter\xint_thirdofthree_afterstop - \else\expandafter\xint_firstofthree_afterstop + \expandafter\xint_secondofthree_thenstop + \or\expandafter\xint_thirdofthree_thenstop + \else\expandafter\xint_firstofthree_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintifEq}} % \lverb|& % 1.09a -% \xintifEq {n}{m}{YES if n=m}{NO if n<>m}. _afterstop in 1.09i.| +% \xintifEq {n}{m}{YES if n=m}{NO if n<>m}.| % \begin{macrocode} \def\xintifEq {\romannumeral0\xintifeq }% \def\xintifeq #1#2% {% \if0\xintCmp{#1}{#2}% - \expandafter\xint_firstoftwo_afterstop - \else\expandafter\xint_secondoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop + \else\expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintifGt}} % \lverb|& -% 1.09a \xintifGt {n}{m}{YES if n>m}{NO if n<=m}. _afterstop style in 1.09i| +% 1.09a \xintifGt {n}{m}{YES if n>m}{NO if n<=m}.| % \begin{macrocode} \def\xintifGt {\romannumeral0\xintifgt }% \def\xintifgt #1#2% {% \if1\xintCmp{#1}{#2}% - \expandafter\xint_firstoftwo_afterstop - \else\expandafter\xint_secondoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop + \else\expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} @@ -11992,8 +12831,8 @@ first place. \def\xintiflt #1#2% {% \ifnum\xintCmp{#1}{#2}<\xint_c_ - \expandafter\xint_firstoftwo_afterstop - \else \expandafter\xint_secondoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop + \else \expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} @@ -12004,9 +12843,9 @@ first place. \def\xintifodd #1% {% \if\xintOdd{#1}1% - \expandafter\xint_firstoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop \else - \expandafter\xint_secondoftwo_afterstop + \expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} @@ -12517,7 +13356,7 @@ first place. % \begin{macrocode} \def\XINT_add_minusminus #1#2#3#4% {% - \expandafter\xint_minus_afterstop% + \expandafter\xint_minus_thenstop% \romannumeral0\XINT_add_pre {#2}{#1}% }% \def\XINT_add_minusplus #1#2#3#4% @@ -12607,7 +13446,7 @@ first place. \def\xint_sub_mp0\XINT_add_pre #1#2{ #2}% \def\XINT_sub_plusminus #1#2#3#4% {% - \xint_gob_til_zero #3\xint_sub_pm0\expandafter\xint_minus_afterstop% + \xint_gob_til_zero #3\xint_sub_pm0\expandafter\xint_minus_thenstop% \romannumeral0\XINT_add_pre {#2}{#3#1}% }% \def\xint_sub_pm #1\XINT_add_pre #2#3{ -#2}% @@ -12760,7 +13599,7 @@ first place. \krof {#3}% }% -\def\XINT_sub_DD {\expandafter\xint_minus_afterstop\romannumeral0\XINT_sub_D }% +\def\XINT_sub_DD {\expandafter\xint_minus_thenstop\romannumeral0\XINT_sub_D }% \def\XINT_sub_Fdec #1#2#3#4#5#6% {% \xint_gob_til_W #3\xint_sub_Fdec_finish\W @@ -12776,7 +13615,7 @@ first place. }% \def\xint_sub_Fdec_finish\W\XINT_sub_Fdec_onestep #1#2% {% - \expandafter\xint_minus_afterstop\romannumeral0\XINT_cuz + \expandafter\xint_minus_thenstop\romannumeral0\XINT_cuz }% \def\XINT_sub_Finc #1#2#3#4#5#6% {% @@ -12794,7 +13633,8 @@ first place. \def\xint_sub_Finc_finish\W\XINT_sub_Finc_onestep #1#2#3% {% \xint_UDzerofork - #1{\expandafter\xint_minus_afterstop\xint_cleanupzeros_nospace}% + #1{\expandafter\expandafter\expandafter + \xint_minus_thenstop\xint_cleanupzeros_nostop}% 0{ -1}% \krof #3% @@ -12833,7 +13673,7 @@ first place. }% \def\xint_sub_KK_finish\W\XINT_sub_KK_onestep #1#2#3% {% - \expandafter\xint_minus_afterstop + \expandafter\xint_minus_thenstop \romannumeral0\XINT_cuz_loop #3\W\W\W\W\W\W\W\Z }% % \end{macrocode} @@ -12991,20 +13831,6 @@ first place. \let\xintNot\xintIsZero \let\xintIsFalse\xintIsZero % \end{macrocode} -% \subsection{\csh{xintIsTrue:csv}} -% \lverb|1.09c. For use by \xinttheboolexpr.| -% \begin{macrocode} -\def\xintIsTrue:csv #1{\expandafter\XINT_istrue:_a\romannumeral-`0#1,,^}% -\def\XINT_istrue:_a {\XINT_istrue:_b {}}% -\def\XINT_istrue:_b #1#2,% - {\expandafter\XINT_istrue:_c\romannumeral-`0#2,{#1}}% -\def\XINT_istrue:_c #1{\if #1,\expandafter\XINT_:_f - \else\expandafter\XINT_istrue:_d\fi #1}% -\def\XINT_istrue:_d #1,% - {\expandafter\XINT_istrue:_e\romannumeral0\xintisnotzero {#1},}% -\def\XINT_istrue:_e #1,#2{\XINT_istrue:_b {#2,#1}}% -\def\XINT_:_f ,#1#2^{\xint_gobble_i #1}% -% \end{macrocode} % \subsection{\csh{xintAND}, \csh{xintOR}, \csh{xintXOR}} % \lverb|1.09a. Embarrasing bugs in \xintAND and \xintOR which inserted a space % token corrected in 1.09i. \xintxor restyled with \if (faster) in 1.09i| @@ -13034,17 +13860,6 @@ first place. \def\XINT_andof_no #1\relax { 0}% \def\XINT_andof_e #1\Z { 1}% % \end{macrocode} -% \subsection{\csh{xintANDof:csv}} -% \lverb|1.09a. For use by \xintexpr.| -% \begin{macrocode} -\def\xintANDof:csv #1{\expandafter\XINT_andof:_a\romannumeral-`0#1,,^}% -\def\XINT_andof:_a {\expandafter\XINT_andof:_b\romannumeral-`0}% -\def\XINT_andof:_b #1{\if #1,\expandafter\XINT_andof:_e - \else\expandafter\XINT_andof:_c\fi #1}% -\def\XINT_andof:_c #1,{\xintifTrueAelseB {#1}{\XINT_andof:_a}{\XINT_andof:_no}}% -\def\XINT_andof:_no #1^{0}% -\def\XINT_andof:_e #1^{1}% -% \end{macrocode} % \subsection{\csh{xintORof}} % \lverb|New with 1.09a. Works also with an empty list.| % \begin{macrocode} @@ -13058,17 +13873,6 @@ first place. \def\XINT_orof_yes #1\relax { 1}% \def\XINT_orof_e #1\Z { 0}% % \end{macrocode} -% \subsection{\csh{xintORof:csv}} -% \lverb|1.09a. For use by \xintexpr.| -% \begin{macrocode} -\def\xintORof:csv #1{\expandafter\XINT_orof:_a\romannumeral-`0#1,,^}% -\def\XINT_orof:_a {\expandafter\XINT_orof:_b\romannumeral-`0}% -\def\XINT_orof:_b #1{\if #1,\expandafter\XINT_orof:_e - \else\expandafter\XINT_orof:_c\fi #1}% -\def\XINT_orof:_c #1,{\xintifTrueAelseB{#1}{\XINT_orof:_yes}{\XINT_orof:_a}}% -\def\XINT_orof:_yes #1^{1}% -\def\XINT_orof:_e #1^{0}% -% \end{macrocode} % \subsection{\csh{xintXORof}} % \lverb|New with 1.09a. Works with an empty list, too. \XINT_xorof_c more % efficient in 1.09i| @@ -13086,21 +13890,6 @@ first place. }% \def\XINT_xorof_e #1\Z #2{ #2}% % \end{macrocode} -% \subsection{\csh{xintXORof:csv}} -% \lverb|1.09a. For use by \xintexpr.| -% \begin{macrocode} -\def\xintXORof:csv #1{\expandafter\XINT_xorof:_a\expandafter - 0\romannumeral-`0#1,,^}% -\def\XINT_xorof:_a #1#2,{\expandafter\XINT_xorof:_b\romannumeral-`0#2,#1}% -\def\XINT_xorof:_b #1{\if #1,\expandafter\XINT_:_e - \else\expandafter\XINT_xorof:_c\fi #1}% -\def\XINT_xorof:_c #1,#2% - {\xintifTrueAelseB {#1}{\if #20\xint_afterfi{\XINT_xorof:_a 1}% - \else\xint_afterfi{\XINT_xorof:_a 0}\fi}% - {\XINT_xorof:_a #2}% - }% -\def\XINT_:_e ,#1#2^{#1}% allows empty list -% \end{macrocode} % \subsection{\csh{xintGeq}} % \lverb|& % Release 1.09a has \xintnum added into \xintGeq. Unused and useless \xintiGeq @@ -13242,17 +14031,17 @@ first place. % \lverb|& % A = #4#2, B = #3#1| % \begin{macrocode} -\def\XINT_max_zerozero #1#2#3#4{\xint_firstoftwo_afterstop }% -\def\XINT_max_zeroplus #1#2#3#4{\xint_firstoftwo_afterstop }% -\def\XINT_max_pluszero #1#2#3#4{\xint_secondoftwo_afterstop }% -\def\XINT_max_minusplus #1#2#3#4{\xint_firstoftwo_afterstop }% -\def\XINT_max_plusminus #1#2#3#4{\xint_secondoftwo_afterstop }% +\def\XINT_max_zerozero #1#2#3#4{\xint_firstoftwo_thenstop }% +\def\XINT_max_zeroplus #1#2#3#4{\xint_firstoftwo_thenstop }% +\def\XINT_max_pluszero #1#2#3#4{\xint_secondoftwo_thenstop }% +\def\XINT_max_minusplus #1#2#3#4{\xint_firstoftwo_thenstop }% +\def\XINT_max_plusminus #1#2#3#4{\xint_secondoftwo_thenstop }% \def\XINT_max_plusplus #1#2#3#4% {% \ifodd\XINT_Geq {#4#2}{#3#1} - \expandafter\xint_firstoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop \else - \expandafter\xint_secondoftwo_afterstop + \expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} @@ -13261,9 +14050,9 @@ first place. \def\XINT_max_minusminus #1#2#3#4% {% \ifodd\XINT_Geq {#1}{#2} - \expandafter\xint_firstoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop \else - \expandafter\xint_secondoftwo_afterstop + \expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} @@ -13282,16 +14071,6 @@ first place. \def\XINT_imaxof_e #1\Z #2\Z { #2}% \let\xintMaxof\xintiMaxof \let\xintmaxof\xintimaxof % \end{macrocode} -% \subsection{\csh{xintiMaxof:csv}} -% \lverb|1.09i. For use by \xintiiexpr.| -% \begin{macrocode} -\def\xintiMaxof:csv #1{\expandafter\XINT_imaxof:_b\romannumeral-`0#1,,}% -\def\XINT_imaxof:_b #1,#2,{\expandafter\XINT_imaxof:_c\romannumeral-`0#2,{#1},}% -\def\XINT_imaxof:_c #1{\if #1,\expandafter\XINT_of:_e - \else\expandafter\XINT_imaxof:_d\fi #1}% -\def\XINT_imaxof:_d #1,{\expandafter\XINT_imaxof:_b\romannumeral0\xintimax {#1}}% -\def\XINT_of:_e ,#1,{#1}% -% \end{macrocode} % \subsection{\csh{xintMin}} % \lverb|\xintnum added New with 1.09a.| % \begin{macrocode} @@ -13331,17 +14110,17 @@ first place. % \lverb|& % A = #4#2, B = #3#1| % \begin{macrocode} -\def\XINT_min_zerozero #1#2#3#4{\xint_firstoftwo_afterstop }% -\def\XINT_min_zeroplus #1#2#3#4{\xint_secondoftwo_afterstop }% -\def\XINT_min_pluszero #1#2#3#4{\xint_firstoftwo_afterstop }% -\def\XINT_min_minusplus #1#2#3#4{\xint_secondoftwo_afterstop }% -\def\XINT_min_plusminus #1#2#3#4{\xint_firstoftwo_afterstop }% +\def\XINT_min_zerozero #1#2#3#4{\xint_firstoftwo_thenstop }% +\def\XINT_min_zeroplus #1#2#3#4{\xint_secondoftwo_thenstop }% +\def\XINT_min_pluszero #1#2#3#4{\xint_firstoftwo_thenstop }% +\def\XINT_min_minusplus #1#2#3#4{\xint_secondoftwo_thenstop }% +\def\XINT_min_plusminus #1#2#3#4{\xint_firstoftwo_thenstop }% \def\XINT_min_plusplus #1#2#3#4% {% \ifodd\XINT_Geq {#4#2}{#3#1} - \expandafter\xint_secondoftwo_afterstop + \expandafter\xint_secondoftwo_thenstop \else - \expandafter\xint_firstoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop \fi }% % \end{macrocode} @@ -13350,9 +14129,9 @@ first place. \def\XINT_min_minusminus #1#2#3#4% {% \ifodd\XINT_Geq {#1}{#2} - \expandafter\xint_secondoftwo_afterstop + \expandafter\xint_secondoftwo_thenstop \else - \expandafter\xint_firstoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop \fi }% % \end{macrocode} @@ -13371,16 +14150,7 @@ first place. \def\XINT_iminof_e #1\Z #2\Z { #2}% \let\xintMinof\xintiMinof \let\xintminof\xintiminof % \end{macrocode} -% \subsection{\csh{xintiMinof:csv}} -% \lverb|1.09i. For use by \xintiiexpr.| -% \begin{macrocode} -\def\xintiMinof:csv #1{\expandafter\XINT_iminof:_b\romannumeral-`0#1,,}% -\def\XINT_iminof:_b #1,#2,{\expandafter\XINT_iminof:_c\romannumeral-`0#2,{#1},}% -\def\XINT_iminof:_c #1{\if #1,\expandafter\XINT_of:_e - \else\expandafter\XINT_iminof:_d\fi #1}% -\def\XINT_iminof:_d #1,{\expandafter\XINT_iminof:_b\romannumeral0\xintimin {#1}}% -% \end{macrocode} -% \subsection{\csh{xintSum}, \csh{xintSumExpr}} +% \subsection{\csh{xintSum}} % \lverb|& % \xintSum {{a}{b}...{z}}$\ % \xintSumExpr {a}{b}...{z}\relax$\ @@ -13436,17 +14206,6 @@ first place. }% \def\XINT_sum_NN #1#2{\XINT_sum_loop {#2}{#1}}% % \end{macrocode} -% \subsection{\csh{xintiiSum:csv}} -% \lverb|1.09i. For use by \xintiiexpr.| -% \begin{macrocode} -\def\xintiiSum:csv #1{\expandafter\XINT_iisum:_a\romannumeral-`0#1,,^}% -\def\XINT_iisum:_a {\XINT_iisum:_b {0}}% -\def\XINT_iisum:_b #1#2,{\expandafter\XINT_iisum:_c\romannumeral-`0#2,{#1}}% -\def\XINT_iisum:_c #1{\if #1,\expandafter\XINT_:_e - \else\expandafter\XINT_iisum:_d\fi #1}% -\def\XINT_iisum:_d #1,#2{\expandafter\XINT_iisum:_b\expandafter - {\romannumeral0\xintiiadd {#2}{#1}}}% -% \end{macrocode} % \subsection{\csh{xintMul}} % \lverb|1.09a adds \xintnum| % \begin{macrocode} @@ -13507,14 +14266,14 @@ first place. }% \def\XINT_mul_minusplus #1#2#3% {% - \expandafter\xint_minus_afterstop\romannumeral0\expandafter + \expandafter\xint_minus_thenstop\romannumeral0\expandafter \XINT_mul_choice_a \expandafter{\romannumeral0\xintlength {#1#3}}% {\romannumeral0\xintlength {#2}}{#2}{#1#3}% }% \def\XINT_mul_plusminus #1#2#3% {% - \expandafter\xint_minus_afterstop\romannumeral0\expandafter + \expandafter\xint_minus_thenstop\romannumeral0\expandafter \XINT_mul_choice_a \expandafter{\romannumeral0\xintlength {#3}}% {\romannumeral0\xintlength {#1#2}}{#1#2}{#3}% @@ -13931,7 +14690,7 @@ first place. \Z\Z\Z\Z #1\W\W\W\W }% % \end{macrocode} -% \subsection{\csh{xintPrd}, \csh{xintPrdExpr}} +% \subsection{\csh{xintPrd}} % \lverb|& % \xintPrd {{a}...{z}}$\ % \xintPrdExpr {a}...{z}\relax$\ @@ -13968,31 +14727,13 @@ first place. \let\xintprdexpr\xintiiprdexpr \def\XINT_prdexpr {\XINT_prod_loop_a 1\Z }% \def\XINT_prod_loop_a #1\Z #2% -{% - \expandafter\XINT_prod_loop_b \romannumeral-`0#2\Z #1\Z \Z -}% + {\expandafter\XINT_prod_loop_b \romannumeral-`0#2\Z #1\Z \Z}% \def\XINT_prod_loop_b #1% -{% - \xint_gob_til_relax #1\XINT_prod_finished\relax - \XINT_prod_loop_c #1% -}% + {\xint_gob_til_relax #1\XINT_prod_finished\relax\XINT_prod_loop_c #1}% \def\XINT_prod_loop_c -{% - \expandafter\XINT_prod_loop_a\romannumeral0\XINT_mul_fork -}% + {\expandafter\XINT_prod_loop_a\romannumeral0\XINT_mul_fork }% \def\XINT_prod_finished #1\Z #2\Z \Z { #2}% % \end{macrocode} -% \subsection{\csh{xintiiPrd:csv}} -% \lverb|1.09i. For use by \xintiiexpr.| -% \begin{macrocode} -\def\xintiiPrd:csv #1{\expandafter\XINT_iiprd:_a\romannumeral-`0#1,,^}% -\def\XINT_iiprd:_a {\XINT_iiprd:_b {1}}% -\def\XINT_iiprd:_b #1#2,{\expandafter\XINT_iiprd:_c\romannumeral-`0#2,{#1}}% -\def\XINT_iiprd:_c #1{\if #1,\expandafter\XINT_:_e - \else\expandafter\XINT_iiprd:_d\fi #1}% -\def\XINT_iiprd:_d #1,#2{\expandafter\XINT_iiprd:_b\expandafter - {\romannumeral0\xintiimul {#2}{#1}}}% -% \end{macrocode} % \subsection{\csh{xintFac}} % \lverb|& % Modified with 1.02 and again in 1.03 for greater efficiency. I am @@ -14002,7 +14743,11 @@ first place. % With release 1.05, rather than using \xintLength I opt finally for direct use % of \numexpr (which will throw a suitable number too big message), and to raise % the \xintError:$\ FactorialOfTooBigNumber for argument larger than 1000000 -% (rather than 1000000000). With 1.09a, \xintFac uses \xintnum.| +% (rather than 1000000000). With 1.09a, \xintFac uses \xintnum. +% +% 1.09j for no special reason, I lower the maximal number from 999999 to 100000. +% Any how this computation would need more memory than TL2013 standard allows to +% TeX. And I don't even mention time... | % \begin{macrocode} \def\xintiFac {\romannumeral0\xintifac }% \def\xintifac #1% @@ -14012,7 +14757,7 @@ first place. \let\xintFac\xintiFac \let\xintfac\xintifac \def\XINT_fac_fork #1% {% - \ifcase\XINT__Sgn #1\Z + \ifcase\XINT_cntSgn #1\Z \xint_afterfi{\expandafter\space\expandafter 1\xint_gobble_i }% \or \expandafter\XINT_fac_checklength @@ -14024,11 +14769,11 @@ first place. }% \def\XINT_fac_checklength #1% {% - \ifnum #1>999999 + \ifnum #1>100000 \xint_afterfi{\expandafter\xintError:FactorialOfTooBigNumber \expandafter\space\expandafter 1\xint_gobble_i }% \else - \xint_afterfi{\ifnum #1>9999 + \xint_afterfi{\ifnum #1>\xint_c_ixixixix \expandafter\XINT_fac_big_loop \else \expandafter\XINT_fac_loop @@ -14089,17 +14834,29 @@ first place. }% % \end{macrocode} % \subsection{\csh{xintPow}} -% \lverb|& -% 1.02 modified the \XINT_posprod routine, and this meant that the -% original -% version was moved here and renamed to \XINT_pow_posprod, as it was well -% adapted for computing powers. Then I moved in 1.03 the special variants of -% multiplication (hence of addition) which were needed to earlier in this file. -% Modified in 1.06, the exponent is given to a \numexpr rather than twice -% expanded. \xintnum added in 1.09a. However this added some overhead to some -% inner macros of the \xintPow routine of xintfrac.sty... we did the similar -% things correctly for \xintiadd etc, but not here, so 1.09f has now the -% necessary \xintiipow.| +% \lverb|1.02 modified the \XINT_posprod routine, the was renamed +% \XINT_pow_posprod and moved here, as it was well adapted for computing powers. +% Then 1.03 moved the special variants of multiplication (hence of addition) +% which were needed to earlier in this style file. +% +% Modified in 1.06, the exponent is given to a \numexpr rather than twice +% expanded. \xintnum added in 1.09a. +% +% \XINT_pow_posprod: Routine de produit servant pour le calcul des +% puissances. Chaque nouveau terme est plus grand que ce qui a déjà été calculé. +% Par conséquent on a intérêt à le conserver en second dans la routine de +% multiplication, donc le précédent calcul a intérêt à avoir été donné sur 4n, à +% l'envers. Il faut donc modifier la multiplication pour qu'elle fasse cela. Ce +% qui oblige à utiliser une version spéciale de l'addition également. +% +% 1.09j has reorganized the main loop, the described above \XINT_pow_posprod +% routine has been removed, intermediate multiplications are done +% immediately. Also, the maximal accepted exponent is now 100000 (no such +% restriction in \xintFloatPow, which accepts any exponent less than 2^31, and +% in \xintFloatPower which accepts long integers as exponent). +% +% 2^100000=9.990020930143845e30102 and multiplication of two numbers +% with 30000 digits would take hours on my laptop (seconds for 1000 digits).| % \begin{macrocode} \def\xintiiPow {\romannumeral0\xintiipow }% \def\xintiipow #1% @@ -14136,8 +14893,7 @@ first place. \expandafter\XINT_opp\romannumeral0\XINT_pow_Anonneg_ }% % \end{macrocode} -% \lverb|& -% B = #3, faire le xpxp. Modified with 1.06: use of \numexpr.| +% \lverb|B = #3, faire le xpxp. Modified with 1.06: use of \numexpr.| % \begin{macrocode} \def\XINT_pow_Anonneg #1#2#3% {% @@ -14159,12 +14915,11 @@ first place. }% \def\XINT_pow_AisOne #1#2{ 1}% % \end{macrocode} -% \lverb|& -% #1 = B| +% \lverb|#1 = B| % \begin{macrocode} \def\XINT_pow_AisZero #1#2% {% - \ifcase\XINT__Sgn #1\Z + \ifcase\XINT_cntSgn #1\Z \xint_afterfi { 1}% \or \xint_afterfi { 0}% @@ -14174,7 +14929,7 @@ first place. }% \def\XINT_pow_AatleastTwo #1% {% - \ifcase\XINT__Sgn #1\Z + \ifcase\XINT_cntSgn #1\Z \expandafter\XINT_pow_BisZero \or \expandafter\XINT_pow_checkBsize @@ -14183,123 +14938,150 @@ first place. \fi {#1}% }% -\edef\XINT_pow_BisNegative #1#2{\noexpand\xintError:FractionRoundedToZero\space 0}% +\edef\XINT_pow_BisNegative #1#2% + {\noexpand\xintError:FractionRoundedToZero\space 0}% \def\XINT_pow_BisZero #1#2{ 1}% % \end{macrocode} -% \lverb|& -% B = #1 > 0, A = #2 > 1. With 1.05, I replace \xintiLen{#1}>9 by direct -% use -% of \numexpr [to generate an error message if the exponent is too large] -% 1.06: \numexpr was already used above.| +% \lverb|B = #1 > 0, A = #2 > 1. With 1.05, I replace \xintiLen{#1}>9 by +% direct use of \numexpr [to generate an error message if the exponent is too +% large] 1.06: \numexpr was already used above.| % \begin{macrocode} -\def\XINT_pow_checkBsize #1#2% +\def\XINT_pow_checkBsize #1% {% - \ifnum #1>999999999 + \ifnum #1>100000 \expandafter\XINT_pow_BtooBig \else - \expandafter\XINT_pow_loop - \fi - {#1}{#2}\XINT_pow_posprod - \xint_relax - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_relax -}% -\edef\XINT_pow_BtooBig #1\xint_relax #2\xint_relax - {\noexpand\xintError:ExponentTooBig\space 0}% -\def\XINT_pow_loop #1#2% -{% - \ifnum #1 = 1 - \expandafter\XINT_pow_loop_end - \else - \xint_afterfi{\expandafter\XINT_pow_loop_a - \expandafter{\the\numexpr 2*(#1/2)-#1\expandafter }% b mod 2 - \expandafter{\the\numexpr #1-#1/2\expandafter }% [b/2] - \expandafter{\romannumeral0\xintiisqr{#2}}}% + \expandafter\XINT_pow_loopI \fi - {{#2}}% + {#1}% }% -\def\XINT_pow_loop_end {\romannumeral0\XINT_rord_main {}\relax }% -\def\XINT_pow_loop_a #1% +\edef\XINT_pow_BtooBig #1#2{\noexpand\xintError:ExponentTooBig\space 0}% +\def\XINT_pow_loopI #1% {% - \ifnum #1 = 1 - \expandafter\XINT_pow_loop + \ifnum #1=\xint_c_i\XINT_pow_Iend\fi + \ifodd #1 + \expandafter\XINT_pow_loopI_odd \else - \expandafter\XINT_pow_loop_throwaway + \expandafter\XINT_pow_loopI_even \fi + {#1}% }% -\def\XINT_pow_loop_throwaway #1#2#3% +\edef\XINT_pow_Iend\fi #1\fi #2#3{\noexpand\fi\space #3}% +\def\XINT_pow_loopI_even #1#2% {% - \XINT_pow_loop {#1}{#2}% + \expandafter\XINT_pow_loopI\expandafter + {\the\numexpr #1/\xint_c_ii\expandafter}\expandafter + {\romannumeral0\xintiisqr {#2}}% }% -% \end{macrocode} -% \lverb|& -% Routine de produit servant pour le calcul des puissances. Chaque -% nouveau -% terme est plus grand que ce qui a déjà été calculé. Par conséquent on a -% intérêt à le conserver en second dans la routine de multiplication, donc le -% précédent calcul a intérêt à avoir été donné sur 4n, à l'envers. Il faut -% donc modifier la multiplication pour qu'elle fasse cela. Ce qui oblige à -% utiliser une version spéciale de l'addition également.