From 19f23660ffb017d26da264466d6ad957c800bd14 Mon Sep 17 00:00:00 2001 From: Karl Berry Date: Sat, 5 Aug 2017 20:57:05 +0000 Subject: cesenaexam (5aug17) git-svn-id: svn://tug.org/texlive/trunk@44960 c570f23f-e606-0410-a88d-b1316a301751 --- Master/texmf-dist/doc/latex/cesenaexam/Makefile | 44 +++ Master/texmf-dist/doc/latex/cesenaexam/README.md | 34 ++ .../texmf-dist/doc/latex/cesenaexam/cesenaexam.pdf | Bin 0 -> 308888 bytes .../doc/latex/cesenaexam/cesenaexam_example.pdf | Bin 0 -> 202507 bytes .../doc/latex/cesenaexam/cesenaexam_example.tex | 353 +++++++++++++++++++++ 5 files changed, 431 insertions(+) create mode 100644 Master/texmf-dist/doc/latex/cesenaexam/Makefile create mode 100644 Master/texmf-dist/doc/latex/cesenaexam/README.md create mode 100644 Master/texmf-dist/doc/latex/cesenaexam/cesenaexam.pdf create mode 100644 Master/texmf-dist/doc/latex/cesenaexam/cesenaexam_example.pdf create mode 100644 Master/texmf-dist/doc/latex/cesenaexam/cesenaexam_example.tex (limited to 'Master/texmf-dist/doc') diff --git a/Master/texmf-dist/doc/latex/cesenaexam/Makefile b/Master/texmf-dist/doc/latex/cesenaexam/Makefile new file mode 100644 index 00000000000..914ddb5a720 --- /dev/null +++ b/Master/texmf-dist/doc/latex/cesenaexam/Makefile @@ -0,0 +1,44 @@ +.PHONY : example cls all clean clsfast ctan + +all: cls example clean + +clsfast: + cp cesenaexam.dtx ./build/cesenaexam.dtx + cd ./build && \ + pdflatex cesenaexam.dtx && \ + rm cesenaexam.dtx + +cls: + cp cesenaexam.dtx ./build/cesenaexam.dtx + cd ./build && \ + latexmk -pdf -pdflatex="pdflatex -interaction=nonstopmode" cesenaexam.dtx && \ + makeindex -s gglo.ist -o cesenaexam.gls cesenaexam.glo && \ + makeindex -s gind.ist -o cesenaexam.ind cesenaexam.idx && \ + latexmk -pdf -pdflatex="pdflatex -interaction=nonstopmode" cesenaexam.dtx && \ + rm cesenaexam.dtx && \ + cp README.md ../ + +example: + cp cesenaexam_example.tex ./build/cesenaexam_example.tex + cp -r images ./build/ + cd ./build && \ + latexmk -pdf -pdflatex="pdflatex -interaction=nonstopmode" cesenaexam_example.tex && \ + rm cesenaexam_example.tex &&\ + rm -r images + +clean: + cd ./build && \ + rm -r *.aux *_latexmk *.fls *.glo *.gls *.hd *.idx *.ilg *.ind *.log *.out *.toc README.md + +ctan: + mkdir cesenaexam + cp Makefile ./cesenaexam/ + cp README.md ./cesenaexam/ + cp cesenaexam.dtx ./cesenaexam/ + cp ./build/cesenaexam.pdf ./cesenaexam/ + cp ./build/cesenaexam.ins ./cesenaexam/ + cp ./build/cesenaexam.cls ./cesenaexam/ + cp ./build/cesenaexam.sty ./cesenaexam/ + cp cesenaexam_example.tex ./cesenaexam/ + cp ./build/cesenaexam_example.pdf ./cesenaexam/ + zip -r9 cesenaexam.zip ./cesenaexam diff --git a/Master/texmf-dist/doc/latex/cesenaexam/README.md b/Master/texmf-dist/doc/latex/cesenaexam/README.md new file mode 100644 index 00000000000..a8eb8c113d9 --- /dev/null +++ b/Master/texmf-dist/doc/latex/cesenaexam/README.md @@ -0,0 +1,34 @@ +# cesenaexam LaTeX class +``` +---------------------------------------------------------------- +cesenaexam --- class file to typeset exams +E-mail: alexpacini90@gmail.com +Released under the LaTeX Project Public License v1.3c or later +See http://www.latex-project.org/lppl.txt +Contributions to this repository as pull requests are welcome! +---------------------------------------------------------------- +``` + +This