| -% \begin{macrocode} -\def\XINT_pow_posprod #1% +\def\XINT_pow_loopI_odd #1#2% {% - \XINT_pow_pprod_checkifempty #1\Z + \expandafter\XINT_pow_loopI_odda\expandafter + {\romannumeral0\XINT_RQ {}#2\R\R\R\R\R\R\R\R\Z }{#1}{#2}% }% -\def\XINT_pow_pprod_checkifempty #1% +\def\XINT_pow_loopI_odda #1#2#3% {% - \xint_gob_til_relax #1\XINT_pow_pprod_emptyproduct\relax - \XINT_pow_pprod_RQfirst #1% + \expandafter\XINT_pow_loopII\expandafter + {\the\numexpr #2/\xint_c_ii-\xint_c_i\expandafter}\expandafter + {\romannumeral0\xintiisqr {#3}}{#1}% }% -\def\XINT_pow_pprod_emptyproduct #1\Z { 1}% -\def\XINT_pow_pprod_RQfirst #1\Z +\def\XINT_pow_loopII #1% {% - \expandafter\XINT_pow_pprod_getnext\expandafter - {\romannumeral0\XINT_RQ {}#1\R\R\R\R\R\R\R\R\Z}% + \ifnum #1 = \xint_c_i\XINT_pow_IIend\fi + \ifodd #1 + \expandafter\XINT_pow_loopII_odd + \else + \expandafter\XINT_pow_loopII_even + \fi + {#1}% }% -\def\XINT_pow_pprod_getnext #1#2% +\def\XINT_pow_loopII_even #1#2% {% - \XINT_pow_pprod_checkiffinished #2\Z {#1}% + \expandafter\XINT_pow_loopII\expandafter + {\the\numexpr #1/\xint_c_ii\expandafter}\expandafter + {\romannumeral0\xintiisqr {#2}}% }% -\def\XINT_pow_pprod_checkiffinished #1% +\def\XINT_pow_loopII_odd #1#2#3% {% - \xint_gob_til_relax #1\XINT_pow_pprod_end\relax - \XINT_pow_pprod_compute #1% + \expandafter\XINT_pow_loopII_odda\expandafter + {\romannumeral0\XINT_mulr_enter #3\Z\Z\Z\Z #2\W\W\W\W}{#1}{#2}% }% -\def\XINT_pow_pprod_compute #1\Z #2% +\def\XINT_pow_loopII_odda #1#2#3% {% - \expandafter\XINT_pow_pprod_getnext\expandafter - {\romannumeral0\XINT_mulr_enter #2\Z\Z\Z\Z #1\W\W\W\W }% + \expandafter\XINT_pow_loopII\expandafter + {\the\numexpr #2/\xint_c_ii-\xint_c_i\expandafter}\expandafter + {\romannumeral0\xintiisqr {#3}}{#1}% }% -\def\XINT_pow_pprod_end\relax\XINT_pow_pprod_compute #1\Z #2% +\def\XINT_pow_IIend\fi #1\fi #2#3#4% {% - \expandafter\xint_cleanupzeros_andstop - \romannumeral0\xintreverseorder {#2}% + \fi\XINT_mul_enter #4\Z\Z\Z\Z #3\W\W\W\W }% % \end{macrocode} % \subsection{\csh{xintDivision}, \csh{xintQuo}, \csh{xintRem}} -% \lverb|1.09a inserts the use of \xintnum. However this was also used in -% internal macros in places it should not for reasons of efficency, so in 1.09f -% I reinstall the private versions with less overhead. Besides, there was some -% duplicated code in xintfrac.sty which is removed.| +% \lverb|The 1.09a release inserted the use of \xintnum. The \xintiiDivision +% etc... are the ones which do only \romannumeral-`0. +% +% January 5, 2014: Naturally, addition, subtraction, multiplication and division +% are the first things I did and since then I had left the division +% untouched. So in preparation of release 1.09j, I started revisiting the +% division, I did various minor improvements obtaining roughly +% 10$% efficiency gain. Then I decided I +% should deliberately impact the input save stack, with the hope to gain more +% speed from removing tokens and leaving them upstream. +% +% For this however I had to modify the underlying mathematical algorithm. The +% initial one is a bit unusual I guess, and, I trust, rather efficient, but it +% does not produce the quotient digits (in base 10000) one by one; at any given +% time it is possible that some correction will be made, which means it is not +% an appropriate algorithm for a TeX implementation which will abandon the +% quotient upstream. Thus I now have with 1.09j a new underlying mathematical +% algorithm, presumably much more standard. It is a bit complicated to implement +% expandably these things, but in the end I had regained the already mentioned +% 10$% efficiency and even more for +% small to medium sized inputs (up to 30$% perhaps). And in passing I did a +% special routine for divisors < 10000, which is 5 to 10 times faster still. +% +% But, I then tested a variant of my new implementation which again did not +% impact the input save stack and, for sizes of up to 200 digits, it is not much +% worse, indeed it is perhaps actually better than the one abandoning the +% quotient digits upstream (and in the end putting them in the correct order). +% So, finally, I re-incorporated the produced quotient digits within a tail +% recursion. Hence \xintDivision, like all other routines in xint (except +% \xintSeq without optional parameter) still does not impact the input save +% stack. One can have a produced quotient longer than 4x5000=20000 digits, and +% no need to worry about \xintTrunc, \xintRound, \xintFloat, \xintFloatSqrt, +% etc... and all other places using the division. +% +% However outputting to a file (which is basically the only thing one can do, +% multiplying out two 20000 digits numbers already takes hours, for 100000 it +% would be days if not weeks) 100000 digits is slow... the truncation routine +% will add 100000 zeros (circa) and then trim them four by four. Definitely I +% should do a routine XTrunc which will work by blocks of say 64, and +% furthermore, being destined to be used in and \edef or a \write, it could be +% much more efficient as it could simply be based on tail loop, which so far +% nothing in xint does because I want things to expand fully under +% \romannumeral-`0 (and don't imagine inserting chains of thousands of +% \expandafter's...) in order to be nestable. Inside \xintexpr such style of +% tail recursion leaving downstream things should definitely be implemented for +% the routines for which it is possible as things get expanded inside +% \csname..\endcsname. I don't do yet anything like this for 1.09j. | % \begin{macrocode} \def\xintiiQuo {\romannumeral0\xintiiquo }% \def\xintiiRem {\romannumeral0\xintiirem }% -\def\xintiiquo {\expandafter\xint_firstoftwo_afterstop - \romannumeral0\xintiidivision }% -\def\xintiirem {\expandafter\xint_secondoftwo_afterstop - \romannumeral0\xintiidivision }% +\def\xintiiquo {\expandafter\xint_firstoftwo_thenstop + \romannumeral0\xintiidivision }% +\def\xintiirem {\expandafter\xint_secondoftwo_thenstop + \romannumeral0\xintiidivision }% \def\xintQuo {\romannumeral0\xintquo }% \def\xintRem {\romannumeral0\xintrem }% -\def\xintquo {\expandafter\xint_firstoftwo_afterstop - \romannumeral0\xintdivision }% -\def\xintrem {\expandafter\xint_secondoftwo_afterstop - \romannumeral0\xintdivision }% +\def\xintquo {\expandafter\xint_firstoftwo_thenstop + \romannumeral0\xintdivision }% +\def\xintrem {\expandafter\xint_secondoftwo_thenstop + \romannumeral0\xintdivision }% % \end{macrocode} -% \lverb|& -% #1 = A, #2 = B. On calcule le quotient de A par B.$\ -% 1.03 adds the detection of 1 for B.| +% \lverb|#1 = A, #2 = B. On calcule le quotient et le reste dans la division +% euclidienne de A par B.| % \begin{macrocode} +\def\xintiiDivision {\romannumeral0\xintiidivision }% \def\xintiidivision #1% {% \expandafter\xint_iidivision\expandafter {\romannumeral-`0#1}% @@ -14317,11 +15099,9 @@ first place. {% \expandafter\XINT_div_fork \romannumeral0\xintnum{#2}\Z #1\Z }% -\def\XINT_Division #1#2{\romannumeral0\XINT_div_fork #2\Z #1\Z }% % \end{macrocode} -% \lverb|& -% #1#2 = 2e input = diviseur = B. -% #3#4 = 1er input = divisé = A| +% \lverb|#1#2 = 2e input = diviseur = B. +% #3#4 = 1er input = divisé = A.| % \begin{macrocode} \def\XINT_div_fork #1#2\Z #3#4\Z {% @@ -14347,49 +15127,44 @@ first place. % % Cases with B<0 or especially A<0 are treated sub-optimally in terms of % post-processing, things get reversed which could have been produced directly -% in the wanted order, but A,B>0 is given priority for optimization. | +% in the wanted order, but A,B>0 is given priority for optimization. I should +% revise the next few macros, definitely.| % \begin{macrocode} -\def\XINT_div_plusplus #1#2#3#4% -{% - \XINT_div_prepare {#3#1}{#4#2}% -}% +\def\XINT_div_plusplus #1#2#3#4{\XINT_div_prepare {#3#1}{#4#2}}% % \end{macrocode} -% \lverb|& -% B = #3#1 < 0, A non nul positif ou négatif| +% \lverb|B = #3#1 < 0, A non nul positif ou négatif| % \begin{macrocode} \def\XINT_div_BisNegative #1#2#3#4% {% - \expandafter\XINT_div_BisNegative_post + \expandafter\XINT_div_BisNegative_b \romannumeral0\XINT_div_fork #1\Z #4#2\Z }% -\edef\XINT_div_BisNegative_post #1% +\edef\XINT_div_BisNegative_b #1% {% \noexpand\expandafter\space\noexpand\expandafter {\noexpand\romannumeral0\noexpand\XINT_opp #1}% }% % \end{macrocode} -% \lverb|& -% B = #3#1 > 0, A =-#2< 0| +% \lverb|B = #3#1 > 0, A =-#2< 0| % \begin{macrocode} \def\XINT_div_AisNegative #1#2#3#4% {% - \expandafter\XINT_div_AisNegative_post + \expandafter\XINT_div_AisNegative_b \romannumeral0\XINT_div_prepare {#3#1}{#2}{#3#1}% }% -\def\XINT_div_AisNegative_post #1#2% +\def\XINT_div_AisNegative_b #1#2% {% \if0\XINT_Sgn #2\Z - \expandafter \XINT_div_AisNegative_zerorem + \expandafter \XINT_div_AisNegative_Rzero \else - \expandafter \XINT_div_AisNegative_posrem + \expandafter \XINT_div_AisNegative_Rpositive \fi {#1}{#2}% }% % \end{macrocode} -% \lverb|& -% en #3 on a une copie de B (à l'endroit)| +% \lverb|en #3 on a une copie de B (à l'endroit)| % \begin{macrocode} -\edef\XINT_div_AisNegative_zerorem #1#2#3% +\edef\XINT_div_AisNegative_Rzero #1#2#3% {% \noexpand\expandafter\space\noexpand\expandafter {\noexpand\romannumeral0\noexpand\XINT_opp #1}{0}% @@ -14399,22 +15174,21 @@ first place. % remplace Reste par B - Reste, après avoir remplacé Q par -(Q+1) % de sorte que la formule a = qb + r, 0<= r < |b| est valable! % \begin{macrocode} -\def\XINT_div_AisNegative_posrem #1% +\def\XINT_div_AisNegative_Rpositive #1% {% - \expandafter \XINT_div_AisNegative_posrem_b \expandafter + \expandafter \XINT_div_AisNegative_Rpositive_b \expandafter {\romannumeral0\xintiiopp{\xintInc {#1}}}% }% -\def\XINT_div_AisNegative_posrem_b #1#2#3% +\def\XINT_div_AisNegative_Rpositive_b #1#2#3% {% - \expandafter \xint_exchangetwo_keepbraces_afterstop \expandafter - {\romannumeral0\XINT_sub {#3}{#2}}{#1}% + \expandafter \xint_exchangetwo_keepbraces_thenstop \expandafter + {\romannumeral0\XINT_sub {#3}{#2}}{#1}% }% % \end{macrocode} % \lverb|& -% par la suite A et B sont > 0. +% Pour la suite A et B sont > 0. % #1 = B. Pour le moment à l'endroit. -% Calcul du plus petit K = 4n >= longueur de B$\ -% 1.03 adds the interception of B=1| +% Calcul du plus petit K = 4n >= longueur de B| % \begin{macrocode} \def\XINT_div_prepare #1% {% @@ -14423,476 +15197,583 @@ first place. }% \def\XINT_div_prepareB_aa #1% {% - \ifnum #1=1 - \expandafter\XINT_div_prepareB_ab + \ifnum #1=\xint_c_i + \expandafter\XINT_div_prepareB_onedigit \else \expandafter\XINT_div_prepareB_a \fi {#1}% }% -\def\XINT_div_prepareB_ab #1#2% -{% - \ifnum #2=1 - \expandafter\XINT_div_prepareB_BisOne - \else - \expandafter\XINT_div_prepareB_e - \fi {000}{3}{4}{#2}% -}% -\def\XINT_div_prepareB_BisOne #1#2#3#4#5{ {#5}{0}}% \def\XINT_div_prepareB_a #1% {% \expandafter\XINT_div_prepareB_c\expandafter {\the\numexpr \xint_c_iv*((#1+\xint_c_i)/\xint_c_iv)}{#1}% }% % \end{macrocode} -% \lverb|& -% #1 = K| +% \lverb|B=1 and B=2 treated specially.| +% \begin{macrocode} +\def\XINT_div_prepareB_onedigit #1#2% +{% + \ifcase#2 + \or\expandafter\XINT_div_BisOne + \or\expandafter\XINT_div_BisTwo + \else\expandafter\XINT_div_prepareB_e + \fi {000}{0}{4}{#2}% +}% +\def\XINT_div_BisOne #1#2#3#4#5{ {#5}{0}}% +\def\XINT_div_BisTwo #1#2#3#4#5% +{% + \expandafter\expandafter\expandafter\XINT_div_BisTwo_a + \ifodd\xintiiLDg{#5} \expandafter1\else \expandafter0\fi {#5}% +}% +\edef\XINT_div_BisTwo_a #1#2% +{% + \noexpand\expandafter\space\noexpand\expandafter + {\noexpand\romannumeral0\noexpand\xinthalf {#2}}{#1}% +}% +% \end{macrocode} +% \lverb|#1 = K. 1.09j uses \csname, earlier versions did it with +% \ifcase.| % \begin{macrocode} \def\XINT_div_prepareB_c #1#2% {% - \ifcase \numexpr #1-#2\relax - \expandafter\XINT_div_prepareB_d - \or - \expandafter\XINT_div_prepareB_di - \or - \expandafter\XINT_div_prepareB_dii - \or - \expandafter\XINT_div_prepareB_diii - \fi {#1}% + \csname XINT_div_prepareB_d\romannumeral\numexpr#1-#2\endcsname + {#1}% }% -\def\XINT_div_prepareB_d {\XINT_div_prepareB_e {}{0}}% -\def\XINT_div_prepareB_di {\XINT_div_prepareB_e {0}{1}}% -\def\XINT_div_prepareB_dii {\XINT_div_prepareB_e {00}{2}}% -\def\XINT_div_prepareB_diii {\XINT_div_prepareB_e {000}{3}}% +\def\XINT_div_prepareB_d {\XINT_div_prepareB_e {}{0000}}% +\def\XINT_div_prepareB_di {\XINT_div_prepareB_e {0}{000}}% +\def\XINT_div_prepareB_dii {\XINT_div_prepareB_e {00}{00}}% +\def\XINT_div_prepareB_diii {\XINT_div_prepareB_e {000}{0}}% +\def\XINT_div_cleanR #10000.{{#1}}% % \end{macrocode} -% \lverb|& -% #1 = zéros à rajouter à B, #2=c, #3=K, #4 = B| +% \lverb|#1 = zéros à rajouter à B, #2=c [modifié dans 1.09j, ce sont maintenant +% des zéros explicites en nombre 4 - ancien c, et on utilisera +% \XINT_div_cleanR et non plus \XINT_dsh_checksignx pour nettoyer à la fin +% des zéros en excès dans le Reste; in all comments next, «c» stands now {0} or +% {00} or {000} or {0000} rather than a digit as in earlier versions], #3=K, #4 +% = B| % \begin{macrocode} \def\XINT_div_prepareB_e #1#2#3#4% {% - \XINT_div_prepareB_f #4#1\Z {#3}{#2}{#1}% + \ifnum#3=\xint_c_iv\expandafter\XINT_div_prepareLittleB_f + \else\expandafter\XINT_div_prepareB_f + \fi + #4#1{#3}{#2}{#1}% }% % \end{macrocode} -% \lverb|& -% x = #1#2#3#4 = 4 premiers chiffres de B. #1 est non nul. -% Ensuite on renverse B pour calculs plus rapides par la suite.| +% \lverb|x = #1#2#3#4 = 4 premiers chiffres de B. #1 est non nul. B is reversed. +% With 1.09j or latter x+1 and (x+1)/2 are pre-computed. Si K=4 on ne renverse +% pas B, et donc B=x dans la suite. De plus pour K=4 on ne travaille pas avec +% x+1 et (x+1)/2 mais avec x et x/2.| % \begin{macrocode} -\def\XINT_div_prepareB_f #1#2#3#4#5\Z -{% - \expandafter \XINT_div_prepareB_g \expandafter - {\romannumeral0\xintreverseorder {#1#2#3#4#5}}{#1#2#3#4}% +\def\XINT_div_prepareB_f #1#2#3#4#5#{% + \expandafter\XINT_div_prepareB_g + \the\numexpr #1#2#3#4+\xint_c_i\expandafter + .\the\numexpr (#1#2#3#4+\xint_c_i)/\xint_c_ii\expandafter + .\romannumeral0\xintreverseorder {#1#2#3#4#5}.{#1#2#3#4}% +}% +\def\XINT_div_prepareLittleB_f #1#{% + \expandafter\XINT_div_prepareB_g \the\numexpr #1/\xint_c_ii.{}.{}.{#1}% }% % \end{macrocode} % \lverb|& -% #3= K, #4 = c, #5= {} ou {0} ou {00} ou {000}, #6 = A initial -% #1 = B préparé et renversé, #2 = x = quatre premiers chiffres -% On multiplie aussi A par 10^c.$\ -% B, x, K, c, {} ou {0} ou {00} ou {000}, A initial| +% #1 = x' = x+1= 1+quatre premiers chiffres de B, #2 = y = (x+1)/2 précalculé +% #3 = B préparé et maintenant renversé, #4=x, +% #5 = K, #6 = «c», #7= {} ou {0} ou {00} ou {000}, #8 = A initial +% On multiplie aussi A par 10^c. -> AK{x'yx}B«c». Par contre dans le +% cas little on a #1=y=(x/2), #2={}, #3={}, #4=x, donc cela donne +% ->AK{y{}x}{}«c», il n'y a pas de B.| % \begin{macrocode} -\def\XINT_div_prepareB_g #1#2#3#4#5#6% +\def\XINT_div_prepareB_g #1.#2.#3.#4#5#6#7#8% {% - \XINT_div_prepareA_a {#6#5}{#2}{#3}{#1}{#4}% + \XINT_div_prepareA_a {#8#7}{#5}{{#1}{#2}{#4}}{#3}{#6}% }% % \end{macrocode} -% \lverb|& -% A, x, K, B, c, | +% \lverb|A, K, {x'yx}, B«c» | % \begin{macrocode} \def\XINT_div_prepareA_a #1% {% - \expandafter \XINT_div_prepareA_b \expandafter - {\romannumeral0\xintlength {#1}}{#1}% A >0 ici + \expandafter\XINT_div_prepareA_b\expandafter + {\romannumeral0\xintlength {#1}}{#1}% }% % \end{macrocode} -% \lverb|& -% L0, A, x, K, B, ...| +% \lverb|L0, A, K, {x'yx}, B«c»| % \begin{macrocode} \def\XINT_div_prepareA_b #1% {% - \expandafter\XINT_div_prepareA_c\expandafter{\the\numexpr 4*((#1+1)/4)}{#1}% + \expandafter\XINT_div_prepareA_c\expandafter + {\the\numexpr \xint_c_iv*((#1+\xint_c_i)/\xint_c_iv)}{#1}% }% % \end{macrocode} -% \lverb|& -% L, L0, A, x, K, B,...| +% \lverb|L, L0, A, K, {x'yx}, B, «c»| % \begin{macrocode} \def\XINT_div_prepareA_c #1#2% {% - \ifcase \numexpr #1-#2\relax - \expandafter\XINT_div_prepareA_d - \or - \expandafter\XINT_div_prepareA_di - \or - \expandafter\XINT_div_prepareA_dii - \or - \expandafter\XINT_div_prepareA_diii - \fi {#1}% + \csname XINT_div_prepareA_d\romannumeral\numexpr #1-#2\endcsname + {#1}% }% \def\XINT_div_prepareA_d {\XINT_div_prepareA_e {}}% \def\XINT_div_prepareA_di {\XINT_div_prepareA_e {0}}% \def\XINT_div_prepareA_dii {\XINT_div_prepareA_e {00}}% \def\XINT_div_prepareA_diii {\XINT_div_prepareA_e {000}}% % \end{macrocode} -% \lverb|& -% #1#3 = A préparé, #2 = longueur de ce A préparé, | +% \lverb|#1#3 = A préparé, #2 = longueur de ce A préparé, #4=K, #5={x'yx}-> +% LKAx'yxB«c»| % \begin{macrocode} -\def\XINT_div_prepareA_e #1#2#3% +\def\XINT_div_prepareA_e #1#2#3#4#5% {% - \XINT_div_startswitch {#1#3}{#2}% + \XINT_div_start_a {#2}{#4}{#1#3}#5% }% % \end{macrocode} -% \lverb|& -% A, L, x, K, B, c| +% \lverb|L, K, A, x',y,x, B, «c» (avec y{}x{} au lieu de x'yxB dans la +% variante little)| % \begin{macrocode} -\def\XINT_div_startswitch #1#2#3#4% +\def\XINT_div_start_a #1#2% {% - \ifnum #2 > #4 - \expandafter\XINT_div_body_a - \else - \ifnum #2 = #4 - \expandafter\expandafter\expandafter\XINT_div_final_a + \ifnum #2=\xint_c_iv \expandafter\XINT_div_little_b \else - \expandafter\expandafter\expandafter\XINT_div_finished_a - \fi\fi {#1}{#4}{#3}{0000}{#2}% -}% + \ifnum #1 < #2 + \expandafter\expandafter\expandafter\XINT_div_III_aa + \else + \expandafter\expandafter\expandafter\XINT_div_start_b + \fi + \fi + {#1}{#2}% +}% % \end{macrocode} -% \lverb|& -% ---- "Finished": A, K, x, Q, L, B, c| +% \lverb|L, K, A, x',y,x, B, «c».| % \begin{macrocode} -\def\XINT_div_finished_a #1#2#3% +\def\XINT_div_III_aa #1#2#3#4#5#6#7% {% - \expandafter\XINT_div_finished_b\expandafter {\romannumeral0\XINT_cuz {#1}}% + \expandafter\expandafter\expandafter + \XINT_div_III_b\xint_cleanupzeros_nostop #3.{0000}% }% % \end{macrocode} -% \lverb|& -% A, Q, L, B, c -% no leading zeros in A at this stage| +% \lverb|R.Q«c».| % \begin{macrocode} -\def\XINT_div_finished_b #1#2#3#4#5% +\def\XINT_div_III_b #1% {% - \if0\XINT_Sgn #1\Z - \xint_afterfi {\XINT_div_finished_c {0}}% + \if0#1% + \expandafter\XINT_div_III_bRzero \else - \xint_afterfi {\expandafter\XINT_div_finished_c\expandafter - {\romannumeral0\XINT_dsh_checksignx #5\Z {#1}}% - }% + \expandafter\XINT_div_III_bRpos \fi - {#2}% + #1% }% -\edef\XINT_div_finished_c #1#2% +\def\XINT_div_III_bRzero 0.#1#2% {% - \noexpand\expandafter\space\noexpand\expandafter - {\noexpand\romannumeral0\noexpand\XINT_rev_andcuz {#2}}{#1}% + \expandafter\space\expandafter + {\romannumeral0\XINT_cuz_loop #1\W\W\W\W\W\W\W\Z}{0}% +}% +\def\XINT_div_III_bRpos #1.#2#3% +{% + \expandafter\XINT_div_III_c \XINT_div_cleanR #1#3.{#2}% +}% +\def\XINT_div_III_c #1#2% +{% + \expandafter\space\expandafter + {\romannumeral0\XINT_cuz_loop #2\W\W\W\W\W\W\W\Z}{#1}% }% % \end{macrocode} -% \lverb|& -% ---- "Final": A, K, x, Q, L, B, c| +% \lverb|L, K, A, x',y,x, B, «c»->K.A.x{LK{x'y}x}B«c»| +% \begin{macrocode} +\def\XINT_div_start_b #1#2#3#4#5#6% +{% + \XINT_div_start_c {#2}.#3.{#6}{{#1}{#2}{{#4}{#5}}{#6}}% +}% +% \end{macrocode} +% \lverb|Kalpha.A.x{LK{x'y}x}, B, «c», au début #2=alpha est vide| +% \begin{macrocode} +\def\XINT_div_start_c #1#2.#3#4#5#6% +{% + \ifnum #1=\xint_c_iv\XINT_div_start_ca\fi + \expandafter\XINT_div_start_c\expandafter + {\the\numexpr #1-\xint_c_iv}#2#3#4#5#6.% +}% +\def\XINT_div_start_ca\fi\expandafter\XINT_div_start_c\expandafter + #1#2#3#4#5{\fi\XINT_div_start_d {#2#3#4#5}#2#3#4#5}% +% \end{macrocode} +% \lverb|#1=a, #2=alpha (de longueur K, à l'endroit).#3=reste de A.#4=x, +% #5={LK{x'y}x},#6=B,«c» -> a, x, alpha, B, {0000}, L, K, {x'y},x, +% alpha'=reste de A, B{}«c». Pour K=4 on a en fait B=x, faudra revoir après.| +% \begin{macrocode} +\def\XINT_div_start_d #1#2.#3.#4#5#6% +{% + \XINT_div_I_a {#1}{#4}{#2}{#6}{0000}#5{#3}{#6}{}% +}% +% \end{macrocode} +% \lverb|Ceci est le point de retour de la boucle principale. a, x, alpha, B, +% q0, L, K, {x'y}, x, alpha', BQ«c» | % \begin{macrocode} -\def\XINT_div_final_a #1% +\def\XINT_div_I_a #1#2% {% - \XINT_div_final_b #1\Z + \expandafter\XINT_div_I_b\the\numexpr #1/#2.{#1}{#2}% }% -\def\XINT_div_final_b #1#2#3#4#5\Z +\def\XINT_div_I_b #1% {% - \xint_gob_til_zeros_iv #1#2#3#4\xint_div_final_c0000% - \XINT_div_final_c {#1#2#3#4}{#1#2#3#4#5}% + \xint_gob_til_zero #1\XINT_div_I_czero 0\XINT_div_I_c #1% }% -\def\xint_div_final_c0000\XINT_div_final_c #1{\XINT_div_finished_a }% % \end{macrocode} -% \lverb|& -% a, A, K, x, Q, L, B ,c -% 1.01: code ré-écrit pour optimisations diverses. -% 1.04: again, code rewritten for tiny speed increase (hopefully).| +% \lverb|On intercepte quotient nul: #1=a, x, alpha, B, #5=q0, L, K, {x'y}, x, +% alpha', BQ«c» -> q{alpha} L, K, {x'y}, x, alpha', BQ«c»| % \begin{macrocode} -\def\XINT_div_final_c #1#2#3#4% +\def\XINT_div_I_czero 0% + \XINT_div_I_c 0.#1#2#3#4#5{\XINT_div_I_g {#5}{#3}}% +\def\XINT_div_I_c #1.#2#3% {% - \expandafter \XINT_div_final_da \expandafter - {\the\numexpr #1-(#1/#4)*#4\expandafter }\expandafter - {\the\numexpr #1/#4\expandafter }\expandafter - {\romannumeral0\xint_cleanupzeros_andstop #2}% + \expandafter\XINT_div_I_da\the\numexpr #2-#1*#3.#1.% }% % \end{macrocode} -% \lverb|& -% r, q, A sans leading zéros, Q, L, B à l'envers sur 4n, c| +% \lverb|r.q.alpha, B, q0, L, K, {x'y}, x, alpha', BQ«c»| % \begin{macrocode} -\def\XINT_div_final_da #1% +\def\XINT_div_I_da #1.% {% \ifnum #1>\xint_c_ix - \expandafter\XINT_div_final_dP + \expandafter\XINT_div_I_dP \else - \xint_afterfi - {\ifnum #1<\xint_c_ - \expandafter\XINT_div_final_dN - \else - \expandafter\XINT_div_final_db - \fi }% + \ifnum #1<\xint_c_ + \expandafter\expandafter\expandafter\XINT_div_I_dN + \else + \expandafter\expandafter\expandafter\XINT_div_I_db + \fi \fi }% -\def\XINT_div_final_dN #1% -{% - \expandafter\XINT_div_final_dP\the\numexpr #1-\xint_c_i\relax -}% -\def\XINT_div_final_dP #1#2#3#4#5% q,A,Q,L,B (puis c) +\def\XINT_div_I_dN #1.% {% - \expandafter \XINT_div_final_f \expandafter - {\romannumeral0\xintiisub {#2}% - {\romannumeral0\XINT_mul_M {#1}#5\Z\Z\Z\Z }}% - {\romannumeral0\XINT_add_A 0{}#1000\W\X\Y\Z #3\W\X\Y\Z }% + \expandafter\XINT_div_I_dP\the\numexpr #1-\xint_c_i.% }% -\def\XINT_div_final_db #1#2#3#4#5% q,A,Q,L,B (puis c) +\def\XINT_div_I_db #1.#2#3% #1=q=un chiffre, #2=alpha, #3=B {% - \expandafter\XINT_div_final_dc\expandafter - {\romannumeral0\xintiisub {#2}% - {\romannumeral0\XINT_mul_M {#1}#5\Z\Z\Z\Z }}% - {#1}{#2}{#3}{#4}{#5}% + \expandafter\XINT_div_I_dc\expandafter + {\romannumeral0\expandafter\XINT_div_sub_xpxp\expandafter + {\romannumeral0\xintreverseorder{#2}}% + {\romannumeral0\XINT_mul_Mr {#1}#3\Z\Z\Z\Z }}% + #1{#2}{#3}% }% -\def\XINT_div_final_dc #1#2% 1.09i re-styles the conditional here +\def\XINT_div_I_dc #1#2% {% - \ifnum\XINT__Sgn #1\Z<\xint_c_ + \if-#1% s'arranger pour que si négatif on ait renvoyé alpha=-. \expandafter\xint_firstoftwo - \else\expandafter\xint_secondoftwo - \fi - {\expandafter\XINT_div_final_dP\the\numexpr #2-\xint_c_i\relax}% - {\XINT_div_final_e {#1}#2}% + \else\expandafter\xint_secondoftwo\fi + {\expandafter\XINT_div_I_dP\the\numexpr #2-\xint_c_i.}% + {\XINT_div_I_e {#1}#2}% }% -\def\XINT_div_final_e #1#2#3#4#5#6% A final, q, trash, Q, L, B +% \end{macrocode} +% \lverb|alpha,q,ancien alpha,B, q0->1nouveauq.alpha, L, K, {x'y},x, alpha', +% BQ«c»| +% \begin{macrocode} +\def\XINT_div_I_e #1#2#3#4#5% {% - \XINT_div_final_f {#1}% - {\romannumeral0\XINT_add_A 0{}#2000\W\X\Y\Z #4\W\X\Y\Z }% + \expandafter\XINT_div_I_f \the\numexpr \xint_c_x^iv+#2+#5{#1}% }% -\def\XINT_div_final_f #1#2#3% R,Q \`a d\'evelopper,c. re-styled in 1.09i +% \end{macrocode} +% \lverb|q.alpha, B, q0, L, K, {x'y},x, alpha'BQ«c» (intercepter q=0?) +% -> 1nouveauq.nouvel alpha, L, K, {x'y}, x, alpha',BQ«c»| +% \begin{macrocode} +\def\XINT_div_I_dP #1.#2#3#4% {% - \if0\XINT_Sgn #1\Z - \expandafter\xint_firstoftwo - \else\expandafter\xint_secondoftwo - \fi - {\XINT_div_final_end {0}}% - {\expandafter\XINT_div_final_end\expandafter - {\romannumeral0\XINT_dsh_checksignx #3\Z {#1}}% - }% - {#2}% + \expandafter \XINT_div_I_f \the\numexpr \xint_c_x^iv+#1+#4\expandafter + {\romannumeral0\expandafter\XINT_div_sub_xpxp\expandafter + {\romannumeral0\xintreverseorder{#2}}% + {\romannumeral0\XINT_mul_Mr {#1}#3\Z\Z\Z\Z }}% }% -\edef\XINT_div_final_end #1#2% +% \end{macrocode} +% \lverb|1#1#2#3#4=nouveau q, nouvel alpha, L, K, {x'y},x,alpha', BQ«c»| +% \begin{macrocode} +\def\XINT_div_I_f 1#1#2#3#4{\XINT_div_I_g {#1#2#3#4}}% +% \end{macrocode} +% \lverb|#1=q,#2=nouvel alpha,#3=L, #4=K, #5={x'y}, #6=x, #7= alpha',#8=B, +% #9=Q«c» -> {x'y}alpha.alpha'.{{x'y}xKL}B{Qq}«c»| +% \begin{macrocode} +\def\XINT_div_I_g #1#2#3#4#5#6#7#8#9% {% - \noexpand\expandafter\space\noexpand\expandafter {#2}{#1}% + \ifnum#3=#4 + \expandafter\XINT_div_III_ab + \else + \expandafter\XINT_div_I_h + \fi + {#5}#2.#7.{{#5}{#6}{#4}{#3}}{#8}{#9#1}% }% % \end{macrocode} -% \lverb|& -% Boucle Principale (on reviendra en div_body_b pas div_body_a)$\ -% A, K, x, Q, L, B, c| +% \lverb|{x'y}alpha.alpha'.{{x'y}xKL}B{Qq}«c» -> R sans leading zeros.{Qq}«c»| % \begin{macrocode} -\def\XINT_div_body_a #1% +\def\XINT_div_III_ab #1#2.#3.#4#5% {% - \XINT_div_body_b #1\Z {#1}% + \expandafter\XINT_div_III_b + \romannumeral0\XINT_cuz_loop #2#3\W\W\W\W\W\W\W\Z.% }% -\def\XINT_div_body_b #1#2#3#4#5#6#7#8#9\Z +% \end{macrocode} +% \lverb|#1={x'y}alpha.#2#3#4#5#6=reste de A. +% #7={{x'y},x,K,L},#8=B,nouveauQ«c» devient {x'y},alpha sur K+4 chiffres.B, +% {{x'y},x,K,L}, #6= nouvel alpha',B,nouveauQ«c»| +% \begin{macrocode} +\def\XINT_div_I_h #1.#2#3#4#5#6.#7#8% {% - \XINT_div_body_c {#1#2#3#4#5#6#7#8}% + \XINT_div_II_b #1#2#3#4#5.{#8}{#7}{#6}{#8}% }% % \end{macrocode} -% \lverb|& -% a, A, K, x, Q, L, B, c| +% \lverb|{x'y}alpha.B, {{x'y},x,K,L}, nouveau alpha',B, Q«c» On +% intercepte la situation avec alpha débutant par 0000 qui est la seule qui +% pourrait donner un q1 nul. Donc q1 est non nul et la soustraction spéciale +% recevra un q1*B de longueur K ou K+4 et jamais 0000. Ensuite un q2 éventuel +% s'il est calculé est nécessairement non nul lui aussi. Comme dans la phase I +% on a aussi intercepté un q nul, la soustraction spéciale ne reçoit donc jamais +% un qB nul. Note: j'ai testé plusieurs fois que ma technique de gob_til_zeros +% est plus rapide que d'utiliser un \ifnum | % \begin{macrocode} -\def\XINT_div_body_c #1#2#3% +\def\XINT_div_II_b #1#2#3#4#5#6#7#8#9% {% - \XINT_div_body_d {#3}{}#2\Z {#1}{#3}% + \xint_gob_til_zeros_iv #2#3#4#5\XINT_div_II_skipc 0000% + \XINT_div_II_c #1{#2#3#4#5}{#6#7#8#9}% }% -\def\XINT_div_body_d #1#2#3#4#5#6% +% \end{macrocode} +% \lverb|x'y{0000}{4chiffres}reste de alpha.#6=B,#7={{x'y},x,K,L}, alpha',B, +% Q«c» -> {x'y}x,K,L (à diminuer de 4), {alpha sur +% K}B{q1=0000}{alpha'}B,Q«c»| +% \begin{macrocode} +\def\XINT_div_II_skipc 0000\XINT_div_II_c #1#2#3#4#5.#6#7% {% - \ifnum #1 >\xint_c_ - \expandafter\XINT_div_body_d - \expandafter{\the\numexpr #1-\xint_c_iv\expandafter }% - \else - \expandafter\XINT_div_body_e - \fi - {#6#5#4#3#2}% -}% -\def\XINT_div_body_e #1#2\Z #3% + \XINT_div_II_k #7{#4#5}{#6}{0000}% +}% +% \end{macrocode} +% \lverb|x'ya->1qx'yalpha.B, {{x'y},x,K,L}, nouveau alpha',B, Q«c»| +% \begin{macrocode} +\def\XINT_div_II_c #1#2#3#4% {% - \XINT_div_body_f {#3}{#1}{#2}% + \expandafter\XINT_div_II_d\the\numexpr (#3#4+#2)/#1+\xint_c_ixixixix\relax + {#1}{#2}#3#4% }% % \end{macrocode} -% \lverb|& -% a, alpha (à l'envers), alpha' (à l'endroit), K, x, Q, L, B (à l'envers), c| +% \lverb|1 suivi de q1 sur quatre chiffres, #5=x', #6=y, #7=alpha.#8=B, +% {{x'y},x,K,L}, alpha', B, Q«c» --> nouvel alpha.x',y,B,q1,{{x'y},x,K,L}, +% alpha', B, Q«c» | % \begin{macrocode} -\def\XINT_div_body_f #1#2#3#4#5#6#7#8% +\def\XINT_div_II_d 1#1#2#3#4#5#6#7.#8% {% - \expandafter\XINT_div_body_gg - \the\numexpr (#1+(#5+\xint_c_i)/\xint_c_ii)/(#5+\xint_c_i)+99999\relax - {#8}{#2}{#8}{#4}{#5}{#3}{#6}{#7}{#8}% + \expandafter\XINT_div_II_e + \romannumeral0\expandafter\XINT_div_sub_xpxp\expandafter + {\romannumeral0\xintreverseorder{#7}}% + {\romannumeral0\XINT_mul_Mr {#1#2#3#4}#8\Z\Z\Z\Z }.% + {#5}{#6}{#8}{#1#2#3#4}% }% % \end{macrocode} -% \lverb|& -% q1 sur six chiffres (il en a 5 au max), B, alpha, B, K, x, alpha', Q, L, B, c| +% \lverb|alpha.x',y,B,q1, {{x'y},x,K,L}, alpha', B, Q«c»| % \begin{macrocode} -\def\XINT_div_body_gg #1#2#3#4#5#6% +\def\XINT_div_II_e #1#2#3#4% {% - \xint_UDzerofork - #2\XINT_div_body_gk - 0{\XINT_div_body_ggk #2}% - \krof - {#3#4#5#6}% + \xint_gob_til_zeros_iv #1#2#3#4\XINT_div_II_skipf 0000% + \XINT_div_II_f #1#2#3#4% }% -\def\XINT_div_body_gk #1#2#3% +% \end{macrocode} +% \lverb|0000alpha sur K chiffres.#2=x',#3=y,#4=B,#5=q1, #6={{x'y},x,K,L}, +% #7=alpha',BQ«c» -> {x'y}x,K,L (à diminuer de 4), +% {alpha sur K}B{q1}{alpha'}BQ«c»| +% \begin{macrocode} +\def\XINT_div_II_skipf 0000\XINT_div_II_f 0000#1.#2#3#4#5#6% {% - \expandafter\XINT_div_body_h - \romannumeral0\XINT_div_sub_xpxp - {\romannumeral0\XINT_mul_Mr {#1}#2\Z\Z\Z\Z }{#3}\Z {#1}% + \XINT_div_II_k #6{#1}{#4}{#5}% }% -\def\XINT_div_body_ggk #1#2#3% +% \end{macrocode} +% \lverb|a1 (huit chiffres), alpha (sur K+4), x', y, B, q1, {{x'y},x,K,L}, +% alpha', B,Q«c»| +% \begin{macrocode} +\def\XINT_div_II_f #1#2#3#4#5#6#7#8#9.% {% - \expandafter \XINT_div_body_gggk \expandafter - {\romannumeral0\XINT_mul_Mr {#1}0000#3\Z\Z\Z\Z }% - {\romannumeral0\XINT_mul_Mr {#2}#3\Z\Z\Z\Z }% - {#1#2}% + \XINT_div_II_fa {#1#2#3#4#5#6#7#8}{#1#2#3#4#5#6#7#8#9}% }% -\def\XINT_div_body_gggk #1#2#3#4% +\def\XINT_div_II_fa #1#2#3#4% {% - \expandafter\XINT_div_body_h - \romannumeral0\XINT_div_sub_xpxp - {\romannumeral0\expandafter\XINT_mul_Ar - \expandafter0\expandafter{\expandafter}#2\W\X\Y\Z #1\W\X\Y\Z }% - {#4}\Z {#3}% + \expandafter\XINT_div_II_g\expandafter + {\the\numexpr (#1+#4)/#3-\xint_c_i}{#2}% }% % \end{macrocode} -% \lverb|& -% alpha1 = alpha-q1 B, \Z, q1, B, K, x, alpha', Q, L, B, c| +% \lverb|#1=q, #2=alpha (K+4), #3=B, #4=q1, {{x'y},x,K,L}, alpha', BQ«c» +% -> 1 puis nouveau q sur 4 chiffres, nouvel alpha sur K chiffres, +% B, {{x'y},x,K,L}, alpha',BQ«c» | % \begin{macrocode} -\def\XINT_div_body_h #1#2#3#4#5#6#7#8#9\Z +\def\XINT_div_II_g #1#2#3#4% {% - \ifnum #1#2#3#4>\xint_c_ - \xint_afterfi{\XINT_div_body_i {#1#2#3#4#5#6#7#8}}% - \else - \expandafter\XINT_div_body_k - \fi - {#1#2#3#4#5#6#7#8#9}% + \expandafter \XINT_div_II_h + \the\numexpr #4+#1+\xint_c_x^iv\expandafter\expandafter\expandafter + {\expandafter\xint_gobble_iv + \romannumeral0\expandafter\XINT_div_sub_xpxp\expandafter + {\romannumeral0\xintreverseorder{#2}}% + {\romannumeral0\XINT_mul_Mr {#1}#3\Z\Z\Z\Z }}{#3}% }% -\def\XINT_div_body_k #1#2#3% +% \end{macrocode} +% \lverb|1 puis nouveau q sur 4 chiffres, #5=nouvel alpha sur K chiffres, +% #6=B, #7={{x'y},x,K,L} avec L à ajuster, alpha', BQ«c» +% -> {x'y}x,K,L à diminuer de 4, {alpha}B{q}, alpha', BQ«c»| +% \begin{macrocode} +\def\XINT_div_II_h 1#1#2#3#4#5#6#7% {% - \XINT_div_body_l {#1}{#2}% + \XINT_div_II_k #7{#5}{#6}{#1#2#3#4}% }% % \end{macrocode} -% \lverb|& -% a1, alpha1 (à l'endroit), q1, B, K, x, alpha', Q, L, B, c| +% \lverb|{x'y}x,K,L à diminuer de 4, alpha, B{q}alpha',BQ«c» +% ->nouveau L.K,x',y,x,alpha.B,q,alpha',B,Q«c» +% ->{LK{x'y}x},x,a,alpha.B,q,alpha',B,Q«c»| % \begin{macrocode} -\def\XINT_div_body_i #1#2#3#4#5#6% +\def\XINT_div_II_k #1#2#3#4#5% {% - \expandafter\XINT_div_body_j - \expandafter{\the\numexpr (#1+(#6+1)/2)/(#6+1)-1}% - {#2}{#3}{#4}{#5}{#6}% + \expandafter\XINT_div_II_l \the\numexpr #4-\xint_c_iv.{#3}#1{#2}#5.% }% -\def\XINT_div_body_j #1#2#3#4% +\def\XINT_div_II_l #1.#2#3#4#5#6#7#8#9% {% - \expandafter \XINT_div_body_l \expandafter - {\romannumeral0\XINT_div_sub_xpxp - {\romannumeral0\XINT_mul_Mr {#1}#4\Z\Z\Z\Z }{\xintReverseOrder{#2}}}% - {#3+#1}% + \XINT_div_II_m {{#1}{#2}{{#3}{#4}}{#5}}{#5}{#6#7#8#9}#6#7#8#9% }% % \end{macrocode} -% \lverb|& -% alpha2 (à l'endroit, ou alpha1), q1+q2 (ou q1), K, x, alpha', Q, L, B, c| +% \lverb|{LK{x'y}x},x,a,alpha.B{q}alpha'BQ -> a, x, alpha, B, q, +% L, K, {x'y}, x, alpha', BQ«c» | % \begin{macrocode} -\def\XINT_div_body_l #1#2#3#4#5#6#7% +\def\XINT_div_II_m #1#2#3#4.#5#6% {% - \expandafter\XINT_div_body_m - \the\numexpr \xint_c_x^viii+#2\relax {#6}{#3}{#7}{#1#5}{#4}% + \XINT_div_I_a {#3}{#2}{#4}{#5}{#6}#1% }% % \end{macrocode} -% \lverb|& -% chiffres de q, Q, K, L, A'=nouveau A, x, B, c| +% \lverb|L, K, A, y,{},x, {},«c»->A.{yx}L{}«c» Comme ici K=4, dans +% la phase I on n'a pas besoin de alpha, car a = alpha. De plus on a maintenu B +% dans l'ordre qui est donc la même chose que x. Par ailleurs la phase I est +% simplifiée, il s'agit simplement de la division euclidienne de a par x, et de +% plus on n'a à la faire qu'une unique fois et ensuite la phase II peut boucler +% sur elle-même au lieu de revenir en phase I, par conséquent il n'y a pas non +% plus de q0 ici. Enfin, le y est (x/2) pas ((x+1)/2) il n'y a pas de x'=x+1| % \begin{macrocode} -\def\XINT_div_body_m 1#1#2#3#4#5#6#7#8% +\def\XINT_div_little_b #1#2#3#4#5#6#7% {% - \ifnum #1#2#3#4>\xint_c_ - \xint_afterfi {\XINT_div_body_n {#8#7#6#5#4#3#2#1}}% - \else - \xint_afterfi {\XINT_div_body_n {#8#7#6#5}}% - \fi + \XINT_div_little_c #3.{{#4}{#6}}{#1}% }% % \end{macrocode} -% \lverb|& -% q renversé, Q, K, L, A', x, B, c| +% \lverb|#1#2#3#4=a, #5=alpha'=reste de A.#6={yx}, #7=L, «c» -> a, +% y, x, L, alpha'=reste de A, «c».| % \begin{macrocode} -\def\XINT_div_body_n #1#2% +\def\XINT_div_little_c #1#2#3#4#5.#6#7% {% - \expandafter\XINT_div_body_o\expandafter - {\romannumeral0\XINT_addr_A 0{}#1\W\X\Y\Z #2\W\X\Y\Z }% + \XINT_div_littleI_a {#1#2#3#4}#6{#7}{#5}% }% % \end{macrocode} -% \lverb|& -% q+Q, K, L, A', x, B, c| +% \lverb|a, y, x, L, alpha',«c» On calcule ici (contrairement à la +% phase I générale) le vrai quotient euclidien de a par x=B, c'est donc un +% chiffre de 0 à 9. De plus on n'a à faire cela qu'une unique fois.| % \begin{macrocode} -\def\XINT_div_body_o #1#2#3#4% +\def\XINT_div_littleI_a #1#2#3% {% - \XINT_div_body_p {#3}{#2}{}#4\Z {#1}% + \expandafter\XINT_div_littleI_b + \the\numexpr (#1+#2)/#3-\xint_c_i{#1}{#2}{#3}% }% % \end{macrocode} -% \lverb|& -% L, K, {}, A'\Z, q+Q, x, B, c | +% \lverb|On intercepte quotient nul: [est-ce vraiment utile? ou n'est-ce pas +% plutôt une perte de temps en moyenne? il faudrait tester] q=0#1=a, +% #2=y, x, L, alpha', «c» -> +% II_a avec L{alpha}alpha'.{yx}{0000}«c». Et en cas de quotient non nul on +% procède avec littleI_c avec #1=q, #2=a, #3=y, #4=x -> {nouvel alpha sur 4 +% chiffres}q{yx},L,alpha',«c».| % \begin{macrocode} -\def\XINT_div_body_p #1#2#3#4#5#6#7% +\def\XINT_div_littleI_b #1% {% - \ifnum #1 > #2 - \xint_afterfi - {\ifnum #4#5#6#7 > \xint_c_ - \expandafter\XINT_div_body_q - \else - \expandafter\XINT_div_body_repeatp - \fi }% - \else - \expandafter\XINT_div_gotofinal_a - \fi - {#1}{#2}{#3}#4#5#6#7% + \xint_gob_til_zero #1\XINT_div_littleI_skip 0\XINT_div_littleI_c #1% +}% +\def\XINT_div_littleI_skip 0\XINT_div_littleI_c 0#1#2#3#4#5% + {\XINT_div_littleII_a {#4}{#1}#5.{{#2}{#3}}{0000}}% +\def\XINT_div_littleI_c #1#2#3#4% +{% + \expandafter\expandafter\expandafter\XINT_div_littleI_e + \expandafter\expandafter\expandafter + {\expandafter\xint_gobble_i\the\numexpr \xint_c_x^iv+#2-#1*#4}#1{{#3}{#4}}% }% % \end{macrocode} -% \lverb|& -% L, K, zeros, A' avec moins de zéros\Z, q+Q, x, B, c| +% \lverb|#1=nouvel alpha sur 4 chiffres#2=q,#3={yx}, #4=L, #5=alpha',«c» -> +% L{alpha}alpha'.{yx}{000q}«c» point d'entrée de la boucle principale| +% \begin{macrocode} +\def\XINT_div_littleI_e #1#2#3#4#5% + {\XINT_div_littleII_a {#4}{#1}#5.{#3}{000#2}}% +% \end{macrocode} +% \lverb|L{alpha}alpha'.{yx}Q«c» et c'est là qu'on boucle| % \begin{macrocode} -\def\XINT_div_body_repeatp #1#2#3#4#5#6#7% +\def\XINT_div_littleII_a #1% {% - \expandafter\XINT_div_body_p\expandafter{\the\numexpr #1-4}{#2}{0000#3}% + \ifnum#1=\xint_c_iv + \expandafter\XINT_div_littleIII_ab + \else + \expandafter\XINT_div_littleII_b + \fi {#1}% }% % \end{macrocode} -% \lverb|& -% L -> L-4, zeros->zeros+0000, répéter jusqu'à ce que soit L=K -% soit on ne trouve plus 0000$\ -% nouveau L, K, zeros, nouveau A=#4, \Z, Q+q (à l'envers), x, B, c| +% \lverb|L{alpha}alpha'.{yx}Q«c» -> (en fait #3 est vide normalement ici) R +% sans leading zeros.Q«c»| % \begin{macrocode} -\def\XINT_div_body_q #1#2#3#4\Z #5#6% +\def\XINT_div_littleIII_ab #1#2#3.#4% {% - \XINT_div_body_b #4\Z {#4}{#2}{#6}{#3#5}{#1}% + \expandafter\XINT_div_III_b\the\numexpr #2#3.% }% % \end{macrocode} -% \lverb|& -% A, K, x, Q, L, B, c --> iterate$\ -% Boucle Principale achevée. ATTENTION IL FAUT AJOUTER 4 ZEROS DE MOINS QUE CEUX -% QUI ONT ÉTÉ PRÉPARÉS DANS #3!!$\ -% L, K (L=K), zeros, A\Z, Q, x, B, c| +% \lverb|L{alpha}alpha'.{yx}Q«c». On diminue L de quatre, comme cela c'est +% fait.| +% \begin{macrocode} +\def\XINT_div_littleII_b #1% +{% + \expandafter\XINT_div_littleII_c\expandafter {\the\numexpr #1-\xint_c_iv}% +}% +% \end{macrocode} +% \lverb|{nouveauL}{alpha}alpha'.{yx}Q«c». On prélève 4 chiffres de alpha' -> +% {nouvel alpha sur huit chiffres}yx{nouveau L}{nouvel alpha'}Q«c». Regarder +% si l'ancien alpha était 0000 n'avancerait à rien car obligerait à refaire une +% chose comme la phase I, donc on ne perd pas de temps avec ça, on reste en +% permanence en phase II.| % \begin{macrocode} -\def\XINT_div_gotofinal_a #1#2#3#4\Z % +\def\XINT_div_littleII_c #1#2#3#4#5#6#7.#8% {% - \XINT_div_gotofinal_b #3\Z {#4}{#1}% + \XINT_div_littleII_d {#2#3#4#5#6}#8{#1}{#7}% }% -\def\XINT_div_gotofinal_b 0000#1\Z #2#3#4#5% +\def\XINT_div_littleII_d #1#2#3% {% - \XINT_div_final_a {#2}{#3}{#5}{#1#4}{#3}% + \expandafter\XINT_div_littleII_e\the\numexpr (#1+#2)/#3+\xint_c_ixixixix.% + {#1}{#2}{#3}% }% % \end{macrocode} -% \lverb|& -% La soustraction spéciale. -% -% Elle fait l'expansion (une fois pour le premier, deux fois pour le second) de -% ses arguments. Ceux-ci doivent être à l'envers sur 4n. De plus on sait a -% priori que le second est > le premier. Et le résultat de la différence est -% renvoyé **avec la même longueur que le second** (donc avec des leading zéros -% éventuels), et *à l'endroit*.| +% \lverb|1 suivi de #1=q1 sur quatre chiffres.#2=alpha, #3=y, #4=x, +% L, alpha', Q«c» --> nouvel alpha sur 4.{q1}{yx},L,alpha', Q«c» | +% \begin{macrocode} +\def\XINT_div_littleII_e 1#1.#2#3#4% +{% + \expandafter\expandafter\expandafter\XINT_div_littleII_f + \expandafter\xint_gobble_i\the\numexpr \xint_c_x^iv+#2-#1*#4.% + {#1}{{#3}{#4}}% +}% +% \end{macrocode} +% \lverb|alpha.q,{yx},L,alpha',Q«c»->L{alpha}alpha'.{yx}{q}Q«c»| % \begin{macrocode} -\def\XINT_div_sub_xpxp #1% +\def\XINT_div_littleII_f #1.#2#3#4#5#6% {% - \expandafter \XINT_div_sub_xpxp_a \expandafter{#1}% + \XINT_div_littleII_a {#4}{#1}#5.