LaTeX document class has been designed to typeset exams. +To make the ```.cls``` from the ```.dtx``` one, just run +```make```. +Read the manual for more informations. + +The processed files ready to be included can be downloaded from +the following links: + +[Download cesenaexam Manual](https://alexpacini.github.io/cesenaexam/build/cesenaexam.pdf) + +[Download cesenaexam Example](https://alexpacini.github.io/cesenaexam/build/cesenaexam_example.pdf) + +Download cesenaexam Class File + +To use the class file, just drop it in the same folder as the ```.tex``` source file and use ```cesenaexam``` in the +```\documentclass[a4paper, 10pt]{cesenaexam}``` or download the last published version from the archive below. + +## [Tag Archive](https://github.com/alexpacini/cesenaexam/tags) +- [2017-08-04 - cesenaexam v0.2](https://github.com/alexpacini/cesenaexam/archive/v0.2.zip) + + + + diff --git a/Master/texmf-dist/doc/latex/cesenaexam/cesenaexam.pdf b/Master/texmf-dist/doc/latex/cesenaexam/cesenaexam.pdf new file mode 100644 index 00000000000..15c9665f3d4 Binary files /dev/null and b/Master/texmf-dist/doc/latex/cesenaexam/cesenaexam.pdf differ diff --git a/Master/texmf-dist/doc/latex/cesenaexam/cesenaexam_example.pdf b/Master/texmf-dist/doc/latex/cesenaexam/cesenaexam_example.pdf new file mode 100644 index 00000000000..410bc3d5b2a Binary files /dev/null and b/Master/texmf-dist/doc/latex/cesenaexam/cesenaexam_example.pdf differ diff --git a/Master/texmf-dist/doc/latex/cesenaexam/cesenaexam_example.tex b/Master/texmf-dist/doc/latex/cesenaexam/cesenaexam_example.tex new file mode 100644 index 00000000000..45e4bb46780 --- /dev/null +++ b/Master/texmf-dist/doc/latex/cesenaexam/cesenaexam_example.tex @@ -0,0 +1,353 @@ +\documentclass[a4paper, 10pt]{cesenaexam} +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} +%\usepackage{lmodern} +\usepackage[italian]{babel} +\usepackage{booktabs} +\usepackage{cite} +\graphicspath{{./images/}} +\usepackage{amsfonts, amssymb, amsmath, textcomp, gensymb, mathtools} +\interdisplaylinepenalty=2500 +\usepackage{array} +\usepackage{url} +\usepackage{microtype, datetime} +\usepackage{color, soul} +\usepackage[capitalise]{cleveref} +\usepackage{siunitx} + +\newcommand{\R}{\mathbb{R}} +\newcommand{\C}{\mathbb{C}} +\renewcommand{\Re}{\operatorname{Re}} +\renewcommand{\Im}{\operatorname{Im}} + +%% +% Set the title and parts here +%% +\title{\bf Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica \\ + \bf A.A. 2016/17 - Prova n.3 - 21 luglio 2017} + +\examparts{\bfseries Parti Svolte: \hspace{1cm}% + E1 \boxempty \hspace{1cm}% + E2 \boxempty \hspace{1cm}% + D \boxempty} + +\begin{document} +\maketitle{Cognome}{Nome}{Matricola}{Firma}{1} + +\examsection*{Esercizio 1}{11 punti} +\examtwoblocks{0.385\textwidth}{0.58\textwidth}{ +\begin{tikzpicture} +\draw (0,0) +node [label={below:$D$}] {} +to [short, *-] ++(2.5,0) +to [R, l=$R_4$, i_=$I_4$] ++(0,3) +node [label={right:$C$}] {} coordinate (C) +-- ++(0,1.5) +to [controlled voltage source, v_=$\mu V_4$] ++(-5,0) +-- ++(0,-1.5) +node [label={left:$A$}] {} coordinate (A) +to [short, *-, i={\relax}] ++(0.5,0) ++(-0.5,0) +to [R, l=$R_1$, -*] ++(2.5,0) +node [label={above:$B$}] {} coordinate (B) +to [controlled current