{#3}{#6#2}% }% -\def\XINT_div_sub_xpxp_a #1#2% +% \end{macrocode} +% \lverb|La soustraction spéciale. Dans 1.09j, elle fait A-qB, pour A (en fait +% alpha dans mes dénominations des commentaires du code) et qB chacun de +% longueur K ou K+4, avec K au moins huit multiple de quatre, qB a ses quatre +% chiffres significatifs (qui sont à droite) non nuls. Si A-qB<0 il suffit de +% renvoyer -, le résultat n'importe pas. On est sûr que qB est non nul. On le +% met dans cette version en premier pour tester plus facilement le cas avec qB +% de longueur K+4 et A de longueur seulement K. Lorsque la longueur de qB est +% inférieure ou égale à celle de A, on va jusqu'à la fin de A et donc c'est la +% retenue finale qui décide du cas négatif éventuel. Le résultat non négatif est +% toujours donc renvoyé avec la même longueur que A, et il est dans l'ordre. +% J'ai fait une implémentation des phases I et II en maintenant alpha toujours à +% l'envers afin d'éviter le reverse order systématique fait sur A (ou plutôt +% alpha), mais alors il fallait que la soustraction ici s'arrange pour repérer +% les huit chiffres les plus significatifs, au final ce n'était pas plus rapide, +% et même pénalisant pour de gros inputs. Dans les versions 1.09i et antérieures +% (en fait je pense qu'ici rien quasiment n'avait bougé depuis la première +% implémentation), la soustraction spéciale n'était pratiquée que dans des cas +% avec certainement A-qB positif ou nul. De plus on n'excluait pas q=0, donc il +% fallait aussi faire un éventuel reverseorder sur ce qui était encore non +% traité. Les cas avec q=0 sont maintenant interceptés en amont et comme A et qB +% ont toujours quasiment la même longueur on ne s'embarrasse pas de +% complications pour la fin.| +% \begin{macrocode} +\def\XINT_div_sub_xpxp #1#2% #1=alpha déjà renversé, #2 se développe en qB {% - \expandafter\expandafter\expandafter\XINT_div_sub_xpxp_b - #2\W\X\Y\Z #1\W\X\Y\Z + \expandafter\XINT_div_sub_xpxp_b #2\W\X\Y\Z #1\W\X\Y\Z }% \def\XINT_div_sub_xpxp_b {% @@ -14911,61 +15792,49 @@ first place. \def\XINT_div_sub_onestep #1#2#3#4#5#6% {% \expandafter\XINT_div_sub_backtoA - \the\numexpr 11#5#4#3#2-#6+#1-\xint_c_i.% + \the\numexpr 11#6-#5#4#3#2+#1-\xint_c_i.% }% \def\XINT_div_sub_backtoA #1#2#3.#4% {% \XINT_div_sub_A #2{#3#4}% }% -\def\xint_div_sub_bz\W\XINT_div_sub_onestep #1#2#3#4#5#6#7% -{% - \xint_UDzerofork - #1\XINT_div_sub_C % - 0\XINT_div_sub_D % pas de retenue - \krof - {#7}#2#3#4#5% -}% -\def\XINT_div_sub_D #1#2\W\X\Y\Z -{% - \expandafter\space - \romannumeral0% - \XINT_rord_main {}#2% - \xint_relax - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_relax - #1% -}% -\def\XINT_div_sub_C #1#2#3#4#5% +% \end{macrocode} +% \lverb|si on arrive en sub_bz c'est que qB était de longueur K+4 et A +% seulement de longueur K, le résultat est donc < 0, renvoyer juste -| +% \begin{macrocode} +\def\xint_div_sub_bz\W\XINT_div_sub_onestep #1\Z { -}% +% \end{macrocode} +% \lverb|si on arrive en sub_az c'est que qB était de longueur inférieure ou +% égale à celle de A, donc on continue jusqu'à la fin de A, et on vérifiera la +% retenue à la fin.| +% \begin{macrocode} +\def\xint_div_sub_az\W\XINT_div_sub_B #1#2{\XINT_div_sub_C #1}% +\def\XINT_div_sub_C #1#2#3#4#5#6% {% - \xint_gob_til_W #2\xint_div_sub_cz\W - \XINT_div_sub_AC_onestep {#5#4#3#2}{#1}% + \xint_gob_til_W #3\xint_div_sub_cz\W + \XINT_div_sub_C_onestep #1{#6#5#4#3}{#2}% }% -\def\XINT_div_sub_AC_onestep #1% +\def\XINT_div_sub_C_onestep #1#2% {% - \expandafter\XINT_div_sub_backtoC\the\numexpr 11#1-\xint_c_i.% + \expandafter\XINT_div_sub_backtoC \the\numexpr 11#2+#1-\xint_c_i.% }% \def\XINT_div_sub_backtoC #1#2#3.#4% {% - \XINT_div_sub_AC_checkcarry #2{#3#4}% la retenue va \^etre examin\'ee -}% -\def\XINT_div_sub_AC_checkcarry #1% -{% - \xint_gob_til_one #1\xint_div_sub_AC_nocarry 1\XINT_div_sub_C + \XINT_div_sub_C #2{#3#4}% }% -\def\xint_div_sub_AC_nocarry 1\XINT_div_sub_C #1#2\W\X\Y\Z +% \end{macrocode} +% \lverb|une fois arrivé en sub_cz on teste la retenue pour voir si le résultat +% final est en fait négatif, dans ce cas on renvoie seulement -| +% \begin{macrocode} +\def\xint_div_sub_cz\W\XINT_div_sub_C_onestep #1#2% {% - \expandafter\space - \romannumeral0% - \XINT_rord_main {}#2% - \xint_relax - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_relax - #1% + \if#10% retenue + \expandafter\xint_div_sub_neg + \else\expandafter\xint_div_sub_ok + \fi }% -\def\xint_div_sub_cz\W\XINT_div_sub_AC_onestep #1#2{ #2}% -\def\xint_div_sub_az\W\XINT_div_sub_B #1#2#3#4\Z { #3}% +\def\xint_div_sub_neg #1{ -}% +\def\xint_div_sub_ok #1{ #1}% % \end{macrocode} % \lverb|& % & @@ -15136,14 +16005,14 @@ first place. % \end{macrocode} % \subsection{\csh{xintDSH}, \csh{xintDSHr}} % \lverb+DECIMAL SHIFTS \xintDSH {x}{A}$\ -% si x <= 0, fait A -> A.10^(|x|). v1.03 corrige l'oversight pour A=0.n +% si x <= 0, fait A -> A.10^(|x|). v1.03 corrige l'oversight pour A=0.$\ % si x > 0, et A >=0, fait A -> quo(A,10^(x))$\ % si x > 0, et A < 0, fait A -> -quo(-A,10^(x))$\ % (donc pour x > 0 c'est comme DSR itéré x fois)$\ % \xintDSHr donne le `reste' (si x<=0 donne zéro). % -% Release 1.06 now feeds x to a \numexpr first. I will revise the legacy code on -% another occasion.+ +% Release 1.06 now feeds x to a \numexpr first. I will have to revise this code +% at some point.+ % \begin{macrocode} \def\xintDSHr {\romannumeral0\xintdshr }% \def\xintdshr #1% @@ -15161,7 +16030,7 @@ first place. \def\XINT_dshr_xzeroorneg #1\Z #2{ 0}% \def\XINT_dshr_xpositive #1\Z {% - \expandafter\xint_secondoftwo_afterstop\romannumeral0\xintdsx {#1}% + \expandafter\xint_secondoftwo_thenstop\romannumeral0\xintdsx {#1}% }% \def\xintDSH {\romannumeral0\xintdsh }% \def\xintdsh #1#2% @@ -15183,7 +16052,7 @@ first place. \def\XINT_dsh_xiszero #1\Z #2{ #2}% \def\XINT_dsh_xisPos #1\Z #2% {% - \expandafter\xint_firstoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop \romannumeral0\XINT_dsx_checksignA #2\Z {#1}% via DSx }% % \end{macrocode} @@ -15208,14 +16077,18 @@ first place. % Also, x is now given to a \numexpr. The earlier code should be then % simplified, but I leave as is for the time being. % -% In 1.07, I decide to modify -% the coding of \XINT_dsx_zeroloop, to avoid -% impacting the input stack (which prevented doing truncation or rounding or -% float with more than eight times the size of input stack; 40000 = 8x5000 -% digits on my installation.) I think this was the only place in the code with -% such non tail recursion, as I recall being careful to avoid problems within -% the Factorial and Power routines, but I would need to check. Too tired now -% after having finished \xintexpr, \xintNewExpr, and \xintfloatexpr!+ +% Release 1.07 modified the coding of \XINT_dsx_zeroloop, to avoid impacting the +% input stack. Indeed the truncating, rounding, and conversion to float routines +% all use internally \XINT_dsx_zeroloop (via \XINT_dsx_addzerosnofuss), and they +% were thus roughly limited to generating N = 8 times the input save stack size +% digits. On TL2012 and TL2013, this means 40000 = 8x5000 digits. Although +% generating more than 40000 digits is more like a one shot thing, I wanted to +% open the possibility of outputting tens of thousands of digits to faile, thus +% I re-organized \XINT_dsx_zeroloop. +% +% January 5, 2014: but it is only with the new division implementation of 1.09j +% and also with its special \xintXTrunc routine that the possibility mentioned +% in the last paragraph has become a concrete one in terms of computation time.+ % \begin{macrocode} \def\xintDSx {\romannumeral0\xintdsx }% \def\xintdsx #1#2% @@ -15249,7 +16122,7 @@ first place. \def\XINT_dsx_xisNeg_Azero #1\Z #2{ 0}% \def\XINT_dsx_xisNeg_checkx #1% {% - \ifnum #1>999999999 + \ifnum #1>1000000 \xint_afterfi {\xintError:TooBigDecimalShift \expandafter\space\expandafter 0\xint_gobble_iv }% @@ -15257,11 +16130,12 @@ first place. \expandafter \XINT_dsx_zeroloop \fi }% +\def\XINT_dsx_addzerosnofuss #1{\XINT_dsx_zeroloop {#1}{}\Z }% \def\XINT_dsx_zeroloop #1#2% {% - \ifnum #1<9 \XINT_dsx_exita\fi + \ifnum #1<\xint_c_ix \XINT_dsx_exita\fi \expandafter\XINT_dsx_zeroloop\expandafter - {\the\numexpr #1-8}{#200000000}% + {\the\numexpr #1-\xint_c_viii}{#200000000}% }% \def\XINT_dsx_exita\fi\expandafter\XINT_dsx_zeroloop {% @@ -15359,12 +16233,12 @@ first place. \def\xintDecSplitR {\romannumeral0\xintdecsplitr }% \def\xintdecsplitl {% - \expandafter\xint_firstoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop \romannumeral0\xintdecsplit }% \def\xintdecsplitr {% - \expandafter\xint_secondoftwo_afterstop + \expandafter\xint_secondoftwo_thenstop \romannumeral0\xintdecsplit }% \def\xintDecSplit {\romannumeral0\xintdecsplit }% @@ -15388,7 +16262,7 @@ first place. }% \def\XINT_split_bigx #1\Z #2% {% - \ifcase\XINT__Sgn #1\Z + \ifcase\XINT_cntSgn #1\Z \or \xint_afterfi { {}{#2}}% positive big x \else \xint_afterfi { {#2}{}}% negative big x @@ -15409,9 +16283,9 @@ first place. }% \def\XINT_split_fromleft_loop #1% {% - \ifnum #1<8 \XINT_split_fromleft_exita\fi + \ifnum #1<\xint_c_viii\XINT_split_fromleft_exita\fi \expandafter\XINT_split_fromleft_loop_perhaps\expandafter - {\the\numexpr #1-8\expandafter}\XINT_split_fromleft_eight + {\the\numexpr #1-\xint_c_viii\expandafter}\XINT_split_fromleft_eight }% \def\XINT_split_fromleft_eight #1#2#3#4#5#6#7#8#9{#9{#1#2#3#4#5#6#7#8#9}}% \def\XINT_split_fromleft_loop_perhaps #1#2% @@ -15427,7 +16301,7 @@ first place. \def\XINT_split_fromleft_exita\fi \expandafter\XINT_split_fromleft_loop_perhaps\expandafter #1#2% {\fi \XINT_split_fromleft_exitb #1}% -\def\XINT_split_fromleft_exitb\the\numexpr #1-8\expandafter +\def\XINT_split_fromleft_exitb\the\numexpr #1-\xint_c_viii\expandafter {% \csname XINT_split_fromleft_endsplit_\romannumeral #1\endcsname }% @@ -15467,9 +16341,9 @@ first place. }% \def\XINT_split_fromright_loop #1% {% - \ifnum #1<8 \XINT_split_fromright_exita\fi + \ifnum #1<\xint_c_viii\XINT_split_fromright_exita\fi \expandafter\XINT_split_fromright_loop_perhaps\expandafter - {\the\numexpr #1-8\expandafter }\XINT_split_fromright_eight + {\the\numexpr #1-\xint_c_viii\expandafter }\XINT_split_fromright_eight }% \def\XINT_split_fromright_eight #1#2#3#4#5#6#7#8#9{#9{#9#8#7#6#5#4#3#2#1}}% \def\XINT_split_fromright_loop_perhaps #1#2% @@ -15481,7 +16355,7 @@ first place. \def\XINT_split_fromright_exita\fi \expandafter\XINT_split_fromright_loop_perhaps\expandafter #1#2% {\fi \XINT_split_fromright_exitb #1}% -\def\XINT_split_fromright_exitb\the\numexpr #1-8\expandafter +\def\XINT_split_fromright_exitb\the\numexpr #1-\xint_c_viii\expandafter {% \csname XINT_split_fromright_endsplit_\romannumeral #1\endcsname }% @@ -15531,7 +16405,7 @@ first place. }% \def\XINT_dbl_zero #1\Z \W\W\W\W\W\W\W { 0}% \def\XINT_dbl_neg - {\expandafter\xint_minus_afterstop\romannumeral0\XINT_dbl_pos }% + {\expandafter\xint_minus_thenstop\romannumeral0\XINT_dbl_pos }% \def\XINT_dbl_pos {% \expandafter\XINT_dbl_a \expandafter{\expandafter}\expandafter 0% @@ -15630,7 +16504,7 @@ first place. }% \def\XINT_dec_zero #1\W\W\W\W\W\W\W\W { -1}% \def\XINT_dec_neg - {\expandafter\xint_minus_afterstop\romannumeral0\XINT_inc_pos }% + {\expandafter\xint_minus_thenstop\romannumeral0\XINT_inc_pos }% \def\XINT_dec_pos {% \expandafter\XINT_dec_a \expandafter{\expandafter}% @@ -15701,14 +16575,12 @@ first place. \def\XINT_inc_end\W #1\relax #2{ 1#2}% % \end{macrocode} % \subsection{\csh{xintiSqrt}, \csh{xintiSquareRoot}} -% \lverb|v1.08. 1.09a uses \xintnum. Very embarrassing to discover at the -% time of 1.09e that \xintiSqrt {0} was buggy! +% \lverb|v1.08. 1.09a uses \xintnum. % % Some overhead was added inadvertently in 1.09a to inner routines when -% \xintiquo and \xintidivision were promoted to use \xintnum. Reverted in 1.09f. -% | +% \xintiquo and \xintidivision were also promoted to use \xintnum; release 1.09f +% thus uses \xintiiquo and \xintiidivision xhich avoid this \xintnum overhead. | % \begin{macrocode} -\def\XINT_dsx_addzerosnofuss #1{\XINT_dsx_zeroloop {#1}{}\Z }% \def\xintiSqrt {\romannumeral0\xintisqrt }% \def\xintisqrt {\expandafter\XINT_sqrt_post\romannumeral0\xintisquareroot }% @@ -15725,12 +16597,12 @@ first place. 0-{\XINT_sqrt #1}% \krof }% -\def\XINT_sqrt_iszero #1\Z { 1.}% 1.09e was wrong from inception in 1.08 :-(( -\edef\XINT_sqrt_isneg #1\Z {\noexpand\xintError:RootOfNegative\space 1.}% +\def\XINT_sqrt_iszero #1\Z { 1.}% +\edef\XINT_sqrt_isneg #1\Z {\noexpand\xintError:RootOfNegative\space 1.}% \def\XINT_sqrt #1\Z {% - \expandafter\XINT_sqrt_start\expandafter - {\romannumeral0\xintlength {#1}}{#1}% + \expandafter\XINT_sqrt_start\expandafter + {\romannumeral0\xintlength {#1}}{#1}% }% \def\XINT_sqrt_start #1% {% @@ -15770,40 +16642,19 @@ first place. }% \def\XINT_sqrt_c #1#2% {% - \expandafter #2% - \ifcase #1 - \or 2\or 2\or 2\or 3\or 3\or 3\or 3\or 3\or %3+5 - 4\or 4\or 4\or 4\or 4\or 4\or 4\or %+7 - 5\or 5\or 5\or 5\or 5\or 5\or 5\or 5\or 5\or %+9 - 6\or 6\or 6\or 6\or 6\or 6\or 6\or 6\or 6\or 6\or 6\or %+11 - 7\or 7\or 7\or 7\or 7\or 7\or 7\or 7\or 7\or 7\or 7\or 7\or 7\or %+13 - 8\or 8\or 8\or 8\or 8\or 8\or 8\or - 8\or 8\or 8\or 8\or 8\or 8\or 8\or 8\or %+15 - 9\or 9\or 9\or 9\or 9\or 9\or 9\or 9\or - 9\or 9\or 9\or 9\or 9\or 9\or 9\or 9\or 9\or %+17 - 10\or 10\or 10\or 10\or 10\or 10\or 10\or 10\or 10\or - 10\or 10\or 10\or 10\or 10\or 10\or 10\or 10\or 10\or 10\or\fi %+19 -}% -\def\XINT_sqrt_small_d #1\or #2\fi #3% -{% - \fi - \expandafter\XINT_sqrt_small_de - \ifcase \numexpr #3/\xint_c_ii-\xint_c_i\relax - {}% - \or - 0% - \or - {00}% - \or - {000}% - \or - {0000}% - \or - \fi {#1}% + \expandafter #2\expandafter + {\the\numexpr\ifnum #1>\xint_c_iii + \ifnum #1>\xint_c_viii + \ifnum #1>15 \ifnum #1>24 \ifnum #1>35 + \ifnum #1>48 \ifnum #1>63 \ifnum #1>80 + 10\else 9\fi \else 8\fi \else 7\fi \else 6\fi + \else 5\fi \else 4\fi \else 3\fi \else 2\fi \relax }% }% -\def\XINT_sqrt_small_de #1\or #2\fi #3% +\def\XINT_sqrt_small_d #1#2% {% - \fi\XINT_sqrt_small_e {#3#1}% + \expandafter\XINT_sqrt_small_e\expandafter + {\the\numexpr #1\ifcase \numexpr #2/\xint_c_ii-\xint_c_i\relax + \or 0\or 00\or 000\or 0000\fi }% }% \def\XINT_sqrt_small_e #1#2% {% @@ -15830,15 +16681,14 @@ first place. {\the\numexpr #3-#1}% }% \def\XINT_sqrt_small_end #1#2#3{ {#3}{#2}}% -\def\XINT_sqrt_big_d #1\or #2\fi #3% +\def\XINT_sqrt_big_d #1#2% {% - \fi - \ifodd #3 - \xint_afterfi{\expandafter\XINT_sqrt_big_eB}% + \ifodd #2 + \expandafter\expandafter\expandafter\XINT_sqrt_big_eB \else - \xint_afterfi{\expandafter\XINT_sqrt_big_eA}% + \expandafter\expandafter\expandafter\XINT_sqrt_big_eA \fi - \expandafter{\the\numexpr #3/\xint_c_ii }{#1}% + \expandafter {\the\numexpr #2/\xint_c_ii }{#1}% }% \def\XINT_sqrt_big_eA #1#2#3% {% @@ -15884,7 +16734,7 @@ first place. \def\XINT_sqrt_big_g #1#2% {% \expandafter\XINT_sqrt_big_j - \romannumeral0\xintiidivision{#1} + \romannumeral0\xintiidivision{#1}% {\romannumeral0\XINT_dbl_pos #2\R\R\R\R\R\R\R\Z \W\W\W\W\W\W\W }{#2}% }% \def\XINT_sqrt_big_j #1% @@ -15906,6 +16756,108 @@ first place. {#2}{#1}% }% \def\XINT_sqrt_big_end #1#2#3#4{ {#3}{#2}}% +% \end{macrocode} +% \subsection{\csh{xintIsTrue:csv}} +% \lverb|1.09c. For use by \xinttheboolexpr.(inside \csname, no need for a +% \romannumeral here). The macros may well be defined already here. I +% make no advertisement because I have inserted no space parsing in the +% :csv macros, as they will be used only with privately created comma +% separated lists, having no space naturally. Nevertheless they exist +% and can be used.| +% \begin{macrocode} +\def\xintIsTrue:csv #1{\expandafter\XINT_istrue:_a\romannumeral-`0#1,,^}% +\def\XINT_istrue:_a {\XINT_istrue:_b {}}% +\def\XINT_istrue:_b #1#2,% + {\expandafter\XINT_istrue:_c\romannumeral-`0#2,{#1}}% +\def\XINT_istrue:_c #1{\if #1,\expandafter\XINT_:_f + \else\expandafter\XINT_istrue:_d\fi #1}% +\def\XINT_istrue:_d #1,% + {\expandafter\XINT_istrue:_e\romannumeral0\xintisnotzero {#1},}% +\def\XINT_istrue:_e #1,#2{\XINT_istrue:_b {#2,#1}}% +\def\XINT_:_f ,#1#2^{\xint_gobble_i #1}% +% \end{macrocode} +% \subsection{\csh{xintANDof:csv}} +% \lverb|1.09a. For use by \xintexpr (inside \csname, no need for a +% \romannumeral here).| +% \begin{macrocode} +\def\xintANDof:csv #1{\expandafter\XINT_andof:_a\romannumeral-`0#1,,^}% +\def\XINT_andof:_a {\expandafter\XINT_andof:_b\romannumeral-`0}% +\def\XINT_andof:_b #1{\if #1,\expandafter\XINT_andof:_e + \else\expandafter\XINT_andof:_c\fi #1}% +\def\XINT_andof:_c #1,{\xintifTrueAelseB {#1}{\XINT_andof:_a}{\XINT_andof:_no}}% +\def\XINT_andof:_no #1^{0}% +\def\XINT_andof:_e #1^{1}% works with empty list +% \end{macrocode} +% \subsection{\csh{xintORof:csv}} +% \lverb|1.09a. For use by \xintexpr.| +% \begin{macrocode} +\def\xintORof:csv #1{\expandafter\XINT_orof:_a\romannumeral-`0#1,,^}% +\def\XINT_orof:_a {\expandafter\XINT_orof:_b\romannumeral-`0}% +\def\XINT_orof:_b #1{\if #1,\expandafter\XINT_orof:_e + \else\expandafter\XINT_orof:_c\fi #1}% +\def\XINT_orof:_c #1,{\xintifTrueAelseB{#1}{\XINT_orof:_yes}{\XINT_orof:_a}}% +\def\XINT_orof:_yes #1^{1}% +\def\XINT_orof:_e #1^{0}% works with empty list +% \end{macrocode} +% \subsection{\csh{xintXORof:csv}} +% \lverb|1.09a. For use by \xintexpr (inside a \csname..\endcsname).| +% \begin{macrocode} +\def\xintXORof:csv #1{\expandafter\XINT_xorof:_a\expandafter + 0\romannumeral-`0#1,,^}% +\def\XINT_xorof:_a #1#2,{\expandafter\XINT_xorof:_b\romannumeral-`0#2,#1}% +\def\XINT_xorof:_b #1{\if #1,\expandafter\XINT_:_e + \else\expandafter\XINT_xorof:_c\fi #1}% +\def\XINT_xorof:_c #1,#2% + {\xintifTrueAelseB {#1}{\if #20\xint_afterfi{\XINT_xorof:_a 1}% + \else\xint_afterfi{\XINT_xorof:_a 0}\fi}% + {\XINT_xorof:_a #2}% + }% +\def\XINT_:_e ,#1#2^{#1}% allows empty list +% \end{macrocode} +% \subsection{\csh{xintiMaxof:csv}} +% \lverb|1.09i. For use by \xintiiexpr.| +% \begin{macrocode} +\def\xintiMaxof:csv #1{\expandafter\XINT_imaxof:_b\romannumeral-`0#1,,}% +\def\XINT_imaxof:_b #1,#2,{\expandafter\XINT_imaxof:_c\romannumeral-`0#2,{#1},}% +\def\XINT_imaxof:_c #1{\if #1,\expandafter\XINT_of:_e + \else\expandafter\XINT_imaxof:_d\fi #1}% +\def\XINT_imaxof:_d #1,{\expandafter\XINT_imaxof:_b\romannumeral0\xintimax {#1}}% +\def\XINT_of:_e ,#1,{#1}% +\let\xintMaxof:csv\xintiMaxof:csv +% \end{macrocode} +% \subsection{\csh{xintiMinof:csv}} +% \lverb|1.09i. For use by \xintiiexpr.| +% \begin{macrocode} +\def\xintiMinof:csv #1{\expandafter\XINT_iminof:_b\romannumeral-`0#1,,}% +\def\XINT_iminof:_b #1,#2,{\expandafter\XINT_iminof:_c\romannumeral-`0#2,{#1},}% +\def\XINT_iminof:_c #1{\if #1,\expandafter\XINT_of:_e + \else\expandafter\XINT_iminof:_d\fi #1}% +\def\XINT_iminof:_d #1,{\expandafter\XINT_iminof:_b\romannumeral0\xintimin {#1}}% +\let\xintMinof:csv\xintiMinof:csv +% \end{macrocode} +% \subsection{\csh{xintiiSum:csv}} +% \lverb|1.09i. For use by \xintiiexpr.| +% \begin{macrocode} +\def\xintiiSum:csv #1{\expandafter\XINT_iisum:_a\romannumeral-`0#1,,^}% +\def\XINT_iisum:_a {\XINT_iisum:_b {0}}% +\def\XINT_iisum:_b #1#2,{\expandafter\XINT_iisum:_c\romannumeral-`0#2,{#1}}% +\def\XINT_iisum:_c #1{\if #1,\expandafter\XINT_:_e + \else\expandafter\XINT_iisum:_d\fi #1}% +\def\XINT_iisum:_d #1,#2{\expandafter\XINT_iisum:_b\expandafter + {\romannumeral0\xintiiadd {#2}{#1}}}% +\let\xintSum:csv\xintiiSum:csv +% \end{macrocode} +% \subsection{\csh{xintiiPrd:csv}} +% \lverb|1.09i. For use by \xintiiexpr.| +% \begin{macrocode} +\def\xintiiPrd:csv #1{\expandafter\XINT_iiprd:_a\romannumeral-`0#1,,^}% +\def\XINT_iiprd:_a {\XINT_iiprd:_b {1}}% +\def\XINT_iiprd:_b #1#2,{\expandafter\XINT_iiprd:_c\romannumeral-`0#2,{#1}}% +\def\XINT_iiprd:_c #1{\if #1,\expandafter\XINT_:_e + \else\expandafter\XINT_iiprd:_d\fi #1}% +\def\XINT_iiprd:_d #1,#2{\expandafter\XINT_iiprd:_b\expandafter + {\romannumeral0\xintiimul {#2}{#1}}}% +\let\xintPrd:csv\xintiiPrd:csv \XINT_restorecatcodes_endinput% % \end{macrocode} %\catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 @@ -15960,8 +16912,7 @@ first place. \else \ifx\x\relax % plain-TeX, first loading of xintbinhex.sty \ifx\w\relax % but xint.sty not yet loaded. - \y{xintbinhex}{Package xint is required}% - \y{xintbinhex}{Will try \string\input\space xint.sty}% + \y{xintbinhex}{now issuing \string\input\space xint.sty}% \def\z{\endgroup\input xint.sty\relax}% \fi \else @@ -15969,8 +16920,7 @@ first place. \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xint.sty not yet loaded. - \y{xintbinhex}{Package xint is required}% - \y{xintbinhex}{Will try \string\RequirePackage{xint}}% + \y{xintbinhex}{now issuing \string\RequirePackage{xint}}% \def\z{\endgroup\RequirePackage{xint}}% \fi \else @@ -16019,14 +16969,14 @@ first place. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintbinhex}% - [2013/12/18 v1.09i Expandable binary and hexadecimal conversions (jfB)]% + [2014/01/09 v1.09j Expandable binary and hexadecimal conversions (jfB)]% % \end{macrocode} % \subsection{Constants, etc...} % \lverb!v1.08! % \begin{macrocode} \chardef\xint_c_xvi 16 -\chardef\xint_c_ii^v 32 -\chardef\xint_c_ii^vi 64 +% \chardef\xint_c_ii^v 32 % already done in xint.sty +% \chardef\xint_c_ii^vi 64 % already done in xint.sty \chardef\xint_c_ii^vii 128 \mathchardef\xint_c_ii^viii 256 \mathchardef\xint_c_ii^xii 4096 @@ -16141,7 +17091,7 @@ first place. -{\XINT_dth_P #1}% \krof }% -\def\XINT_dth_N {\expandafter\xint_minus_afterstop\romannumeral0\XINT_dth_P }% +\def\XINT_dth_N {\expandafter\xint_minus_thenstop\romannumeral0\XINT_dth_P }% \def\XINT_dth_P {\expandafter\XINT_dth_III\romannumeral-`0\XINT_dtbh_I {0.}}% \def\xintDecToBin {\romannumeral0\xintdectobin }% \def\xintdectobin #1% @@ -16153,7 +17103,7 @@ first place. -{\XINT_dtb_P #1}% \krof }% -\def\XINT_dtb_N {\expandafter\xint_minus_afterstop\romannumeral0\XINT_dtb_P }% +\def\XINT_dtb_N {\expandafter\xint_minus_thenstop\romannumeral0\XINT_dtb_P }% \def\XINT_dtb_P {\expandafter\XINT_dtb_III\romannumeral-`0\XINT_dtbh_I {0.}}% \def\XINT_dtbh_I #1#2#3#4#5% {% @@ -16293,7 +17243,7 @@ first place. -{\XINT_htd_I {0000}#1}% \krof }% -\def\XINT_htd_neg {\expandafter\xint_minus_afterstop +\def\XINT_htd_neg {\expandafter\xint_minus_thenstop \romannumeral0\XINT_htd_I {0000}}% \def\XINT_htd_I #1#2#3#4#5% {% @@ -16381,7 +17331,7 @@ first place. -{\XINT_btd_I {000000}#1}% \krof }% -\def\XINT_btd_neg {\expandafter\xint_minus_afterstop +\def\XINT_btd_neg {\expandafter\xint_minus_thenstop \romannumeral0\XINT_btd_I {000000}}% \def\XINT_btd_I #1#2#3#4#5#6#7#8#9% {% @@ -16497,7 +17447,7 @@ first place. -{\XINT_bth_P #1}% \krof }% -\def\XINT_bth_N {\expandafter\xint_minus_afterstop\romannumeral0\XINT_bth_P }% +\def\XINT_bth_N {\expandafter\xint_minus_thenstop\romannumeral0\XINT_bth_P }% \def\XINT_bth_P {\expandafter\XINT_bth_I\expandafter{\expandafter}% \romannumeral0\XINT_OQ {}}% \def\XINT_bth_I #1#2#3#4#5#6#7#8#9% @@ -16535,7 +17485,7 @@ first place. -{\XINT_htb_P #1}% \krof }% -\def\XINT_htb_N {\expandafter\xint_minus_afterstop\romannumeral0\XINT_htb_P }% +\def\XINT_htb_N {\expandafter\xint_minus_thenstop\romannumeral0\XINT_htb_P }% \def\XINT_htb_P {\XINT_htb_I_a {}}% \def\XINT_htb_I_a #1#2#3#4#5#6#7#8#9% {% @@ -16580,7 +17530,7 @@ first place. -{\XINT_chtb_P #1}% \krof }% -\def\XINT_chtb_N {\expandafter\xint_minus_afterstop\romannumeral0\XINT_chtb_P }% +\def\XINT_chtb_N {\expandafter\xint_minus_thenstop\romannumeral0\XINT_chtb_P }% \def\XINT_chtb_P {\expandafter\XINT_chtb_I\expandafter{\expandafter}% \romannumeral0\XINT_OQ {}}% \def\XINT_chtb_I #1#2#3#4#5#6#7#8#9% @@ -16668,8 +17618,7 @@ first place. \else \ifx\x\relax % plain-TeX, first loading of xintgcd.sty \ifx\w\relax % but xint.sty not yet loaded. - \y{xintgcd}{Package xint is required}% - \y{xintgcd}{Will try \string\input\space xint.sty}% + \y{xintgcd}{now issuing \string\input\space xint.sty}% \def\z{\endgroup\input xint.sty\relax}% \fi \else @@ -16677,8 +17626,7 @@ first place. \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xint.sty not yet loaded. - \y{xintgcd}{Package xint is required}% - \y{xintgcd}{Will try \string\RequirePackage{xint}}% + \y{xintgcd}{now issuing \string\RequirePackage{xint}}% \def\z{\endgroup\RequirePackage{xint}}% \fi \else @@ -16727,7 +17675,7 @@ first place. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintgcd}% - [2013/12/18 v1.09i Euclide algorithm with xint package (jfB)]% + [2014/01/09 v1.09j Euclide algorithm with xint package (jfB)]% % \end{macrocode} % \subsection{\csh{xintGCD}} % The macros of |1.09a| benefits from the |\xintnum| which has been inserted @@ -16789,15 +17737,6 @@ first place. \def\XINT_gcdof_d #1\Z {\expandafter\XINT_gcdof_b\romannumeral0\xintgcd {#1}}% \def\XINT_gcdof_e #1\Z #2\Z { #2}% % \end{macrocode} -% \subsection{\csh{xintGCDof:csv}} -% \lverb|1.09a. For use by \xintexpr.| -% \begin{macrocode} -\def\xintGCDof:csv #1{\expandafter\XINT_gcdof:_b\romannumeral-`0#1,,}% -\def\XINT_gcdof:_b #1,#2,{\expandafter\XINT_gcdof:_c\romannumeral-`0#2,{#1},}% -\def\XINT_gcdof:_c #1{\if #1,\expandafter\XINT_of:_e - \else\expandafter\XINT_gcdof:_d\fi #1}% -\def\XINT_gcdof:_d #1,{\expandafter\XINT_gcdof:_b\romannumeral0\xintgcd {#1}}% -% \end{macrocode} % \subsection{\csh{xintLCM}} % \lverb|New with 1.09a. Inadvertent use of \xintiQuo which was promoted at the % same time to add the \xintnum overhead. So with 1.09f \xintiiQuo without the @@ -16837,15 +17776,6 @@ first place. \def\XINT_lcmof_d #1\Z {\expandafter\XINT_lcmof_b\romannumeral0\xintlcm {#1}}% \def\XINT_lcmof_e #1\Z #2\Z { #2}% % \end{macrocode} -% \subsection{\csh{xintLCMof:csv}} -% \lverb|1.09a. For use by \xintexpr.| -% \begin{macrocode} -\def\xintLCMof:csv #1{\expandafter\XINT_lcmof:_a\romannumeral-`0#1,,}% -\def\XINT_lcmof:_a #1,#2,{\expandafter\XINT_lcmof:_c\romannumeral-`0#2,{#1},}% -\def\XINT_lcmof:_c #1{\if#1,\expandafter\XINT_of:_e - \else\expandafter\XINT_lcmof:_d\fi #1}% -\def\XINT_lcmof:_d #1,{\expandafter\XINT_lcmof:_a\romannumeral0\xintlcm {#1}}% -% \end{macrocode} % \subsection{\csh{xintBezout}} % \lverb|1.09a inserts use of \xintnum| % \begin{macrocode} @@ -17335,6 +18265,24 @@ first place. \par \endgroup }% +% \end{macrocode} +% \subsection{\csh{xintGCDof:csv}} +% \lverb|1.09a. For use by \xintexpr.| +% \begin{macrocode} +\def\xintGCDof:csv #1{\expandafter\XINT_gcdof:_b\romannumeral-`0#1,,}% +\def\XINT_gcdof:_b #1,#2,{\expandafter\XINT_gcdof:_c\romannumeral-`0#2,{#1},}% +\def\XINT_gcdof:_c #1{\if #1,\expandafter\XINT_of:_e + \else\expandafter\XINT_gcdof:_d\fi #1}% +\def\XINT_gcdof:_d #1,{\expandafter\XINT_gcdof:_b\romannumeral0\xintgcd {#1}}% +% \end{macrocode} +% \subsection{\csh{xintLCMof:csv}} +% \lverb|1.09a. For use by \xintexpr.| +% \begin{macrocode} +\def\xintLCMof:csv #1{\expandafter\XINT_lcmof:_a\romannumeral-`0#1,,}% +\def\XINT_lcmof:_a #1,#2,{\expandafter\XINT_lcmof:_c\romannumeral-`0#2,{#1},}% +\def\XINT_lcmof:_c #1{\if#1,\expandafter\XINT_of:_e + \else\expandafter\XINT_lcmof:_d\fi #1}% +\def\XINT_lcmof:_d #1,{\expandafter\XINT_lcmof:_a\romannumeral0\xintlcm {#1}}% \XINT_restorecatcodes_endinput% % \end{macrocode} %\catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 @@ -17389,8 +18337,7 @@ first place. \else \ifx\x\relax % plain-TeX, first loading of xintfrac.sty \ifx\w\relax % but xint.sty not yet loaded. - \y{xintfrac}{Package xint is required}% - \y{xintfrac}{Will try \string\input\space xint.sty}% + \y{xintfrac}{now issuing \string\input\space xint.sty}% \def\z{\endgroup\input xint.sty\relax}% \fi \else @@ -17398,8 +18345,7 @@ first place. \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xint.sty not yet loaded. - \y{xintfrac}{Package xint is required}% - \y{xintfrac}{Will try \string\RequirePackage{xint}}% + \y{xintfrac}{now issuing \string\RequirePackage{xint}}% \def\z{\endgroup\RequirePackage{xint}}% \fi \else @@ -17448,11 +18394,10 @@ first place. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintfrac}% - [2013/12/18 v1.09i Expandable operations on fractions (jfB)]% + [2014/01/09 v1.09j Expandable operations on fractions (jfB)]% \chardef\xint_c_vi 6 \chardef\xint_c_vii 7 \chardef\xint_c_xviii 18 -\mathchardef\xint_c_x^iv 10000 % \end{macrocode} % \subsection{\csh{xintLen}} % \begin{macrocode} @@ -17511,7 +18456,7 @@ first place. % \begin{macrocode} \def\XINT_outfrac #1#2#3% {% - \ifcase\XINT__Sgn #3\Z + \ifcase\XINT_cntSgn #3\Z \expandafter \XINT_outfrac_divisionbyzero \or \expandafter \XINT_outfrac_P @@ -17820,7 +18765,7 @@ first place. }% \def\XINT_rawz #1% {% - \ifcase\XINT__Sgn #1\Z + \ifcase\XINT_cntSgn #1\Z \expandafter\XINT_rawz_Ba \or \expandafter\XINT_rawz_A @@ -17857,7 +18802,7 @@ first place. }% \def\XINT_numer #1% {% - \ifcase\XINT__Sgn #1\Z + \ifcase\XINT_cntSgn #1\Z \expandafter\XINT_numer_B \or \expandafter\XINT_numer_A @@ -17878,7 +18823,7 @@ first place. }% \def\XINT_denom #1% {% - \ifcase\XINT__Sgn #1\Z + \ifcase\XINT_cntSgn #1\Z \expandafter\XINT_denom_B \or \expandafter\XINT_denom_A @@ -17906,7 +18851,7 @@ first place. \def\XINT_fracfrac_C 0\XINT_fracfrac_D #1#2#3% {% \if1\XINT_isOne {#3}% - \xint_afterfi {\expandafter\xint_firstoftwo_afterstop\xint_gobble_ii }% + \xint_afterfi {\expandafter\xint_firstoftwo_thenstop\xint_gobble_ii }% \fi \space \frac {#2}{#3}% @@ -17943,7 +18888,7 @@ first place. }% \def\XINT_sgnfrac_N {% - \expandafter\xint_minus_afterstop\romannumeral0\XINT_sgnfrac_P + \expandafter\xint_minus_thenstop\romannumeral0\XINT_sgnfrac_P }% % \end{macrocode} % \subsection{\csh{xintFwOver}} @@ -17997,7 +18942,7 @@ first place. }% \def\XINT_sgnfwover_N {% - \expandafter\xint_minus_afterstop\romannumeral0\XINT_sgnfwover_P + \expandafter\xint_minus_thenstop\romannumeral0\XINT_sgnfwover_P }% % \end{macrocode} % \subsection{\csh{xintREZ}} @@ -18020,7 +18965,7 @@ first place. \krof }% \def\XINT_rez_zero #1\Z #2#3{ 0/1[0]}% -\def\XINT_rez_neg {\expandafter\xint_minus_afterstop\romannumeral0\XINT_rez_B }% +\def\XINT_rez_neg {\expandafter\xint_minus_thenstop\romannumeral0\XINT_rez_B }% \def\XINT_rez_B #1\Z {% \expandafter\XINT_rez_C\romannumeral0\XINT_factortens {#1}% @@ -18037,21 +18982,21 @@ first place. \def\XINT_rez_E #1#2#3{ #3/#2[#1]}% % \end{macrocode} % \subsection{\csh{xintE}} -% \lverb|added with with 1.07, together with support for `floats'. The fraction -% comes first here, contrarily to \xintTrunc and \xintRound. +% \lverb|1.07: The fraction is the first argument contrarily to \xintTrunc and +% \xintRound. % -% \xintfE (1.07) and \xintiE (1.09i) for \xintexpr and cousins. It is quite -% annoying that \numexpr does not know how to deal correctly with - : \numexpr -% -(1)\relax is illegal! +% \xintfE (1.07) and \xintiE (1.09i) are for \xintexpr and cousins. It is quite +% annoying that \numexpr does not know how to deal correctly with a minus sign - +% as prefix: \numexpr -(1)\relax is illegal! (one can do \numexpr 0-(1)\relax). % -% the 1.07 \xintE put directly its second argument in a \numexpr. The \xintfE -% first uses \xintNum on it, this necessary for use in \xintexpr. (but then one -% cannot use directly infix notation in the second argument of \xintfE) +% the 1.07 \xintE puts directly its second argument in a \numexpr. The \xintfE +% first uses \xintNum on it, this is necessary for use in \xintexpr. (but +% one cannot use directly infix notation in the second argument of \xintfE) % % 1.09i also adds \xintFloatE and modifies \XINTinFloatfE, although currently -% the latter is only used from -% \xintfloatexpr hence always with \XINTdigits, it comes equipped with its first -% argument withing brackets as the other \XINTinFloat... macros. | +% the latter is only used from \xintfloatexpr hence always with \XINTdigits, it +% comes equipped with its first argument withing brackets as the other +% \XINTinFloat... macros. | % \begin{macrocode} \def\xintE {\romannumeral0\xinte }% \def\xinte #1% @@ -18096,8 +19041,8 @@ first place. \expandafter\xint_exchangetwo_keepbraces\expandafter {\the\numexpr #2+#5}{#1}{#3}{#4}\XINT_float_Q }% -\def\XINTinFloatfE {\romannumeral0\XINT_inFloatfE }% -\def\XINT_inFloatfE [#1]#2% +\def\XINTinFloatfE {\romannumeral0\XINTinfloatfe }% +\def\XINTinfloatfe [#1]#2% {% \expandafter\XINT_infloatfe_a\expandafter {\the\numexpr #1\expandafter}\romannumeral0\XINT_infrac {#2}% @@ -18145,7 +19090,7 @@ first place. #2\Z {#3}% }% \def\XINT_irr_denomisone #1\Z #2{ #1/1}% changed in 1.08 -\def\XINT_irr_negative #1\Z #2{\XINT_irr_D #1\Z #2\Z \xint_minus_afterstop}% +\def\XINT_irr_negative #1\Z #2{\XINT_irr_D #1\Z #2\Z \xint_minus_thenstop}% \def\XINT_irr_nonneg #1\Z #2{\XINT_irr_D #1\Z #2\Z \space}% \def\XINT_irr_D #1#2\Z #3#4\Z {% @@ -18206,16 +19151,16 @@ first place. }% % \end{macrocode} % \subsection{\csh{xintifInt}} -% \lverb|1.09e. xintfrac.sty only. 1.09i uses _afterstop| +% \lverb|1.09e. xintfrac.sty only.| % \begin{macrocode} \def\xintifInt {\romannumeral0\xintifint }% \def\xintifint #1{\expandafter\XINT_ifint\romannumeral0\xintirr {#1}\Z }% \def\XINT_ifint #1/#2\Z {% \if\XINT_isOne {#2}1% - \expandafter\xint_firstoftwo_afterstop + \expandafter\xint_firstoftwo_thenstop \else - \expandafter\xint_secondoftwo_afterstop + \expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} @@ -18242,7 +19187,7 @@ first place. #2\Z {#3}% }% \def\XINT_jrr_denomisone #1\Z #2{ #1/1}% changed in 1.08 -\def\XINT_jrr_negative #1\Z #2{\XINT_jrr_D #1\Z #2\Z \xint_minus_afterstop }% +\def\XINT_jrr_negative #1\Z #2{\XINT_jrr_D #1\Z #2\Z \xint_minus_thenstop }% \def\XINT_jrr_nonneg #1\Z #2{\XINT_jrr_D #1\Z #2\Z \space}% \def\XINT_jrr_D #1#2\Z #3#4\Z {% @@ -18314,25 +19259,31 @@ first place. }% % \end{macrocode} % \subsection{\csh{XINTinFloatFrac}} -% \lverb|1.09i, for frac in \xintfloatexpr. Will have to think it again some -% day. This version first computes with exact precision the fractional part then -% only converts it into a float with the asked for number of digits. | +% \lverb|1.09i, for frac in \xintfloatexpr. This version computes +% exactly from the input the fractional part and then only converts it +% into a float with the asked-for number of digits. I will have to think +% it again some day, certainly. | % \begin{macrocode} -\def\XINTinFloatFrac {\romannumeral0\XINT_inFloatFrac }% -\def\XINT_inFloatFrac [#1]#2% +\def\XINTinFloatFrac {\romannumeral0\XINTinfloatfrac }% +\def\XINTinfloatfrac [#1]#2% {% \expandafter\XINT_infloatfrac_a\expandafter {\romannumeral0\xinttfrac{#2}}{#1}% }% -\def\XINT_infloatfrac_a #1#2{\XINT_inFloat [#2]{#1}}% +\def\XINT_infloatfrac_a #1#2{\XINTinFloat [#2]{#1}}% % \end{macrocode} % \subsection{\csh{xintTrunc}, \csh{xintiTrunc}} % \lverb|& -% Modified in 1.06 to give the first argument to a \numexpr. 1.09f fixes the -% overhead added in 1.09a to some inner routines when \xintiquo was redefined to -% use \xintnum, whereas it should not. Now uses \xintiiquo.| +% Modified in 1.06 to give the first argument to a \numexpr. +% +% 1.09f fixes the overhead added in 1.09a to some inner routines when \xintiquo +% was redefined to use \xintnum. Now uses \xintiiquo, rather. +% +% 1.09j: minor improvements, \XINT_trunc_E was very strange and defined two +% never occuring branches; also, optimizes the call to the division routine, and +% the zero loops.| % \begin{macrocode} -\def\xintTrunc {\romannumeral0\xinttrunc }% +\def\xintTrunc {\romannumeral0\xinttrunc }% \def\xintiTrunc {\romannumeral0\xintitrunc }% \def\xinttrunc #1% {% @@ -18363,10 +19314,10 @@ first place. {% \xint_gob_til_zero #2\XINT_trunc_iszero0\XINT_trunc_B {#1}{#2#3}% }% -\def\XINT_trunc_iszero #1#2#3#4#5{ 0\Z 0}% +\def\XINT_trunc_iszero0\XINT_trunc_B #1#2#3{ 0\Z 0}% \def\XINT_trunc_B #1% {% - \ifcase\XINT__Sgn #1\Z + \ifcase\XINT_cntSgn #1\Z \expandafter\XINT_trunc_D \or \expandafter\XINT_trunc_D @@ -18377,43 +19328,40 @@ first place. }% \def\XINT_trunc_C #1#2#3% {% - \expandafter \XINT_trunc_E - \romannumeral0\xint_dsh {#3}{#1}\Z #2\Z + \expandafter\XINT_trunc_CE\expandafter + {\romannumeral0\XINT_dsx_zeroloop {-#1}{}\Z {#3}}{#2}% }% +\def\XINT_trunc_CE #1#2{\XINT_trunc_E #2.{#1}}% \def\XINT_trunc_D #1#2% {% - \expandafter \XINT_trunc_DE \expandafter - {\romannumeral0\xint_dsh {#2}{-#1}}% + \expandafter\XINT_trunc_E + \romannumeral0\XINT_dsx_zeroloop {#1}{}\Z {#2}.% }% -\def\XINT_trunc_DE #1#2{\XINT_trunc_E #2\Z #1\Z }% -\def\XINT_trunc_E #1#2\Z #3#4\Z +\def\XINT_trunc_E #1% {% - \xint_UDsignsfork - #1#3\XINT_trunc_minusminus - #1-{\XINT_trunc_minusplus #3}% - #3-{\XINT_trunc_plusminus #1}% - --{\XINT_trunc_plusplus #3#1}% - \krof - {#4}{#2}% -}% -\def\XINT_trunc_minusminus #1#2{\xintiiquo {#1}{#2}\Z \space}% -\def\XINT_trunc_minusplus #1#2#3{\xintiiquo {#1#2}{#3}\Z \xint_minus_afterstop}% -\def\XINT_trunc_plusminus #1#2#3{\xintiiquo {#2}{#1#3}\Z \xint_minus_afterstop}% -\def\XINT_trunc_plusplus #1#2#3#4{\xintiiquo {#1#3}{#2#4}\Z \space}% + \xint_UDsignfork + #1\XINT_trunc_Fneg + -{\XINT_trunc_Fpos #1}% + \krof +}% +\def\XINT_trunc_Fneg #1.#2{\expandafter\xint_firstoftwo_thenstop + \romannumeral0\XINT_div_prepare {#2}{#1}\Z \xint_minus_thenstop}% +\def\XINT_trunc_Fpos #1.#2{\expandafter\xint_firstoftwo_thenstop + \romannumeral0\XINT_div_prepare {#2}{#1}\Z \space }% \def\XINT_itrunc_G #1#2\Z #3#4% {% - \xint_gob_til_zero #1\XINT_trunc_zero 0\xint_firstoftwo {#3#1#2}0% + \xint_gob_til_zero #1\XINT_trunc_zero 0#3#1#2% }% +\def\XINT_trunc_zero 0#1#20{ 0}% \def\XINT_trunc_G #1\Z #2#3% {% \xint_gob_til_zero #2\XINT_trunc_zero 0% \expandafter\XINT_trunc_H\expandafter {\the\numexpr\romannumeral0\xintlength {#1}-#3}{#3}{#1}#2% }% -\def\XINT_trunc_zero 0#10{ 0}% \def\XINT_trunc_H #1#2% {% - \ifnum #1 > 0 + \ifnum #1 > \xint_c_ \xint_afterfi {\XINT_trunc_Ha {#2}}% \else \xint_afterfi {\XINT_trunc_Hb {-#1}}% -0,--1,--2, .... @@ -18430,12 +19378,11 @@ first place. \def\XINT_trunc_Hb #1#2#3% {% \expandafter #3\expandafter0\expandafter.% - \romannumeral0\XINT_dsx_zeroloop {#1}{}\Z {}#2% #1=-0 possible! + \romannumeral0\XINT_dsx_zeroloop {#1}{}\Z {}#2% #1=-0 autorisé ! }% % \end{macrocode} % \subsection{\csh{xintRound}, \csh{xintiRound}} -% \lverb|& -% Modified in 1.06 to give the first argument to a \numexpr.| +% \lverb|Modified in 1.06 to give the first argument to a \numexpr.| % \begin{macrocode} \def\xintRound {\romannumeral0\xintround }% \def\xintiRound {\romannumeral0\xintiround }% @@ -18502,41 +19449,310 @@ first place. \XINT_addm_A 0{}1000\W\X\Y\Z #1000\W\X\Y\Z \Z }% % \end{macrocode} -% \subsection{\csh{xintRound:csv}} -% \lverb|1.09a. For use by \xinttheiexpr.| -% \begin{macrocode} -\def\xintRound:csv #1{\expandafter\XINT_round:_a\romannumeral-`0#1,,^}% -\def\XINT_round:_a {\XINT_round:_b {}}% -\def\XINT_round:_b #1#2,% - {\expandafter\XINT_round:_c\romannumeral-`0#2,{#1}}% -\def\XINT_round:_c #1{\if #1,\expandafter\XINT_:_f - \else\expandafter\XINT_round:_d\fi #1}% -\def\XINT_round:_d #1,% - {\expandafter\XINT_round:_e\romannumeral0\xintiround 0{#1},}% -\def\XINT_round:_e #1,#2{\XINT_round:_b {#2,#1}}% -% \end{macrocode} -% \subsection{\csh{xintDigits}} -% \lverb|& -% The mathchardef used to be called \XINT_digits, but for reasons originating in -% \xintNewExpr, release 1.09a uses \XINTdigits without underscore.| -% \begin{macrocode} -\mathchardef\XINTdigits 16 -\def\xintDigits #1#2% - {\afterassignment \xint_gobble_i \mathchardef\XINTdigits=}% -\def\xinttheDigits {\number\XINTdigits }% -% \end{macrocode} -% \subsection{\csh{xintFloat}} -% \lverb|1.07. Completely re-written in 1.08a, with spectacular speed -% gains. The earlier version was seriously silly when dealing with -% inputs having a big power of ten. Again some modifications in 1.08b -% for a better treatment of cases with long explicit numerators or -% denominators. Macro \xintFloat:csv added in 1.09 for use by xintexpr. Here -% again some inner macros used the \xintiquo with extra \xintnum overhead in -% 1.09a, reverted in 1.09f.| +% \subsection{\csh{xintXTrunc}} +% \lverb|1.09j [2014/01/06] This is completely expandable but not f-expandable. +% Designed be used inside an \edef or a \write, if one is interested in getting +% tens of thousands of digits from the decimal expansion of some fraction... it +% is not worth using it rather than \xintTrunc if for less than *hundreds* of +% digits. For efficiency it clones part of the preparatory division macros, as +% the same denominator will be used again and again. The D parameter which says +% how many digits to keep after decimal mark must be at least 1 (and it is +% forcefully set to such a value if found negative or zero, to avoid an eternal +% loop). +% +% For reasons of efficiency I try to use the shortest possible denominator, so +% if the fraction is A/B[N], I want to use B. For N at least zero, just +% immediately replace A by A.10^N. The first division then may be a little +% longish but the next ones will be fast (if B is not too big). For N<0, this is +% a bit more complicated. I thought somewhat about this, and I would need a +% rather complicated approach going through a long division algorithm, forcing +% me to essentially clone the actual division with some differences; a side +% thing is that as this would use blocks of four digits I would have a hard time +% allowing a non-multiple of four number of post decimal mark digits. +% +% Thus, for N<0, another method is followed. First the euclidean division +% A/B=Q+R/B is done. The number of digits of Q is M. If |N|\leq D, we launch +% inside a \csname the routine for obtaining D-|N| next digits (this may impact +% TeX's memory if D is very big), call them T. We then need to position the +% decimal mark D slots from the right of QT, which has length M+D-|N|, hence |N| +% slots from the right of Q. We thus avoid having to work will the T, as D may +% be very very big (\xintXTrunc's only goal is to make it possible to learn by +% hearts decimal expansions with thousands of digits). We can use the +% \xintDecSplit for that on Q . Computing the length M of Q was a more or less +% unavoidable step. If |N|>D, the \csname step is skipped we need to remove the +% D-|N| last digits from Q, etc.. we compare D-|N| with the length M of Q etc... +% (well in this last, very uncommon, branch, I stopped trying to optimize thinsg +% and I even do an \xintnum to ensure a 0 if something comes out empty from +% \xintDecSplit).| % \begin{macrocode} -\def\xintFloat {\romannumeral0\xintfloat }% -\def\xintfloat #1{\XINT_float_chkopt #1\Z }% -\def\XINT_float_chkopt #1% +\def\xintXTrunc #1#2% +{% + \expandafter\XINT_xtrunc_a\expandafter + {\the\numexpr #1\expandafter}\romannumeral0\xintraw {#2}% +}% +\def\XINT_xtrunc_a #1% +{% + \expandafter\XINT_xtrunc_b\expandafter + {\the\numexpr\ifnum#1<\xint_c_i \xint_c_i-\fi #1}% +}% +\def\XINT_xtrunc_b #1% +{% + \expandafter\XINT_xtrunc_c\expandafter + {\the\numexpr (#1+\xint_c_ii^v)/\xint_c_ii^vi-\xint_c_i}{#1}% +}% +\def\XINT_xtrunc_c #1#2% +{% + \expandafter\XINT_xtrunc_d\expandafter + {\the\numexpr #2-\xint_c_ii^vi*#1}{#1}{#2}% +}% +\def\XINT_xtrunc_d #1#2#3#4/#5[#6]% +{% + \XINT_xtrunc_e #4.{#6}{#5}{#3}{#2}{#1}% +}% +% #1=numerator.#2=N,#3=B,#4=D,#5=Blocs,#6=extra +\def\XINT_xtrunc_e #1% +{% + \xint_UDzerominusfork + #1-\XINT_xtrunc_zero + 0#1\XINT_xtrunc_N + 0-{\XINT_xtrunc_P #1}% + \krof +}% +\def\XINT_xtrunc_zero .#1#2#3#4#5% +{% + 0.\romannumeral0\expandafter\XINT_dsx_zeroloop\expandafter + {\the\numexpr #5}{}\Z {}% + \xintiloop [#4+-1] + \ifnum \xintiloopindex>\xint_c_ + 0000000000000000000000000000000000000000000000000000000000000000% + \repeat +}% +\def\XINT_xtrunc_N {-\XINT_xtrunc_P }% +\def\XINT_xtrunc_P #1.#2% +{% + \ifnum #2<\xint_c_ + \expandafter\XINT_xtrunc_negN_Q + \else + \expandafter\XINT_xtrunc_Q + \fi {#2}{#1}.% +}% +\def\XINT_xtrunc_negN_Q #1#2.#3#4#5#6% +{% + \expandafter\XINT_xtrunc_negN_R + \romannumeral0\XINT_div_prepare {#3}{#2}{#3}{#1}{#4}% +}% +% #1=Q, #2=R, #3=B, #4=N<0, #5=D +\def\XINT_xtrunc_negN_R #1#2#3#4#5% +{% + \expandafter\XINT_xtrunc_negN_S\expandafter + {\the\numexpr -#4}{#5}{#2}{#3}{#1}% +}% +\def\XINT_xtrunc_negN_S #1#2% +{% + \expandafter\XINT_xtrunc_negN_T\expandafter + {\the\numexpr #2-#1}{#1}{#2}% +}% +\def\XINT_xtrunc_negN_T #1% +{% + \ifnum \xint_c_<#1 + \expandafter\XINT_xtrunc_negNA + \else + \expandafter\XINT_xtrunc_negNW + \fi {#1}% +}% +% #1=D-|N|>0, #2=|N|, #3=D, #4=R, #5=B, #6=Q +\def\XINT_xtrunc_unlock #10.{ }% +\def\XINT_xtrunc_negNA #1#2#3#4#5#6% +{% + \expandafter\XINT_xtrunc_negNB\expandafter + {\romannumeral0\expandafter\expandafter\expandafter + \XINT_xtrunc_unlock\expandafter\string + \csname\XINT_xtrunc_b {#1}#4/#5[0]\expandafter\endcsname + \expandafter}\expandafter + {\the\numexpr\xintLength{#6}-#2}{#6}% +}% +\def\XINT_xtrunc_negNB #1#2#3{\XINT_xtrunc_negNC {#2}{#3}#1}% +\def\XINT_xtrunc_negNC #1% +{% + \ifnum \xint_c_ < #1 + \expandafter\XINT_xtrunc_negNDa + \else + \expandafter\XINT_xtrunc_negNE + \fi {#1}% +}% +\def\XINT_xtrunc_negNDa #1#2% +{% + \expandafter\XINT_xtrunc_negNDb% + \romannumeral0\XINT_split_fromleft_loop {#1}{}#2\W\W\W\W\W\W\W\W\Z +}% +\def\XINT_xtrunc_negNDb #1#2{#1.#2}% +\def\XINT_xtrunc_negNE #1#2% +{% + 0.\romannumeral0\XINT_dsx_zeroloop {-#1}{}\Z {}#2% +}% +% #1=D-|N|<=0, #2=|N|, #3=D, #4=R, #5=B, #6=Q +\def\XINT_xtrunc_negNW #1#2#3#4#5#6% +{% + \expandafter\XINT_xtrunc_negNX\expandafter + {\romannumeral0\xintnum{\xintDecSplitL {-#1}{#6}}}{#3}% +}% +\def\XINT_xtrunc_negNX #1#2% +{% + \expandafter\XINT_xtrunc_negNC\expandafter + {\the\numexpr\xintLength {#1}-#2}{#1}% +}% +\def\XINT_xtrunc_Q #1% +{% + \expandafter\XINT_xtrunc_prepare_I + \romannumeral0\XINT_dsx_zeroloop {#1}{}\Z +}% +\def\XINT_xtrunc_prepare_I #1.#2#3% +{% + \expandafter\XINT_xtrunc_prepareB_aa\expandafter + {\romannumeral0\xintlength {#2}}{#2}{#1}% +}% +\def\XINT_xtrunc_prepareB_aa #1% +{% + \ifnum #1=\xint_c_i + \expandafter\XINT_xtrunc_prepareB_onedigit + \else + \expandafter\XINT_xtrunc_prepareB_PaBa + \fi + {#1}% +}% +\def\XINT_xtrunc_prepareB_onedigit #1#2% +{% + \ifcase#2 + \or\expandafter\XINT_xtrunc_BisOne + \or\expandafter\XINT_xtrunc_BisTwo + \else\expandafter\XINT_xtrunc_prepareB_PaBe + \fi {000}{0}{4}{#2}% +}% +\def\XINT_xtrunc_BisOne #1#2#3#4#5#6#7% +{% + #5.\romannumeral0\expandafter\XINT_dsx_zeroloop\expandafter + {\the\numexpr #7}{}\Z {}% + \xintiloop [#6+-1] + \ifnum \xintiloopindex>\xint_c_ + 0000000000000000000000000000000000000000000000000000000000000000% + \repeat +}% +\def\XINT_xtrunc_BisTwo #1#2#3#4#5#6#7% +{% + \xintHalf {#5}.\ifodd\xintiiLDg{#5} 5\else 0\fi + \romannumeral0\expandafter\XINT_dsx_zeroloop\expandafter + {\the\numexpr #7-\xint_c_i}{}\Z {}% + \xintiloop [#6+-1] + \ifnum \xintiloopindex>\xint_c_ + 0000000000000000000000000000000000000000000000000000000000000000% + \repeat +}% +\def\XINT_xtrunc_prepareB_PaBa #1#2% +{% + \expandafter\XINT_xtrunc_Pa\expandafter + {\romannumeral0\XINT_xtrunc_prepareB_a {#1}{#2}}% +}% +\def\XINT_xtrunc_prepareB_a #1% +{% + \expandafter\XINT_xtrunc_prepareB_c\expandafter + {\the\numexpr \xint_c_iv*((#1+\xint_c_i)/\xint_c_iv)}{#1}% +}% +\def\XINT_xtrunc_prepareB_c #1#2% +{% + \csname XINT_xtrunc_prepareB_d\romannumeral\numexpr#1-#2\endcsname + {#1}% +}% +\def\XINT_xtrunc_prepareB_d {\XINT_xtrunc_prepareB_e {}{0000}}% +\def\XINT_xtrunc_prepareB_di {\XINT_xtrunc_prepareB_e {0}{000}}% +\def\XINT_xtrunc_prepareB_dii {\XINT_xtrunc_prepareB_e {00}{00}}% +\def\XINT_xtrunc_prepareB_diii {\XINT_xtrunc_prepareB_e {000}{0}}% +\def\XINT_xtrunc_prepareB_PaBe #1#2#3#4% +{% + \expandafter\XINT_xtrunc_Pa\expandafter + {\romannumeral0\XINT_xtrunc_prepareB_e {#1}{#2}{#3}{#4}}% +}% +\def\XINT_xtrunc_prepareB_e #1#2#3#4% +{% + \ifnum#3=\xint_c_iv\expandafter\XINT_xtrunc_prepareLittleB_f + \else\expandafter\XINT_xtrunc_prepareB_f + \fi + #4#1{#3}{#2}{#1}% +}% +\def\XINT_xtrunc_prepareB_f #1#2#3#4#5#{% + \expandafter\space + \expandafter\XINT_div_prepareB_g + \the\numexpr #1#2#3#4+\xint_c_i\expandafter + .\the\numexpr (#1#2#3#4+\xint_c_i)/\xint_c_ii\expandafter + .\romannumeral0\xintreverseorder {#1#2#3#4#5}.{#1#2#3#4}% +}% +\def\XINT_xtrunc_prepareLittleB_f #1#{% + \expandafter\space\expandafter + \XINT_div_prepareB_g \the\numexpr #1/\xint_c_ii.{}.{}.{#1}% +}% +\def\XINT_xtrunc_Pa #1#2% +{% + \expandafter\XINT_xtrunc_Pb\romannumeral0#1{#2}{#1}% +}% +\def\XINT_xtrunc_Pb #1#2#3#4{#1.\XINT_xtrunc_A {#4}{#2}{#3}}% +\def\XINT_xtrunc_A #1% +{% + \unless\ifnum #1>\xint_c_ \XINT_xtrunc_transition\fi + \expandafter\XINT_xtrunc_B\expandafter{\the\numexpr #1-\xint_c_i}% +}% +\def\XINT_xtrunc_B #1#2#3% +{% + \expandafter\XINT_xtrunc_D\romannumeral0#3% + {#20000000000000000000000000000000000000000000000000000000000000000}% + {#1}{#3}% +}% +\def\XINT_xtrunc_D #1#2#3% +{% + \romannumeral0\expandafter\XINT_dsx_zeroloop\expandafter + {\the\numexpr \xint_c_ii^vi-\xintLength{#1}}{}\Z {}#1% + \XINT_xtrunc_A {#3}{#2}% +}% +\def\XINT_xtrunc_transition\fi + \expandafter\XINT_xtrunc_B\expandafter #1#2#3#4% +{% + \fi + \ifnum #4=\xint_c_ \XINT_xtrunc_abort\fi + \expandafter\XINT_xtrunc_x\expandafter + {\romannumeral0\XINT_dsx_zeroloop {#4}{}\Z {#2}}{#3}{#4}% +}% +\def\XINT_xtrunc_x #1#2% +{% + \expandafter\XINT_xtrunc_y\romannumeral0#2{#1}% +}% +\def\XINT_xtrunc_y #1#2#3% +{% + \romannumeral0\expandafter\XINT_dsx_zeroloop\expandafter + {\the\numexpr #3-\xintLength{#1}}{}\Z {}#1% +}% +\def\XINT_xtrunc_abort\fi\expandafter\XINT_xtrunc_x\expandafter #1#2#3{\fi}% +% \end{macrocode} +% \subsection{\csh{xintDigits}} +% \lverb|& +% The mathchardef used to be called \XINT_digits, but for reasons originating in +% \xintNewExpr, release 1.09a uses \XINTdigits without underscore.| +% \begin{macrocode} +\mathchardef\XINTdigits 16 +\def\xintDigits #1#2% + {\afterassignment \xint_gobble_i \mathchardef\XINTdigits=}% +\def\xinttheDigits {\number\XINTdigits }% +% \end{macrocode} +% \subsection{\csh{xintFloat}} +% \lverb|1.07. Completely re-written in 1.08a, with spectacular speed +% gains. The earlier version was seriously silly when dealing with +% inputs having a big power of ten. Again some modifications in 1.08b +% for a better treatment of cases with long explicit numerators or +% denominators. +% +% Here again some inner macros used the \xintiquo with extra \xintnum overhead +% in 1.09a, 1.09f reinstalled use of \xintiiquo without this overhead.| +% \begin{macrocode} +\def\xintFloat {\romannumeral0\xintfloat }% +\def\xintfloat #1{\XINT_float_chkopt #1\Z }% +\def\XINT_float_chkopt #1% {% \ifx [#1\expandafter\XINT_float_opt \else\expandafter\XINT_float_noopt @@ -18566,7 +19782,7 @@ first place. \krof }% \def\XINT_float_zero #1\Z #2#3#4#5{ 0.e0}% -\def\XINT_float_J {\expandafter\xint_minus_afterstop\romannumeral0\XINT_float_K }% +\def\XINT_float_J {\expandafter\xint_minus_thenstop\romannumeral0\XINT_float_K }% \def\XINT_float_K #1\Z #2% #1=A, #2=P, #3=n, #4=B {% \expandafter\XINT_float_L\expandafter @@ -18708,39 +19924,29 @@ first place. }% \def\XINT_float_Y #1#2{ #2e#1}% % \end{macrocode} -% \subsection{\csh{xintFloat:csv}} -% \lverb|1.09a. For use by \xintthefloatexpr.| -% \begin{macrocode} -\def\xintFloat:csv #1{\expandafter\XINT_float:_a\romannumeral-`0#1,,^}% -\def\XINT_float:_a {\XINT_float:_b {}}% -\def\XINT_float:_b #1#2,% - {\expandafter\XINT_float:_c\romannumeral-`0#2,{#1}}% -\def\XINT_float:_c #1{\if #1,\expandafter\XINT_:_f - \else\expandafter\XINT_float:_d\fi #1}% -\def\XINT_float:_d #1,% - {\expandafter\XINT_float:_e\romannumeral0\xintfloat {#1},}% -\def\XINT_float:_e #1,#2{\XINT_float:_b {#2,#1}}% -% \end{macrocode} -% \subsection{\csh{XINT\_inFloat}} +% \subsection{\csh{XINTinFloat}} % \lverb|1.07. Completely rewritten in 1.08a for immensely greater efficiency -% when the -% power of ten is big: previous version had some very serious bottlenecks -% arising from the creation of long strings of zeros, which made things such as -% 2^999999 completely impossible, but now even 2^999999999 with 24 significant -% digits is no problem! Again (slightly) improved in 1.08b. +% when the power of ten is big: previous version had some very serious +% bottlenecks arising from the creation of long strings of zeros, which made +% things such as 2^999999 completely impossible, but now even 2^999999999 with +% 24 significant digits is no problem! Again (slightly) improved in 1.08b. % -% For convenience in xintexpr.sty (special r\^ole of the underscore in -% \xintNewExpr) 1.09a adds \XINTinFloat. I also decide in 1.09a not to use -% anymore \romannumeral`-0 mais \romannumeral0 in the float routines, for -% consistency of style. +% I decide in 1.09a not to use anymore \romannumeral`-0 mais \romannumeral0 also +% in the float routines, for consistency of style. % -% Here -% again some inner macros used the \xintiquo with extra \xintnum overhead in -% 1.09a, reverted in 1.09f. -% | +% Here again some inner macros used the \xintiquo with extra \xintnum overhead +% in 1.09a, 1.09f fixed that to use \xintiiquo for example. +% +% 1.09i added a stupid bug to \XINT_infloat_zero when it changed 0[0] to a silly +% 0/1[0], breaking in particular \xintFloatAdd when one of the argument is zero +% :((( +% +% 1.09j fixes this. Besides, for notational coherence \XINT_inFloat and +% \XINT_infloat have been renamed respectively \XINTinFloat and \XINT_infloat in +% release 1.09j.| % \begin{macrocode} -\def\XINTinFloat {\romannumeral0\XINT_inFloat }% -\def\XINT_inFloat [#1]#2% +\def\XINTinFloat {\romannumeral0\XINTinfloat }% +\def\XINTinfloat [#1]#2% {% \expandafter\XINT_infloat_a\expandafter {\the\numexpr #1\expandafter}% @@ -18758,7 +19964,9 @@ first place. 0-{\XINT_float_K #1}% \krof }% -\def\XINT_infloat_zero #1\Z #2#3#4#5{ 0/1[0]}% +\def\XINT_infloat_zero #1\Z #2#3#4#5{ 0[0]}% +% the 0[0] was stupidly changed to 0/1[0] in 1.09i, with the result that the +% Float addition would crash when an operand was zero \def\XINT_infloat_J {\expandafter-\romannumeral0\XINT_float_K }% \def\XINT_infloat_Q #1% {% @@ -18896,7 +20104,7 @@ first place. }% \def\XINT_fsub_D #1#2{\XINT_outfrac {#2}{#1}}% % \end{macrocode} -% \subsection{\csh{xintSum}, \csh{xintSumExpr}} +% \subsection{\csh{xintSum}} % \begin{macrocode} \def\xintSum {\romannumeral0\xintsum }% \def\xintsum #1{\xintsumexpr #1\relax }% @@ -18918,17 +20126,6 @@ first place. }% \def\XINT_fsum_finished #1\Z #2{ #2}% % \end{macrocode} -% \subsection{\csh{xintSum:csv}} -% \lverb|1.09a. For use by \xintexpr.| -% \begin{macrocode} -\def\xintSum:csv #1{\expandafter\XINT_sum:_a\romannumeral-`0#1,,^}% -\def\XINT_sum:_a {\XINT_sum:_b {0/1[0]}}% -\def\XINT_sum:_b #1#2,{\expandafter\XINT_sum:_c\romannumeral-`0#2,{#1}}% -\def\XINT_sum:_c #1{\if #1,\expandafter\XINT_:_e - \else\expandafter\XINT_sum:_d\fi #1}% -\def\XINT_sum:_d #1,#2{\expandafter\XINT_sum:_b\expandafter - {\romannumeral0\xintadd {#2}{#1}}}% -% \end{macrocode} % \subsection{\csh{xintMul}} % \begin{macrocode} \def\xintMul {\romannumeral0\xintmul }% @@ -18962,14 +20159,17 @@ first place. % \end{macrocode} % \subsection{\csh{xintPow}} % \lverb|& -% Modified in 1.06 to give the exponent to a \numexpr.$\ +% Modified in 1.06 to give the exponent to a \numexpr. +% % With 1.07 and for use within the \xintexpr parser, we must allow % fractions (which are integers in disguise) as input to the exponent, so we % must have a variant which uses \xintNum and not only \numexpr -% for normalizing the input. Hence the \xintfPow here. 1.08b: well actually I +% for normalizing the input. Hence the \xintfPow here. +% +% 1.08b: well actually I % think that with xintfrac.sty loaded the exponent should always be allowed to % be a fraction giving an integer. So I do as for \xintFac, and remove here the -% duplicated. The \xintexpr can thus use directly \xintPow.| +% duplicated. Then \xintexpr can use the \xintPow as defined here.| % \begin{macrocode} \def\xintPow {\romannumeral0\xintpow }% \def\xintpow #1% @@ -19024,7 +20224,7 @@ first place. \expandafter\XINT_fac_fork\expandafter{\the\numexpr \xintNum{#1}}% }% % \end{macrocode} -% \subsection{\csh{xintPrd}, \csh{xintPrdExpr}} +% \subsection{\csh{xintPrd}} % \begin{macrocode} \def\xintPrd {\romannumeral0\xintprd }% \def\xintprd #1{\xintprdexpr #1\relax }% @@ -19046,17 +20246,6 @@ first place. }% \def\XINT_fprod_finished #1\Z #2{ #2}% % \end{macrocode} -% \subsection{\csh{xintPrd:csv}} -% \lverb|1.09a. For use by \xintexpr.| -% \begin{macrocode} -\def\xintPrd:csv #1{\expandafter\XINT_prd:_a\romannumeral-`0#1,,^}% -\def\XINT_prd:_a {\XINT_prd:_b {1/1[0]}}% -\def\XINT_prd:_b #1#2,{\expandafter\XINT_prd:_c\romannumeral-`0#2,{#1}}% -\def\XINT_prd:_c #1{\if #1,\expandafter\XINT_:_e - \else\expandafter\XINT_prd:_d\fi #1}% -\def\XINT_prd:_d #1,#2{\expandafter\XINT_prd:_b\expandafter - {\romannumeral0\xintmul {#2}{#1}}}% -% \end{macrocode} % \subsection{\csh{xintDiv}} % \begin{macrocode} \def\xintDiv {\romannumeral0\xintdiv }% @@ -19127,7 +20316,7 @@ first place. }% \def\XINT_fgeq_D #1#2#3% {% - \expandafter\XINT__SgnFork\romannumeral-`0\expandafter\XINT__Sgn + \expandafter\XINT_cntSgnFork\romannumeral-`0\expandafter\XINT_cntSgn \the\numexpr #2+\xintLength{#3}-\xintLength{#1}\relax\Z { 0}{\XINT_fgeq_E #2\Z {#3}{#1}}{ 1}% }% @@ -19174,7 +20363,7 @@ first place. #1#5{#2/#3[#4]}{#6/#7[#8]}% }% \def\XINT_fmax_minusminus --% - {\expandafter\xint_minus_afterstop\romannumeral0\XINT_fmin_nonneg_b }% + {\expandafter\xint_minus_thenstop\romannumeral0\XINT_fmin_nonneg_b }% \def\XINT_fmax_firstneg #1-#2#3{ #1#2}% \def\XINT_fmax_secondneg -#1#2#3{ #1#3}% \def\XINT_fmax_nonneg_a #1#2#3#4% @@ -19190,8 +20379,6 @@ first place. }% % \end{macrocode} % \subsection{\csh{xintMaxof}} -% \lverb|\xintMaxof:csv is for private use in \xintexpr. Even with only one -% argument, there does not seem to be really a motive for using \xintraw.| % \begin{macrocode} \def\xintMaxof {\romannumeral0\xintmaxof }% \def\xintmaxof #1{\expandafter\XINT_maxof_a\romannumeral-`0#1\relax }% @@ -19204,45 +20391,6 @@ first place. {\expandafter\XINT_maxof_b\romannumeral0\xintmax {#1}}% \def\XINT_maxof_e #1\Z #2\Z { #2}% % \end{macrocode} -% \subsection{\csh{xintMaxof:csv}} -% \lverb|1.09a. For use by \xintexpr.| -% \begin{macrocode} -\def\xintMaxof:csv #1{\expandafter\XINT_maxof:_b\romannumeral-`0#1,,}% -\def\XINT_maxof:_b #1,#2,{\expandafter\XINT_maxof:_c\romannumeral-`0#2,{#1},}% -\def\XINT_maxof:_c #1{\if #1,\expandafter\XINT_of:_e - \else\expandafter\XINT_maxof:_d\fi #1}% -\def\XINT_maxof:_d #1,{\expandafter\XINT_maxof:_b\romannumeral0\xintmax {#1}}% -% \end{macrocode} -% \subsection{\csh{XINTinFloatMaxof}} -% \lverb|1.09a, for use by \xintNewFloatExpr. Name changed in 1.09h| -% \begin{macrocode} -\def\XINTinFloatMaxof {\romannumeral0\XINTinfloatmaxof }% -\def\XINTinfloatmaxof #1{\expandafter\XINT_flmaxof_a\romannumeral-`0#1\relax }% -\def\XINT_flmaxof_a #1{\expandafter\XINT_flmaxof_b - \romannumeral0\XINT_inFloat [\XINTdigits]{#1}\Z }% -\def\XINT_flmaxof_b #1\Z #2% - {\expandafter\XINT_flmaxof_c\romannumeral-`0#2\Z {#1}\Z}% -\def\XINT_flmaxof_c #1% - {\xint_gob_til_relax #1\XINT_flmaxof_e\relax\XINT_flmaxof_d #1}% -\def\XINT_flmaxof_d #1\Z - {\expandafter\XINT_flmaxof_b\romannumeral0\xintmax - {\XINTinFloat [\XINTdigits]{#1}}}% -\def\XINT_flmaxof_e #1\Z #2\Z { #2}% -% \end{macrocode} -% \subsection{\csh{XINTinFloatMaxof:csv}} -% \lverb|1.09a. For use by \xintfloatexpr. Name changed in 1.09h| -% \begin{macrocode} -\def\XINTinFloatMaxof:csv #1{\expandafter\XINT_flmaxof:_a\romannumeral-`0#1,,}% -\def\XINT_flmaxof:_a #1,{\expandafter\XINT_flmaxof:_b - \romannumeral0\XINT_inFloat [\XINTdigits]{#1},}% -\def\XINT_flmaxof:_b #1,#2,% - {\expandafter\XINT_flmaxof:_c\romannumeral-`0#2,{#1},}% -\def\XINT_flmaxof:_c #1{\if #1,\expandafter\XINT_of:_e - \else\expandafter\XINT_flmaxof:_d\fi #1}% -\def\XINT_flmaxof:_d #1,% - {\expandafter\XINT_flmaxof:_b\romannumeral0\xintmax - {\XINTinFloat [\XINTdigits]{#1}}}% -% \end{macrocode} % \subsection{\csh{xintMin}} % \lverb|& % Rewritten completely in 1.08a.| @@ -19267,7 +20415,7 @@ first place. #1#5{#2/#3[#4]}{#6/#7[#8]}% }% \def\XINT_fmin_minusminus --% - {\expandafter\xint_minus_afterstop\romannumeral0\XINT_fmax_nonneg_b }% + {\expandafter\xint_minus_thenstop\romannumeral0\XINT_fmax_nonneg_b }% \def\XINT_fmin_firstneg #1-#2#3{ -#3}% \def\XINT_fmin_secondneg -#1#2#3{ -#2}% \def\XINT_fmin_nonneg_a #1#2#3#4% @@ -19295,45 +20443,6 @@ first place. {\expandafter\XINT_minof_b\romannumeral0\xintmin {#1}}% \def\XINT_minof_e #1\Z #2\Z { #2}% % \end{macrocode} -% \subsection{\csh{xintMinof:csv}} -% \lverb|1.09a. For use by \xintexpr.| -% \begin{macrocode} -\def\xintMinof:csv #1{\expandafter\XINT_minof:_b\romannumeral-`0#1,,}% -\def\XINT_minof:_b #1,#2,{\expandafter\XINT_minof:_c\romannumeral-`0#2,{#1},}% -\def\XINT_minof:_c #1{\if #1,\expandafter\XINT_of:_e - \else\expandafter\XINT_minof:_d\fi #1}% -\def\XINT_minof:_d #1,{\expandafter\XINT_minof:_b\romannumeral0\xintmin {#1}}% -% \end{macrocode} -% \subsection{\csh{XINTinFloatMinof}} -% \lverb|1.09a, for use by \xintNewFloatExpr. Name changed in 1.09h| -% \begin{macrocode} -\def\XINTinFloatMinof {\romannumeral0\XINTinfloatminof }% -\def\XINTinfloatminof #1{\expandafter\XINT_flminof_a\romannumeral-`0#1\relax }% -\def\XINT_flminof_a #1{\expandafter\XINT_flminof_b - \romannumeral0\XINT_inFloat [\XINTdigits]{#1}\Z }% -\def\XINT_flminof_b #1\Z #2% - {\expandafter\XINT_flminof_c\romannumeral-`0#2\Z {#1}\Z}% -\def\XINT_flminof_c #1% - {\xint_gob_til_relax #1\XINT_flminof_e\relax\XINT_flminof_d #1}% -\def\XINT_flminof_d #1\Z - {\expandafter\XINT_flminof_b\romannumeral0\xintmin - {\XINTinFloat [\XINTdigits]{#1}}}% -\def\XINT_flminof_e #1\Z #2\Z { #2}% -% \end{macrocode} -% \subsection{\csh{XINTinFloatMinof:csv}} -% \lverb|1.09a. For use by \xintfloatexpr. Name changed in 1.09h| -% \begin{macrocode} -\def\XINTinFloatMinof:csv #1{\expandafter\XINT_flminof:_a\romannumeral-`0#1,,}% -\def\XINT_flminof:_a #1,{\expandafter\XINT_flminof:_b - \romannumeral0\XINT_inFloat [\XINTdigits]{#1},}% -\def\XINT_flminof:_b #1,#2,% - {\expandafter\XINT_flminof:_c\romannumeral-`0#2,{#1},}% -\def\XINT_flminof:_c #1{\if #1,\expandafter\XINT_of:_e - \else\expandafter\XINT_flminof:_d\fi #1}% -\def\XINT_flminof:_d #1,% - {\expandafter\XINT_flminof:_b\romannumeral0\xintmin - {\XINTinFloat [\XINTdigits]{#1}}}% -% \end{macrocode} % \subsection{\csh{xintCmp}} % \lverb|& % Rewritten completely in 1.08a to be less dumb when comparing fractions having @@ -19397,7 +20506,7 @@ first place. }% \def\XINT_fcmp_D #1#2#3% {% - \expandafter\XINT__SgnFork\romannumeral-`0\expandafter\XINT__Sgn + \expandafter\XINT_cntSgnFork\romannumeral-`0\expandafter\XINT_cntSgn \the\numexpr #2+\xintLength{#3}-\xintLength{#1}\relax\Z { -1}{\XINT_fcmp_E #2\Z {#3}{#1}}{ 1}% }% @@ -19439,13 +20548,13 @@ first place. \def\xintSgn {\romannumeral0\xintsgn }% \def\xintsgn #1{\expandafter\XINT_sgn\romannumeral0\xintraw {#1}\Z }% % \end{macrocode} -% \subsection{\csh{xintFloatAdd}} +% \subsection{\csh{xintFloatAdd}, \csh{XINTinFloatAdd}} % \lverb|1.07| % \begin{macrocode} \def\xintFloatAdd {\romannumeral0\xintfloatadd }% \def\xintfloatadd #1{\XINT_fladd_chkopt \xintfloat #1\Z }% \def\XINTinFloatAdd {\romannumeral0\XINTinfloatadd }% -\def\XINTinfloatadd #1{\XINT_fladd_chkopt \XINT_inFloat #1\Z }% +\def\XINTinfloatadd #1{\XINT_fladd_chkopt \XINTinfloat #1\Z }% \def\XINT_fladd_chkopt #1#2% {% \ifx [#2\expandafter\XINT_fladd_opt @@ -19463,11 +20572,11 @@ first place. \def\XINT_FL_Add #1#2% {% \expandafter\XINT_FL_Add_a\expandafter{\the\numexpr #1\expandafter}% - \expandafter{\romannumeral0\XINT_inFloat [#1]{#2}}% + \expandafter{\romannumeral0\XINTinfloat [#1]{#2}}% }% \def\XINT_FL_Add_a #1#2#3% {% - \expandafter\XINT_FL_Add_b\romannumeral0\XINT_inFloat [#1]{#3}#2{#1}% + \expandafter\XINT_FL_Add_b\romannumeral0\XINTinfloat [#1]{#3}#2{#1}% }% \def\XINT_FL_Add_b #1% {% @@ -19490,13 +20599,13 @@ first place. \def\XINT_FL_Add_zero 0\XINT_FL_Add_c 0[0]#1[#2]#3{#1[#2]}% \def\XINT_FL_Add_zerobis 0\XINT_FL_Add_d #1[#2]0[0]#3{#1[#2]}% % \end{macrocode} -% \subsection{\csh{xintFloatSub}} +% \subsection{\csh{xintFloatSub}, \csh{XINTinFloatSub}} % \lverb|1.07| % \begin{macrocode} \def\xintFloatSub {\romannumeral0\xintfloatsub }% \def\xintfloatsub #1{\XINT_flsub_chkopt \xintfloat #1\Z }% \def\XINTinFloatSub {\romannumeral0\XINTinfloatsub }% -\def\XINTinfloatsub #1{\XINT_flsub_chkopt \XINT_inFloat #1\Z }% +\def\XINTinfloatsub #1{\XINT_flsub_chkopt \XINTinfloat #1\Z }% \def\XINT_flsub_chkopt #1#2% {% \ifx [#2\expandafter\XINT_flsub_opt @@ -19512,13 +20621,13 @@ first place. #1[#2]{\XINT_FL_Add {#2+2}{#3}{\xintOpp{#4}}}% }% % \end{macrocode} -% \subsection{\csh{xintFloatMul}} +% \subsection{\csh{xintFloatMul}, \csh{XINTinFloatMul}} % \lverb|1.07| % \begin{macrocode} \def\xintFloatMul {\romannumeral0\xintfloatmul}% \def\xintfloatmul #1{\XINT_flmul_chkopt \xintfloat #1\Z }% \def\XINTinFloatMul {\romannumeral0\XINTinfloatmul }% -\def\XINTinfloatmul #1{\XINT_flmul_chkopt \XINT_inFloat #1\Z }% +\def\XINTinfloatmul #1{\XINT_flmul_chkopt \XINTinfloat #1\Z }% \def\XINT_flmul_chkopt #1#2% {% \ifx [#2\expandafter\XINT_flmul_opt @@ -19536,21 +20645,21 @@ first place. \def\XINT_FL_Mul #1#2% {% \expandafter\XINT_FL_Mul_a\expandafter{\the\numexpr #1\expandafter}% - \expandafter{\romannumeral0\XINT_inFloat [#1]{#2}}% + \expandafter{\romannumeral0\XINTinfloat [#1]{#2}}% }% \def\XINT_FL_Mul_a #1#2#3% {% - \expandafter\XINT_FL_Mul_b\romannumeral0\XINT_inFloat [#1]{#3}#2% + \expandafter\XINT_FL_Mul_b\romannumeral0\XINTinfloat [#1]{#3}#2% }% \def\XINT_FL_Mul_b #1[#2]#3[#4]{\xintE{\xintiiMul {#1}{#3}}{#2+#4}}% % \end{macrocode} -% \subsection{\csh{xintFloatDiv}} +% \subsection{\csh{xintFloatDiv}, \csh{XINTinFloatDiv}} % \lverb|1.07| % \begin{macrocode} \def\xintFloatDiv {\romannumeral0\xintfloatdiv}% \def\xintfloatdiv #1{\XINT_fldiv_chkopt \xintfloat #1\Z }% \def\XINTinFloatDiv {\romannumeral0\XINTinfloatdiv }% -\def\XINTinfloatdiv #1{\XINT_fldiv_chkopt \XINT_inFloat #1\Z }% +\def\XINTinfloatdiv #1{\XINT_fldiv_chkopt \XINTinfloat #1\Z }% \def\XINT_fldiv_chkopt #1#2% {% \ifx [#2\expandafter\XINT_fldiv_opt @@ -19568,11 +20677,11 @@ first place. \def\XINT_FL_Div #1#2% {% \expandafter\XINT_FL_Div_a\expandafter{\the\numexpr #1\expandafter}% - \expandafter{\romannumeral0\XINT_inFloat [#1]{#2}}% + \expandafter{\romannumeral0\XINTinfloat [#1]{#2}}% }% \def\XINT_FL_Div_a #1#2#3% {% - \expandafter\XINT_FL_Div_b\romannumeral0\XINT_inFloat [#1]{#3}#2% + \expandafter\XINT_FL_Div_b\romannumeral0\XINTinfloat [#1]{#3}#2% }% \def\XINT_FL_Div_b #1[#2]#3[#4]{\xintE{#3/#1}{#4-#2}}% % \end{macrocode} @@ -19584,7 +20693,7 @@ first place. \def\XINTinFloatSum {\romannumeral0\XINTinfloatsum }% \def\XINTinfloatsum #1{\expandafter\XINT_floatsum_a\romannumeral-`0#1\relax }% \def\XINT_floatsum_a #1{\expandafter\XINT_floatsum_b - \romannumeral0\XINT_inFloat[\XINTdigits]{#1}\Z }% + \romannumeral0\XINTinfloat[\XINTdigits]{#1}\Z }% \def\XINT_floatsum_b #1\Z #2% {\expandafter\XINT_floatsum_c\romannumeral-`0#2\Z {#1}\Z}% \def\XINT_floatsum_c #1% @@ -19593,18 +20702,6 @@ first place. {\expandafter\XINT_floatsum_b\romannumeral0\XINTinfloatadd {#1}}% \def\XINT_floatsum_e #1\Z #2\Z { #2}% % \end{macrocode} -% \subsection{\csh{XINTinFloatSum:csv}} -% \lverb|1.09a. For use by \xintfloatexpr. Renamed in 1.09h| -% \begin{macrocode} -\def\XINTinFloatSum:csv #1{\expandafter\XINT_floatsum:_a\romannumeral-`0#1,,^}% -\def\XINT_floatsum:_a {\XINT_floatsum:_b {0/1[0]}}% -\def\XINT_floatsum:_b #1#2,% - {\expandafter\XINT_floatsum:_c\romannumeral-`0#2,{#1}}% -\def\XINT_floatsum:_c #1{\if #1,\expandafter\XINT_:_e - \else\expandafter\XINT_floatsum:_d\fi #1}% -\def\XINT_floatsum:_d #1,#2{\expandafter\XINT_floatsum:_b\expandafter - {\romannumeral0\XINTinfloatadd {#2}{#1}}}% -% \end{macrocode} % \subsection{\csh{XINTinFloatPrd}} % \lverb|1.09a: quick write-up, for use by \xintfloatexpr, will need to be % thought through again. Renamed (and slightly modified) in 1.09h. Should be @@ -19613,7 +20710,7 @@ first place. \def\XINTinFloatPrd {\romannumeral0\XINTinfloatprd }% \def\XINTinfloatprd #1{\expandafter\XINT_floatprd_a\romannumeral-`0#1\relax }% \def\XINT_floatprd_a #1{\expandafter\XINT_floatprd_b - \romannumeral0\XINT_inFloat[\XINTdigits]{#1}\Z }% + \romannumeral0\XINTinfloat[\XINTdigits]{#1}\Z }% \def\XINT_floatprd_b #1\Z #2% {\expandafter\XINT_floatprd_c\romannumeral-`0#2\Z {#1}\Z}% \def\XINT_floatprd_c #1% @@ -19622,25 +20719,14 @@ first place. {\expandafter\XINT_floatprd_b\romannumeral0\XINTinfloatmul {#1}}% \def\XINT_floatprd_e #1\Z #2\Z { #2}% % \end{macrocode} -% \subsection{\csh{XINTinFloatPrd:csv}} -% \lverb|1.09a. For use by \xintfloatexpr. Renamed in 1.09h| -% \begin{macrocode} -\def\XINTinFloatPred:csv #1{\expandafter\XINT_floatprd:_a\romannumeral-`0#1,,^}% -\def\XINT_floatprd:_a {\XINT_floatprd:_b {1/1[0]}}% -\def\XINT_floatprd:_b #1#2,% - {\expandafter\XINT_floatprd:_c\romannumeral-`0#2,{#1}}% -\def\XINT_floatprd:_c #1{\if #1,\expandafter\XINT_:_e - \else\expandafter\XINT_floatprd:_d\fi #1}% -\def\XINT_floatprd:_d #1,#2{\expandafter\XINT_floatprd:_b\expandafter - {\romannumeral0\XINTinfloatmul {#2}{#1}}}% -% \end{macrocode} -% \subsection{\csh{xintFloatPow}} -% \lverb|1.07| +% \subsection{\csh{xintFloatPow}, \csh{XINTinFloatPow}} +% \lverb|1.07. Release 1.09j has re-organized the core loop, and +% \XINT_flpow_prd sub-routine has been removed.| % \begin{macrocode} \def\xintFloatPow {\romannumeral0\xintfloatpow}% \def\xintfloatpow #1{\XINT_flpow_chkopt \xintfloat #1\Z }% \def\XINTinFloatPow {\romannumeral0\XINTinfloatpow }% -\def\XINTinfloatpow #1{\XINT_flpow_chkopt \XINT_inFloat #1\Z }% +\def\XINTinfloatpow #1{\XINT_flpow_chkopt \XINTinfloat #1\Z }% \def\XINT_flpow_chkopt #1#2% {% \ifx [#2\expandafter\XINT_flpow_opt @@ -19679,12 +20765,12 @@ first place. {% \expandafter\XINT_flpow_checkB_d \expandafter {\the\numexpr \expandafter\xintLength\expandafter - {\the\numexpr #1*20/3}+#1+#2+1}% + {\the\numexpr #1*20/\xint_c_iii }+#1+#2+\xint_c_i }% }% \def\XINT_flpow_checkB_d #1#2#3#4% {% \expandafter \XINT_flpow_a - \romannumeral0\XINT_inFloat [#1]{#4}{#1}{#2}#3% + \romannumeral0\XINTinfloat [#1]{#4}{#1}{#2}#3% }% \def\XINT_flpow_a #1% {% @@ -19694,82 +20780,86 @@ first place. 0-{\XINT_flpow_b 0#1}% \krof }% -\def\XINT_flpow_zero [#1]#2#3#4#5% -{% - \if #41 \xint_afterfi {\xintError:DivisionByZero\space 1.e2147483647}% - \else \xint_afterfi { 0.e0}\fi -}% \def\XINT_flpow_b #1#2[#3]#4#5% {% - \XINT_flpow_c {#4}{#5}{#2[#3]}{#1*\ifodd #5 1\else 0\fi}% + \XINT_flpow_loopI {#5}{#2[#3]}{\romannumeral0\XINTinfloatmul [#4]}% + {#1*\ifodd #5 1\else 0\fi}% }% -\def\XINT_flpow_c #1#2#3#4% +\def\XINT_flpow_zero [#1]#2#3#4#5% +% xint is not equipped to signal infinity, the 2^31 will provoke +% deliberately a number too big and arithmetic overflow in \XINT_float_Xb {% - \XINT_flpow_loop {#1}{#2}{#3}{{#1}}\XINT_flpow_prd - \xint_relax - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_relax {#4}% + \if #41\xint_afterfi {\xintError:DivisionByZero #5{1[2147483648]}}% + \else \xint_afterfi {#5{0[0]}}\fi }% -\def\XINT_flpow_loop #1#2#3% +\def\XINT_flpow_loopI #1% {% - \ifnum #2 = 1 - \expandafter\XINT_flpow_loop_end + \ifnum #1=\xint_c_i\XINT_flpow_ItoIII\fi + \ifodd #1 + \expandafter\XINT_flpow_loopI_odd \else - \xint_afterfi{\expandafter\XINT_flpow_loop_a - \expandafter{\the\numexpr 2*(#2/2)-#2\expandafter }% b mod 2 - \expandafter{\the\numexpr #2-#2/2\expandafter }% [b/2] - \expandafter{\romannumeral0\XINTinfloatmul [#1]{#3}{#3}}}% + \expandafter\XINT_flpow_loopI_even \fi - {#1}{{#3}}% + {#1}% }% -\def\XINT_flpow_loop_a #1#2#3#4% +\def\XINT_flpow_ItoIII\fi #1\fi #2#3#4#5% {% - \ifnum #1 = 1 - \expandafter\XINT_flpow_loop - \else - \expandafter\XINT_flpow_loop_throwaway - \fi - {#4}{#2}{#3}% + \fi\expandafter\XINT_flpow_III\the\numexpr #5\relax #3% +}% +\def\XINT_flpow_loopI_even #1#2#3% +{% + \expandafter\XINT_flpow_loopI\expandafter + {\the\numexpr #1/\xint_c_ii\expandafter}\expandafter + {#3{#2}{#2}}{#3}% }% -\def\XINT_flpow_loop_throwaway #1#2#3#4% +\def\XINT_flpow_loopI_odd #1#2#3% {% - \XINT_flpow_loop {#1}{#2}{#3}% + \expandafter\XINT_flpow_loopII\expandafter + {\the\numexpr #1/\xint_c_ii-\xint_c_i\expandafter}\expandafter + {#3{#2}{#2}}{#3}{#2}% }% -\def\XINT_flpow_loop_end #1{\romannumeral0\XINT_rord_main {}\relax }% -\def\XINT_flpow_prd #1#2% +\def\XINT_flpow_loopII #1% {% - \XINT_flpow_prd_getnext {#2}{#1}% + \ifnum #1 = \xint_c_i\XINT_flpow_IItoIII\fi + \ifodd #1 + \expandafter\XINT_flpow_loopII_odd + \else + \expandafter\XINT_flpow_loopII_even + \fi + {#1}% }% -\def\XINT_flpow_prd_getnext #1#2#3% +\def\XINT_flpow_loopII_even #1#2#3% {% - \XINT_flpow_prd_checkiffinished #3\Z {#1}{#2}% + \expandafter\XINT_flpow_loopII\expandafter + {\the\numexpr #1/\xint_c_ii\expandafter}\expandafter + {#3{#2}{#2}}{#3}% }% -\def\XINT_flpow_prd_checkiffinished #1% +\def\XINT_flpow_loopII_odd #1#2#3#4% {% - \xint_gob_til_relax #1\XINT_flpow_prd_end\relax - \XINT_flpow_prd_compute #1% + \expandafter\XINT_flpow_loopII_odda\expandafter + {#3{#2}{#4}}{#1}{#2}{#3}% }% -\def\XINT_flpow_prd_compute #1\Z #2#3% +\def\XINT_flpow_loopII_odda #1#2#3#4% {% - \expandafter\XINT_flpow_prd_getnext\expandafter - {\romannumeral0\XINTinfloatmul [#3]{#1}{#2}}{#3}% + \expandafter\XINT_flpow_loopII\expandafter + {\the\numexpr #2/\xint_c_ii-\xint_c_i\expandafter}\expandafter + {#4{#3}{#3}}{#4}{#1}% }% -\def\XINT_flpow_prd_end\relax\XINT_flpow_prd_compute - \relax\Z #1#2#3% +\def\XINT_flpow_IItoIII\fi #1\fi #2#3#4#5#6% {% - \expandafter\XINT_flpow_conclude \the\numexpr #3\relax #1% + \fi\expandafter\XINT_flpow_III\the\numexpr #6\expandafter\relax + #4{#3}{#5}% }% -\def\XINT_flpow_conclude #1#2[#3]#4% +\def\XINT_flpow_III #1#2[#3]#4% {% - \expandafter\XINT_flpow_conclude_really\expandafter + \expandafter\XINT_flpow_IIIend\expandafter {\the\numexpr\if #41 -\fi#3\expandafter}% \xint_UDzerofork #4{{#2}}% 0{{1/#2}}% \krof #1% }% -\def\XINT_flpow_conclude_really #1#2#3#4% +\def\XINT_flpow_IIIend #1#2#3#4% {% \xint_UDzerofork #3{#4{#2[#1]}}% @@ -19777,13 +20867,14 @@ first place. \krof }% % \end{macrocode} -% \subsection{\csh{xintFloatPower}} -% \lverb|1.07| +% \subsection{\csh{xintFloatPower}, \csh{XINTinFloatPower}} +% \lverb|1.07. The core loop has been re-organized in 1.09j for some slight +% efficiency gain. | % \begin{macrocode} \def\xintFloatPower {\romannumeral0\xintfloatpower}% \def\xintfloatpower #1{\XINT_flpower_chkopt \xintfloat #1\Z }% \def\XINTinFloatPower {\romannumeral0\XINTinfloatpower}% -\def\XINTinfloatpower #1{\XINT_flpower_chkopt \XINT_inFloat #1\Z }% +\def\XINTinfloatpower #1{\XINT_flpower_chkopt \XINTinfloat #1\Z }% \def\XINT_flpower_chkopt #1#2% {% \ifx [#2\expandafter\XINT_flpower_opt @@ -19822,72 +20913,88 @@ first place. {% \expandafter\XINT_flpower_checkB_d \expandafter {\the\numexpr \expandafter\xintLength\expandafter - {\the\numexpr #1*20/3}+#1+#2+1}% + {\the\numexpr #1*20/\xint_c_iii }+#1+#2+\xint_c_i }% }% \def\XINT_flpower_checkB_d #1#2#3#4% {% \expandafter \XINT_flpower_a - \romannumeral0\XINT_inFloat [#1]{#4}{#1}{#2}#3% + \romannumeral0\XINTinfloat [#1]{#4}{#1}{#2}#3% }% \def\XINT_flpower_a #1% {% \xint_UDzerominusfork - #1-\XINT_flpower_zero + #1-\XINT_flpow_zero 0#1{\XINT_flpower_b 1}% 0-{\XINT_flpower_b 0#1}% \krof }% -\def\XINT_flpower_zero [#1]#2#3#4#5% +\def\XINT_flpower_b #1#2[#3]#4#5% {% - \if #41 - \xint_afterfi {\xintError:DivisionByZero\space 1.e2147483647}% - \else \xint_afterfi { 0.e0}\fi + \XINT_flpower_loopI {#5}{#2[#3]}{\romannumeral0\XINTinfloatmul [#4]}% + {#1*\xintiiOdd {#5}}% }% -\def\XINT_flpower_b #1#2[#3]#4#5% +\def\XINT_flpower_loopI #1% {% - \XINT_flpower_c {#4}{#5}{#2[#3]}{#1*\xintiiOdd {#5}}% + \if1\XINT_isOne {#1}\XINT_flpower_ItoIII\fi + \if1\xintiiOdd{#1}% + \expandafter\expandafter\expandafter\XINT_flpower_loopI_odd + \else + \expandafter\expandafter\expandafter\XINT_flpower_loopI_even + \fi + \expandafter {\romannumeral0\xinthalf{#1}}% }% -\def\XINT_flpower_c #1#2#3#4% +\def\XINT_flpower_ItoIII\fi #1\fi\expandafter #2#3#4#5% {% - \XINT_flpower_loop {#1}{#2}{#3}{{#1}}\XINT_flpow_prd - \xint_relax - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_relax {#4}% + \fi\expandafter\XINT_flpow_III \the\numexpr #5\relax #3% +}% +\def\XINT_flpower_loopI_even #1#2#3% +{% + \expandafter\XINT_flpower_toI\expandafter {#3{#2}{#2}}{#1}{#3}% }% -\def\XINT_flpower_loop #1#2#3% +\def\XINT_flpower_loopI_odd #1#2#3% {% - \if0\XINT_isOne {#2}\xint_afterfi - {\expandafter\XINT_flpower_loop_x\expandafter - {\romannumeral0\XINTinfloatmul [#1]{#3}{#3}}% - {\romannumeral0\xintdivision {#2}{2}}% - }% - \else\expandafter\XINT_flpow_loop_end - \fi - {#1}{{#3}}% + \expandafter\XINT_flpower_toII\expandafter {#3{#2}{#2}}{#1}{#3}{#2}% }% -\def\XINT_flpower_loop_x #1#2{\expandafter\XINT_flpower_loop_a #2{#1}}% -\def\XINT_flpower_loop_a #1#2#3#4% +\def\XINT_flpower_toI #1#2{\XINT_flpower_loopI {#2}{#1}}% +\def\XINT_flpower_toII #1#2{\XINT_flpower_loopII {#2}{#1}}% +\def\XINT_flpower_loopII #1% {% - \ifnum #2 = 1 - \expandafter\XINT_flpower_loop + \if1\XINT_isOne {#1}\XINT_flpower_IItoIII\fi + \if1\xintiiOdd{#1}% + \expandafter\expandafter\expandafter\XINT_flpower_loopII_odd \else - \expandafter\XINT_flpower_loop_throwaway + \expandafter\expandafter\expandafter\XINT_flpower_loopII_even \fi - {#4}{#1}{#3}% + \expandafter {\romannumeral0\xinthalf{#1}}% +}% +\def\XINT_flpower_loopII_even #1#2#3% +{% + \expandafter\XINT_flpower_toII\expandafter + {#3{#2}{#2}}{#1}{#3}% +}% +\def\XINT_flpower_loopII_odd #1#2#3#4% +{% + \expandafter\XINT_flpower_loopII_odda\expandafter + {#3{#2}{#4}}{#2}{#3}{#1}% }% -\def\XINT_flpower_loop_throwaway #1#2#3#4% +\def\XINT_flpower_loopII_odda #1#2#3#4% {% - \XINT_flpower_loop {#1}{#2}{#3}% + \expandafter\XINT_flpower_toII\expandafter + {#3{#2}{#2}}{#4}{#3}{#1}% +}% +\def\XINT_flpower_IItoIII\fi #1\fi\expandafter #2#3#4#5#6% +{% + \fi\expandafter\XINT_flpow_III\the\numexpr #6\expandafter\relax + #4{#3}{#5}% }% % \end{macrocode} -% \subsection{\csh{xintFloatSqrt}} +% \subsection{\csh{xintFloatSqrt}, \csh{XINTinFloatSqrt}} % \lverb|1.08| % \begin{macrocode} \def\xintFloatSqrt {\romannumeral0\xintfloatsqrt }% \def\xintfloatsqrt #1{\XINT_flsqrt_chkopt \xintfloat #1\Z }% \def\XINTinFloatSqrt {\romannumeral0\XINTinfloatsqrt }% -\def\XINTinfloatsqrt #1{\XINT_flsqrt_chkopt \XINT_inFloat #1\Z }% +\def\XINTinfloatsqrt #1{\XINT_flsqrt_chkopt \XINTinfloat #1\Z }% \def\XINT_flsqrt_chkopt #1#2% {% \ifx [#2\expandafter\XINT_flsqrt_opt @@ -19913,7 +21020,7 @@ first place. \def\XINT_FL_sqrt_a #1#2% {% \expandafter\XINT_FL_sqrt_checkifzeroorneg - \romannumeral0\XINT_inFloat [#1]{#2}% + \romannumeral0\XINTinfloat [#1]{#2}% }% \def\XINT_FL_sqrt_checkifzeroorneg #1% {% @@ -19923,8 +21030,8 @@ first place. 0-{\XINT_FL_sqrt_b #1}% \krof }% -\def\XINT_FL_sqrt_iszero #1[#2]{0/1[0]}% -\def\XINT_FL_sqrt_isneg #1[#2]{\xintError:RootOfNegative 0/1[0]}% +\def\XINT_FL_sqrt_iszero #1[#2]{0[0]}% +\def\XINT_FL_sqrt_isneg #1[#2]{\xintError:RootOfNegative 0[0]}% \def\XINT_FL_sqrt_b #1[#2]% {% \ifodd #2 @@ -19943,15 +21050,14 @@ first place. \expandafter\XINT_sqrt_a \expandafter{\romannumeral0\xintlength {#2}}\XINT_flsqrt_big_d {#2}{#1}% }% -\def\XINT_flsqrt_big_d #1\or #2\fi #3% +\def\XINT_flsqrt_big_d #1#2% {% - \fi - \ifodd #3 - \xint_afterfi{\expandafter\XINT_flsqrt_big_eB}% + \ifodd #2 + \expandafter\expandafter\expandafter\XINT_flsqrt_big_eB \else - \xint_afterfi{\expandafter\XINT_flsqrt_big_eA}% + \expandafter\expandafter\expandafter\XINT_flsqrt_big_eA \fi - \expandafter {\the\numexpr (#3-\xint_c_i)/\xint_c_ii }{#1}% + \expandafter {\the\numexpr (#2-\xint_c_i)/\xint_c_ii }{#1}% }% \def\XINT_flsqrt_big_eA #1#2#3% {% @@ -20062,6 +21168,157 @@ first place. {\xintHalf{\xintiiQuo{\XINT_dsx_addzerosnofuss {#4}{#2}}{#3}}}}% }% \def\XINT_flsqrt_big_end_b #1#2{#2[#1]}% +% \end{macrocode} +% \subsection{\csh{XINTinFloatMaxof}} +% \lverb|1.09a, for use by \xintNewFloatExpr. Name changed in 1.09h| +% \begin{macrocode} +\def\XINTinFloatMaxof {\romannumeral0\XINTinfloatmaxof }% +\def\XINTinfloatmaxof #1{\expandafter\XINT_flmaxof_a\romannumeral-`0#1\relax }% +\def\XINT_flmaxof_a #1{\expandafter\XINT_flmaxof_b + \romannumeral0\XINTinfloat [\XINTdigits]{#1}\Z }% +\def\XINT_flmaxof_b #1\Z #2% + {\expandafter\XINT_flmaxof_c\romannumeral-`0#2\Z {#1}\Z}% +\def\XINT_flmaxof_c #1% + {\xint_gob_til_relax #1\XINT_flmaxof_e\relax\XINT_flmaxof_d #1}% +\def\XINT_flmaxof_d #1\Z + {\expandafter\XINT_flmaxof_b\romannumeral0\xintmax + {\XINTinFloat [\XINTdigits]{#1}}}% +\def\XINT_flmaxof_e #1\Z #2\Z { #2}% +% \end{macrocode} +% \subsection{\csh{XINTinFloatMinof}} +% \lverb|1.09a, for use by \xintNewFloatExpr. Name changed in 1.09h| +% \begin{macrocode} +\def\XINTinFloatMinof {\romannumeral0\XINTinfloatminof }% +\def\XINTinfloatminof #1{\expandafter\XINT_flminof_a\romannumeral-`0#1\relax }% +\def\XINT_flminof_a #1{\expandafter\XINT_flminof_b + \romannumeral0\XINTinfloat [\XINTdigits]{#1}\Z }% +\def\XINT_flminof_b #1\Z #2% + {\expandafter\XINT_flminof_c\romannumeral-`0#2\Z {#1}\Z}% +\def\XINT_flminof_c #1% + {\xint_gob_til_relax #1\XINT_flminof_e\relax\XINT_flminof_d #1}% +\def\XINT_flminof_d #1\Z + {\expandafter\XINT_flminof_b\romannumeral0\xintmin + {\XINTinFloat [\XINTdigits]{#1}}}% +\def\XINT_flminof_e #1\Z #2\Z { #2}% +% \end{macrocode} +% \subsection{\csh{xintRound:csv}} +% \lverb|1.09a. For use by \xinttheiexpr.| +% \begin{macrocode} +\def\xintRound:csv #1{\expandafter\XINT_round:_a\romannumeral-`0#1,,^}% +\def\XINT_round:_a {\XINT_round:_b {}}% +\def\XINT_round:_b #1#2,% + {\expandafter\XINT_round:_c\romannumeral-`0#2,{#1}}% +\def\XINT_round:_c #1{\if #1,\expandafter\XINT_:_f + \else\expandafter\XINT_round:_d\fi #1}% +\def\XINT_round:_d #1,% + {\expandafter\XINT_round:_e\romannumeral0\xintiround 0{#1},}% +\def\XINT_round:_e #1,#2{\XINT_round:_b {#2,#1}}% +% \end{macrocode} +% \subsection{\csh{xintFloat:csv}} +% \lverb|1.09a. For use by \xintthefloatexpr.| +% \begin{macrocode} +\def\xintFloat:csv #1{\expandafter\XINT_float:_a\romannumeral-`0#1,,^}% +\def\XINT_float:_a {\XINT_float:_b {}}% +\def\XINT_float:_b #1#2,% + {\expandafter\XINT_float:_c\romannumeral-`0#2,{#1}}% +\def\XINT_float:_c #1{\if #1,\expandafter\XINT_:_f + \else\expandafter\XINT_float:_d\fi #1}% +\def\XINT_float:_d #1,% + {\expandafter\XINT_float:_e\romannumeral0\xintfloat {#1},}% +\def\XINT_float:_e #1,#2{\XINT_float:_b {#2,#1}}% +% \end{macrocode} +% \subsection{\csh{xintSum:csv}} +% \lverb|1.09a. For use by \xintexpr.| +% \begin{macrocode} +\def\xintSum:csv #1{\expandafter\XINT_sum:_a\romannumeral-`0#1,,^}% +\def\XINT_sum:_a {\XINT_sum:_b {0/1[0]}}% +\def\XINT_sum:_b #1#2,{\expandafter\XINT_sum:_c\romannumeral-`0#2,{#1}}% +\def\XINT_sum:_c #1{\if #1,\expandafter\XINT_:_e + \else\expandafter\XINT_sum:_d\fi #1}% +\def\XINT_sum:_d #1,#2{\expandafter\XINT_sum:_b\expandafter + {\romannumeral0\xintadd {#2}{#1}}}% +% \end{macrocode} +% \subsection{\csh{xintPrd:csv}} +% \lverb|1.09a. For use by \xintexpr.| +% \begin{macrocode} +\def\xintPrd:csv #1{\expandafter\XINT_prd:_a\romannumeral-`0#1,,^}% +\def\XINT_prd:_a {\XINT_prd:_b {1/1[0]}}% +\def\XINT_prd:_b #1#2,{\expandafter\XINT_prd:_c\romannumeral-`0#2,{#1}}% +\def\XINT_prd:_c #1{\if #1,\expandafter\XINT_:_e + \else\expandafter\XINT_prd:_d\fi #1}% +\def\XINT_prd:_d #1,#2{\expandafter\XINT_prd:_b\expandafter + {\romannumeral0\xintmul {#2}{#1}}}% +% \end{macrocode} +% \subsection{\csh{xintMaxof:csv}} +% \lverb|1.09a. For use by \xintexpr. Even with only one +% argument, there does not seem to be really a motive for using \xintraw?| +% \begin{macrocode} +\def\xintMaxof:csv #1{\expandafter\XINT_maxof:_b\romannumeral-`0#1,,}% +\def\XINT_maxof:_b #1,#2,{\expandafter\XINT_maxof:_c\romannumeral-`0#2,{#1},}% +\def\XINT_maxof:_c #1{\if #1,\expandafter\XINT_of:_e + \else\expandafter\XINT_maxof:_d\fi #1}% +\def\XINT_maxof:_d #1,{\expandafter\XINT_maxof:_b\romannumeral0\xintmax {#1}}% +% \end{macrocode} +% \subsection{\csh{xintMinof:csv}} +% \lverb|1.09a. For use by \xintexpr.| +% \begin{macrocode} +\def\xintMinof:csv #1{\expandafter\XINT_minof:_b\romannumeral-`0#1,,}% +\def\XINT_minof:_b #1,#2,{\expandafter\XINT_minof:_c\romannumeral-`0#2,{#1},}% +\def\XINT_minof:_c #1{\if #1,\expandafter\XINT_of:_e + \else\expandafter\XINT_minof:_d\fi #1}% +\def\XINT_minof:_d #1,{\expandafter\XINT_minof:_b\romannumeral0\xintmin {#1}}% +% \end{macrocode} +% \subsection{\csh{XINTinFloatMinof:csv}} +% \lverb|1.09a. For use by \xintfloatexpr. Name changed in 1.09h| +% \begin{macrocode} +\def\XINTinFloatMinof:csv #1{\expandafter\XINT_flminof:_a\romannumeral-`0#1,,}% +\def\XINT_flminof:_a #1,{\expandafter\XINT_flminof:_b + \romannumeral0\XINTinfloat [\XINTdigits]{#1},}% +\def\XINT_flminof:_b #1,#2,% + {\expandafter\XINT_flminof:_c\romannumeral-`0#2,{#1},}% +\def\XINT_flminof:_c #1{\if #1,\expandafter\XINT_of:_e + \else\expandafter\XINT_flminof:_d\fi #1}% +\def\XINT_flminof:_d #1,% + {\expandafter\XINT_flminof:_b\romannumeral0\xintmin + {\XINTinFloat [\XINTdigits]{#1}}}% +% \end{macrocode} +% \subsection{\csh{XINTinFloatMaxof:csv}} +% \lverb|1.09a. For use by \xintfloatexpr. Name changed in 1.09h| +% \begin{macrocode} +\def\XINTinFloatMaxof:csv #1{\expandafter\XINT_flmaxof:_a\romannumeral-`0#1,,}% +\def\XINT_flmaxof:_a #1,{\expandafter\XINT_flmaxof:_b + \romannumeral0\XINTinfloat [\XINTdigits]{#1},}% +\def\XINT_flmaxof:_b #1,#2,% + {\expandafter\XINT_flmaxof:_c\romannumeral-`0#2,{#1},}% +\def\XINT_flmaxof:_c #1{\if #1,\expandafter\XINT_of:_e + \else\expandafter\XINT_flmaxof:_d\fi #1}% +\def\XINT_flmaxof:_d #1,% + {\expandafter\XINT_flmaxof:_b\romannumeral0\xintmax + {\XINTinFloat [\XINTdigits]{#1}}}% +% \end{macrocode} +% \subsection{\csh{XINTinFloatSum:csv}} +% \lverb|1.09a. For use by \xintfloatexpr. Renamed in 1.09h| +% \begin{macrocode} +\def\XINTinFloatSum:csv #1{\expandafter\XINT_floatsum:_a\romannumeral-`0#1,,^}% +\def\XINT_floatsum:_a {\XINT_floatsum:_b {0[0]}}% +\def\XINT_floatsum:_b #1#2,% + {\expandafter\XINT_floatsum:_c\romannumeral-`0#2,{#1}}% +\def\XINT_floatsum:_c #1{\if #1,\expandafter\XINT_:_e + \else\expandafter\XINT_floatsum:_d\fi #1}% +\def\XINT_floatsum:_d #1,#2{\expandafter\XINT_floatsum:_b\expandafter + {\romannumeral0\XINTinfloatadd {#2}{#1}}}% +% \end{macrocode} +% \subsection{\csh{XINTinFloatPrd:csv}} +% \lverb|1.09a. For use by \xintfloatexpr. Renamed in 1.09h| +% \begin{macrocode} +\def\XINTinFloatPred:csv #1{\expandafter\XINT_floatprd:_a\romannumeral-`0#1,,^}% +\def\XINT_floatprd:_a {\XINT_floatprd:_b {1[0]}}% +\def\XINT_floatprd:_b #1#2,% + {\expandafter\XINT_floatprd:_c\romannumeral-`0#2,{#1}}% +\def\XINT_floatprd:_c #1{\if #1,\expandafter\XINT_:_e + \else\expandafter\XINT_floatprd:_d\fi #1}% +\def\XINT_floatprd:_d #1,#2{\expandafter\XINT_floatprd:_b\expandafter + {\romannumeral0\XINTinfloatmul {#2}{#1}}}% \XINT_restorecatcodes_endinput% % \end{macrocode} %\catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 @@ -20116,8 +21373,7 @@ first place. \else \ifx\x\relax % plain-TeX, first loading of xintseries.sty \ifx\w\relax % but xintfrac.sty not yet loaded. - \y{xintseries}{Package xintfrac is required}% - \y{xintseries}{Will try \string\input\space xintfrac.sty}% + \y{xintseries}{now issuing \string\input\space xintfrac.sty}% \def\z{\endgroup\input xintfrac.sty\relax}% \fi \else @@ -20125,8 +21381,7 @@ first place. \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xintfrac.sty not yet loaded. - \y{xintseries}{Package xintfrac is required}% - \y{xintseries}{Will try \string\RequirePackage{xintfrac}}% + \y{xintseries}{now issuing \string\RequirePackage{xintfrac}}% \def\z{\endgroup\RequirePackage{xintfrac}}% \fi \else @@ -20175,7 +21430,7 @@ first place. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintseries}% - [2013/12/18 v1.09i Expandable partial sums with xint package (jfB)]% + [2014/01/09 v1.09j Expandable partial sums with xint package (jfB)]% % \end{macrocode} % \subsection{\csh{xintSeries}} % \lverb|& @@ -20653,8 +21908,7 @@ first place. \else \ifx\x\relax % plain-TeX, first loading of xintcfrac.sty \ifx\w\relax % but xintfrac.sty not yet loaded. - \y{xintcfrac}{Package xintfrac is required}% - \y{xintcfrac}{Will try \string\input\space xintfrac.sty}% + \y{xintcfrac}{now issuing \string\input\space xintfrac.sty}% \def\z{\endgroup\input xintfrac.sty\relax}% \fi \else @@ -20662,8 +21916,7 @@ first place. \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xintfrac.sty not yet loaded. - \y{xintcfrac}{Package xintfrac is required}% - \y{xintcfrac}{Will try \string\RequirePackage{xintfrac}}% + \y{xintcfrac}{now issuing \string\RequirePackage{xintfrac}}% \def\z{\endgroup\RequirePackage{xintfrac}}% \fi \else @@ -20712,7 +21965,7 @@ first place. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintcfrac}% - [2013/12/18 v1.09i Expandable continued fractions with xint package (jfB)]% + [2014/01/09 v1.09j Expandable continued fractions with xint package (jfB)]% % \end{macrocode} % \subsection{\csh{xintCFrac}} % \begin{macrocode} @@ -21776,6 +23029,21 @@ first place. % so unpacking with |\string| can be done in a completely escape char agnostic % way. % +% Version |1.09j| |[2014/01/09]|extends the tacit multiplication to the +% case of a sub |\xintexpr|-essions. Also, it now |\xint_protect|s the +% result of the |\xintexpr| full expansions, thus, an |\xintexpr| +% without |\xintthe| prefix can be used not only as the first item +% within an ``|\fdef|'' as previously but also now anywhere within an +% |\edef|. Five tokens are used to pack the computation result rather +% than the possibly hundreds or thousands of digits of an |\xintthe| +% unlocked result. I deliberately omit a second |\xint_protect| which, +% however would be necessary if some macro |\.=digits/digits[digits]| +% had acquired some expandable meaning elsewhere. But this seems not +% that probable, and adding the protection would mean impacting +% everything only to allow some crazy user which has loaded something +% else than xint to do an |\edef|... the |\xintexpr| computations are +% otherwise in no way affected if such control sequences have a meaning. +% % \localtableofcontents % \subsection{Catcodes, \protect\eTeX{} and reload detection} % @@ -21815,8 +23083,7 @@ first place. \else \ifx\x\relax % plain-TeX, first loading of xintexpr.sty \ifx\w\relax % but xintfrac.sty not yet loaded. - \y{xintexpr}{Package xintfrac is required}% - \y{xintexpr}{Will try \string\input\space xintfrac.sty}% + \y{xintexpr}{now issuing \string\input\space xintfrac.sty}% \def\z{\endgroup\input xintfrac.sty\relax}% \fi \else @@ -21824,8 +23091,7 @@ first place. \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xintfrac.sty not yet loaded. - \y{xintexpr}{Package xintfrac is required}% - \y{xintexpr}{Will try \string\RequirePackage{xintfrac}}% + \y{xintexpr}{now issuing \string\RequirePackage{xintfrac}}% \def\z{\endgroup\RequirePackage{xintfrac}}% \fi \else @@ -21874,7 +23140,7 @@ first place. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintexpr}% - [2013/12/18 v1.09i Expandable expression parser (jfB)]% + [2014/01/09 v1.09j Expandable expression parser (jfB)]% % \end{macrocode} % \subsection{Encapsulation in pseudo cs names, helper macros} % \lverb|1.09i uses .= for encapsulation, thus allowing \escapechar to be @@ -21883,7 +23149,7 @@ first place. % compensate a tiny bit the time penalty of `.=' viz `.' in unlocking... well % not really, I guess.| % \begin{macrocode} -\def\xint_gob_til_! #1!{}% nota bene: ! is of catcode 11 +\def\xint_gob_til_! #1!{}% nota bene: this ! has catcode 11 \edef\XINT_expr_lock #1!% {\noexpand\expandafter\space\noexpand\csname .=#1\noexpand\endcsname }% \def\XINT_expr_unlock {\expandafter\XINT_expr_unlock_a\string }% @@ -21901,15 +23167,28 @@ first place. % point. Should perhaps issue a warning, but well, people can also read the % documentation. Also 1.09i removes \xinttheeval. % -% 1.09i has re-organized the material here.| -% \begin{macrocode} -\def\XINT_expr_done {!\XINT_expr_usethe\XINT_expr_print }% -\let\XINT_iiexpr_done \XINT_expr_done -\def\XINT_iexpr_done {!\XINT_expr_usethe\XINT_iexpr_print }% -\def\XINT_flexpr_done {!\XINT_expr_usethe\XINT_flexpr_print }% -\def\XINT_boolexpr_done{!\XINT_expr_usethe\XINT_boolexpr_print }% -\def\XINT_expr_usethe {use_xintthe!\xintError:use_xintthe! }% -\def\xintthe #1{\romannumeral-`0\expandafter\xint_gobble_ii\romannumeral-`0#1}% +% 1.09i has re-organized the material here. +% +% 1.09j modifies the mechanism of \XINT_expr_usethe and +% \XINT_expr_print, etc... in order for \xintexpr-essions to be usable +% within \edef'initions. I hesitated quite a bit with adding +% \xint_protect in front of the \.=digits macros, which will in +% 99.99999$% of use cases supposed all have \relax meaning; and it is a +% bit of a pain, really, it is quite a pain to add these extra tokens +% only for \edef contexts and for situations which will never occur... +% well no damn'it let's *NOT* add this extra \xint_protect. Just one +% before the printing macro (which can not be \protected, else \xintthe +% could not work).| +% \begin{macrocode} +\def\xint_protect {\noexpand\xint_protect\noexpand }% 1.09j +\def\XINT_expr_done {!\XINT_expr_usethe\xint_protect\XINT_expr_print }% +\let\XINT_iiexpr_done \XINT_expr_done +\def\XINT_iexpr_done {!\XINT_expr_usethe\xint_protect\XINT_iexpr_print }% +\def\XINT_flexpr_done {!\XINT_expr_usethe\xint_protect\XINT_flexpr_print }% +\def\XINT_boolexpr_done {!\XINT_expr_usethe\xint_protect\XINT_boolexpr_print }% +\protected\def\XINT_expr_usethe #1#2#3% modified in 1.09j + {\xintError:missing_xintthe!\show#3missing xintthe (see log)!}% +\def\xintthe #1{\romannumeral-`0\expandafter\xint_gobble_iii\romannumeral-`0#1}% \let\XINT_expr_print \XINT_expr_unlock \def\XINT_iexpr_print #1{\xintRound:csv {\XINT_expr_unlock #1}}% \def\XINT_flexpr_print #1{\xintFloat:csv {\XINT_expr_unlock #1}}% @@ -21924,19 +23203,19 @@ first place. \def\xintiieval {\expandafter\XINT_iiexpr_until_end_a\romannumeral-`0\XINT_expr_getnext }% \def\xinttheexpr - {\romannumeral-`0\expandafter\xint_gobble_ii\romannumeral0\xinteval }% + {\romannumeral-`0\expandafter\xint_gobble_iii\romannumeral0\xinteval }% \def\xintthefloatexpr - {\romannumeral-`0\expandafter\xint_gobble_ii\romannumeral0\xintfloateval }% + {\romannumeral-`0\expandafter\xint_gobble_iii\romannumeral0\xintfloateval }% \def\xinttheiiexpr - {\romannumeral-`0\expandafter\xint_gobble_ii\romannumeral0\xintiieval }% + {\romannumeral-`0\expandafter\xint_gobble_iii\romannumeral0\xintiieval }% \def\xintiexpr {\romannumeral0\expandafter\expandafter\expandafter - \XINT_iexpr_done \expandafter\xint_gobble_iii\romannumeral0\xinteval }% + \XINT_iexpr_done \expandafter\xint_gobble_iv\romannumeral0\xinteval }% \def\xinttheiexpr {\romannumeral-`0\expandafter\expandafter\expandafter - \XINT_iexpr_print\expandafter\xint_gobble_iii\romannumeral0\xinteval }% + \XINT_iexpr_print\expandafter\xint_gobble_iv\romannumeral0\xinteval }% \def\xintboolexpr {\romannumeral0\expandafter\expandafter\expandafter - \XINT_boolexpr_done \expandafter\xint_gobble_iii\romannumeral0\xinteval }% + \XINT_boolexpr_done \expandafter\xint_gobble_iv\romannumeral0\xinteval }% \def\xinttheboolexpr {\romannumeral-`0\expandafter\expandafter\expandafter - \XINT_boolexpr_print\expandafter\xint_gobble_iii\romannumeral0\xinteval }% + \XINT_boolexpr_print\expandafter\xint_gobble_iv\romannumeral0\xinteval }% \let\xintnumexpr \xintiexpr % deprecated \let\xintthenumexpr\xinttheiexpr % deprecated % \end{macrocode} @@ -22027,7 +23306,7 @@ first place. }% \def\XINT_expr_getnext_gotonetoken_wehope\Z #1% {% screens out sub-expressions and \count or \dimen registers/variables - \xint_gob_til_! #1\XINT_expr_subexpr !% + \xint_gob_til_! #1\XINT_expr_subexpr !% recall this ! has catcode 11 \ifcat\relax#1% \count or \numexpr etc... token or count, dimen, skip cs \expandafter\XINT_expr_countdimenetc_fork \else @@ -22036,7 +23315,7 @@ first place. \fi #1% }% -\def\XINT_expr_subexpr !#1\fi {\expandafter\XINT_expr_getop\xint_gobble_iii }% +\def\XINT_expr_subexpr !#1\fi !{\expandafter\XINT_expr_getop\xint_gobble_iii }% \def\XINT_expr_countdimenetc_fork #1% {% \ifx\count#1\else\ifx#1\dimen\else\ifx#1\numexpr\else\ifx#1\dimexpr\else @@ -22066,10 +23345,10 @@ first place. {% The * is in truth catcode 12 #. For (hacking) use with \xintNewExpr. \XINT_expr_sixwayfork #1-.+*{\xint_c_xviii ({}}% back to until for oparen triggering - (#1.+*-% - (-#1+*{\XINT_expr_scandec_II.}% - (-.#1*\XINT_expr_getnext% - (-.+#1{\XINT_expr_scandec_II}% + (#1.+*{-}% + (-#1+*{\XINT_expr_scandec_II .}% + (-.#1*{\XINT_expr_getnext }% + (-.+#1{\XINT_expr_scandec_II }% (-.+*{\XINT_expr_scan_dec_or_func #1}% \krof }}% @@ -22122,7 +23401,10 @@ first place. % _getop. 1.09i modifies \XINT_expr_scanintpart_a (splits _aa) and also % \XINT_expr_scanfracpart_a in % order for the tacit multiplication of \count's and \dimen's to be compatible -% with escape-char=a digit| +% with escape-char=a digit. +% +% 1.09j further extends to recognize an \xintexpr (or cousin) and then insert +% automatically a * (done in \XINT_expr_getop).| % \begin{macrocode} \def\XINT_expr_scandec_I {% @@ -22135,11 +23417,12 @@ first place. \XINT_expr_lock\romannumeral-`0\XINT_expr_scanfracpart_b }% \def\XINT_expr_scanintpart_a #1% Please no braced material: 123{FORBIDDEN} -{% +{% careful that ! has catcode letter... spaces needed after ... \ifcat #1\relax - \expandafter !% - \else \expandafter\expandafter\expandafter - \XINT_expr_scanintpart_aa\expandafter\string + \expandafter !% stop number scan if \relax, \count, \numexpr, or + \else \xint_afterfi{\ifx !#1\expandafter !\else % also \xintexpr etc.. + \expandafter\expandafter\expandafter + \XINT_expr_scanintpart_aa\expandafter\string\fi }% \fi #1% }% \def\XINT_expr_scanintpart_aa #1% @@ -22151,7 +23434,7 @@ first place. \expandafter\expandafter\expandafter \XINT_expr_scandec_transition \else % gather what we got so far, leave catcode 12 #1 in stream - \expandafter\expandafter\expandafter !% ! of catcode 11 ... + \expandafter\expandafter\expandafter !% ! of catcode 11, space needed \fi \fi #1% @@ -22169,9 +23452,10 @@ first place. \def\XINT_expr_scanfracpart_a #1% {% \ifcat #1\relax - \expandafter !% - \else \expandafter\expandafter\expandafter - \XINT_expr_scanfracpart_aa\expandafter\string + \expandafter !% stop number scan + \else \xint_afterfi{\ifx !#1\expandafter !\else + \expandafter\expandafter\expandafter + \XINT_expr_scanfracpart_aa\expandafter\string\fi }% \fi #1% }% \def\XINT_expr_scanfracpart_aa #1% @@ -22212,6 +23496,10 @@ first place. % % 1.09i allows \count's, \dimen's, \skip's with tacit multiplication. % +% 1.09j extends the mechanism of tacit multiplication to the case of a sub +% xintexpression in its various variants. Careful that our ! has catcode 11 so +% \ifx! would be a disaster... +% % | % \begin{macrocode} \def\XINT_expr_getop #1% this #1 is the current locked computed value @@ -22224,10 +23512,14 @@ first place. \ifcat #2\relax\expandafter\xint_firstoftwo \else \expandafter\xint_secondoftwo \fi - {\ifx #2\relax\expandafter\XINT_expr_foundend\expandafter#1% - \else - \xint_afterfi{\XINT_expr_foundop *#1#2}% - \fi }% + {\ifx #2\relax\expandafter\xint_firstofthree + \else\expandafter\xint_secondofthree % tacit multiplication + \fi }% + {\ifx !#2\expandafter\xint_secondofthree % tacit multiplication + \else\expandafter\xint_thirdofthree + \fi }% + {\XINT_expr_foundend #1}% + {\XINT_expr_foundop *#1#2}% {\XINT_expr_foundop #2#1}% }% \def\XINT_expr_foundend {\xint_c_ \relax }% \relax is a place holder here. @@ -23071,7 +24363,7 @@ first place. Right bracket \] Circumflex \^ Underscore \_ Grave accent \` Left brace \{ Vertical bar \| Right brace \} Tilde \~} -\CheckSum {20743} +\CheckSum {21191} \makeatletter\check@checksum\makeatother \Finale %% End of file xint.dtx diff --git a/Master/texmf-dist/source/generic/xint/xint.ins b/Master/texmf-dist/source/generic/xint/xint.ins index 80eccbc9509..21f127eca0b 100644 --- a/Master/texmf-dist/source/generic/xint/xint.ins +++ b/Master/texmf-dist/source/generic/xint/xint.ins @@ -1,6 +1,6 @@ %%---------------------------------------------------------------- -%% The xint bundle (version 1.09i of December 18, 2013) -%% Copyright (C) 2013 by Jean-Francois Burnol +%% The xint bundle (version 1.09j of January 9, 2014) +%% Copyright (C) 2013-2014 by Jean-Francois Burnol %%---------------------------------------------------------------- %% This is a generated file. %% "tex xint.ins" extracts from xint.dtx: @@ -13,7 +13,7 @@ %% \input docstrip.tex \askforoverwritefalse -\generate{\usepreamble\nopreamble +\generate{\nopreamble \file{xint.tex}{\from{xint.dtx}{drv}} \usepreamble\defaultpreamble \file{xinttools.sty}{\from{xint.dtx}{xinttools}} -- cgit v1.2.3