source, l=$\alpha I_4$, i_={\relax}, -*] ++(2.5,0) +; +\draw (0,0) +to [V, v_=$V_{G3}$] ++(0,1.5) +to [R, l=$R_3$] ($(B) - (0,0.5)$) +to [short, i<={\relax}] (B) +; +\draw (0,0) +-- ++(-2.5,0) +to [R, l=$R_2$, i={\relax}] (A) +; +\end{tikzpicture} +}{% +Supponendo noti i parametri dei componenti, illustrare il procedimento di risoluzione del circuito rappresentato in figura con il {\bf metodo delle tensioni di nodo}:% +\begin{enumerate} +\item indicare quali grandezze vengono scelte come incognite del sistema risolvente; +\item scrivere le espressioni della matrice dei coefficienti e del vettore dei termini noti del sistema risolvente; +\item scrivere le espressioni in funzione delle incognite indicate al punto 1 delle correnti dei resistori; +\item scrivere le espressioni in funzione delle incognite e delle correnti determinate al punto 3 delle potenze erogate dai generatori. +\end{enumerate}% +} + +\examsection*{Esercizio 2}{11 punti} +\examtwoblocks{0.65\textwidth}{0.32\textwidth}{ +\begin{tikzpicture} +\draw (0,0) coordinate (ref) +to [V, v=$V_G$] ++(0,1.5) +to [ european resistor, l=$\mathbf{Z}_G$] ++(0,1.5) coordinate (topZG) +-- ++(1.5,0) coordinate (T1top) +(T1top |- 0,0) coordinate (T1bot) +-- (0,0) +; +\newlength{\myRT}\pgfmathsetlength{\myRT}{0.5cm} +\coordinate (T2bot) at ($(1.8,0) + (0.8*\myRT,0)$); +\coordinate (T2top) at (T2bot |- 0,3); +\draw (T1bot) +-- ($(T1bot)!0.5!(T1top) - (0,\myRT)$) coordinate (T1mtop); +\draw (T2bot) +-- ($(T2bot)!0.5!(T2top) - (0,\myRT)$) coordinate (T2mtop); +\draw [thick] (T1mtop) +arc [start angle=-90, end angle=90, radius=\myRT] coordinate (T1ptop); +\draw [thick] (T2mtop) +arc [start angle=-90, end angle=-270, radius=\myRT] coordinate (T2ptop); +\node (Tname) [anchor=south] at ($(T1ptop) + (0.8\myRT,0)$) {$k$}; +\draw (T1ptop) to (T1top); +\draw (T2ptop) to (T2top); +\draw (T2top) +to [european resistor, l=$X$] ++(2,0) coordinate (Xright); +\draw (Xright) +-- ++(0,0.5) +to [short,i>^=$i_1$] ++(0.5,0) +to [R, l=$R_1$] ++(1,0) +to [L, l=$L_1$] ++(1.5,0) +-- ++(0,-1) +to [controlled current source, i<=\relax, l=$\alpha i_1$] ++(-3,0) +to [short, -*] (Xright) +; +\draw ($(Xright)+(3,0)$) +to [short, *-] ++(1,0) +to [short, -*] ++(0,-0.5) coordinate (R2C2centop) +to [short] ++(0.5,0) +to [C, l_=$C_2$] ++(0,-2) +to [short] ++(-1.3,0) +to [R, l=$R_2$] ++(0,2) +-- ++(0.8,0) +; +\draw (T2bot) +-- (T2bot -| R2C2centop) +to [short, -*] ++(0,0.5) +; +\draw ($(T2bot) + (0,0.5)$) +to [open, v=$v$] ($(T2bot) + (0,2.5)$); +\draw [dashed] ($(Xright) + (-0.2,1.4)$) rectangle (9.2,-0.2); +\end{tikzpicture} +}{\begin{tabular}{ll}% +$R_1 =$ \SI{4}{\ohm} & $L_1 =$ \SI{4}{mH} \\ +$R_2 =$ \SI{20}{\ohm} & $C_2 =$ \SI{100}{\mu F} \\ +$\alpha =$ \si{3} \\ +\multicolumn{2}{l}{$V_G =$ $\mathrm{120\sqrt{5} \cos(\omega t + \phi)}$ \si{V}} \\ +$\cos \phi = \mathrm{\sqrt{5}/5}$ & $\sin \phi = \mathrm{-2\sqrt{5}/5}$ \\ +$\omega =$ \SI{100}{rad/s} \\ +\multicolumn{2}{l}{$\mathbf{Z}_G = \mathrm{180 + 180j}$ \si{\ohm}} +\end{tabular}% +} +Il circuito rappresentato in figura è in condizioni di regime sinusoidale. Determinare: +\begin{enumerate} +\item l’impedenza equivalente, $\mathbf{Z}_{eq}$, del bipolo racchiuso dalla linea tratteggiata; +\item la potenza disponibile, $P_d$, del bipolo formato dal generatore $V_G$ e dall’impedenza $\mathbf{Z}_{G}$; +\item i valori da attribuire al rapporto di trasformazione $k$ e alla reattanza $X$ affinché la potenza attiva assorbita da $\mathbf{Z}_{eq}$ sia uguale a $P_d$; +\item l’espressione della tensione $v(t)$ (con i valori di $k$ e $X$ determinati al punto precedente). +\end{enumerate} + +\newpage +\examsection*{Domande}{10 punti} +\begin{enumerate} +\item \examtwoblockstop{9cm}{6cm}{ + \begin{tikzpicture} + \node (text) [align=justify, text width=0.97\textwidth] {% + Le tensioni concatenate costituiscono una terna diretta di valore efficace \SI{866}{V}. + Determinare il valore efficace $I$ delle correnti di linea e il valore efficace $I_{\Delta}$ delle correnti nei resistori $R_2$. (\textit{2 punti})\\ + $R_1 =$ \SI{5}{\ohm}, $R_2 =$ \SI{30}{\ohm}, $\omega L =$ \SI{10}{\ohm}. + }; + \node (I) [draw, anchor=north west, minimum width=1cm, minimum height = 1cm] at (text.south west) {$I$}; + \node (I box) [draw, anchor=north west, minimum width=3cm, minimum height = 1cm] at ($(I.north east)+(-\pgflinewidth,0)$) {}; + \node (Idelta) [draw, anchor=north west, minimum width=1cm, minimum height = 1cm] at ($(I box.north east)+(-\pgflinewidth,0)$) {$I_{\Delta}$}; + \node (Idelta box) [draw, anchor=north west, minimum width=3cm, minimum height = 1cm] at ($(Idelta.north east)+(-\pgflinewidth,0)$) {}; + \end{tikzpicture}% + }{% + \begin{tikzpicture}[scale=0.7, transform shape] + \draw (0,0) + node [label={left:$1$}] {} + to [short, *-, i=\relax] ++(1,0) + to [R, l=$R_1$] ++(1,0) coordinate (L1p) + -- ++(2.5,0) coordinate (R21) + to [R, l=$R_2$, *-] ++(2,0) coordinate + -- ++(0,-0.5) coordinate (R21p) + to [short, i=\relax] (R21p -| R21) + to [short, -*] ++(0,-1) coordinate (R22) + to [R, l=$R_2$, *-] ++(2,0) + -- ++(0,-0.5) coordinate (R22p) + to [short, i=\relax] (R22p -| R22) + to [short, -*] ++(0,-1) coordinate (R23) + to [R, l=$R_2$, *-] ++(2,0) + -- ++(0.5,0) + to [short, i=\relax] ++(0,4) + -- ++(-2.5,0) + -- ++(0,-1) + ; + \draw (R22) + -- ++(-2.5,0) + to [R, l_=$R_1$] ++(-1,0) + to [short, i<=\relax, -*] ++(-1,0) + node [label={left:$2$}] {} + ; + \draw (R23) + -- ++(-2.5,0) + to [R, l_=$R_1$] ++(-1,0) + to [short, i<=\relax, -*] ++(-1,0) + node [label={left:$3$}] {} + ; + \draw ($(L1p)!0.1!(R21)$) + to [short, *-] ++(0,-3.5) + to [L, l_=$L$] ++(0,-1) + -- ++(0,-0.5) coordinate (L1m) + ; + \draw ($(L1p)!0.5!(R21) + (0,-1.5)$) + to [short, *-] ++(0,-2) + to [L, l_=$L$] ++(0,-1) + -- ++(0,-0.5) coordinate (L2m) + ; + \draw ($(L1p)!0.9!(R21) + (0,-3)$) + to [short, *-] ++(0,-0.5) + to [L, l_=$L$] ++(0,-1) + -- ++(0,-0.5) coordinate (L3m) + ; + \draw (L1m) + to [short, -*] (L2m) + -- (L3m) + ; + \end{tikzpicture}} +\item \examtwoblockstop{10cm}{5cm}{ + \begin{tikzpicture} + \node (text) [align=justify, text width=0.97\textwidth] {% + Per $t<0$ il circuito è in condizioni di regime stazionario e l’interruttore è chiuso. + All’istante $t=0$ si apre l’interruttore. + Determinare l’espressione di $i_{L}(t)$ per $t>0$. + (\textit{2 punti}) + }; + \node (iL) [draw, anchor=north west, minimum width=1cm, minimum height = 1cm] at (text.south west) {$i_{L} (t)$}; + \node (iL box) [draw, anchor=north west, minimum width=7cm, minimum height = 1cm] at ($(iL.north east)+(-\pgflinewidth,0)$) {}; + \end{tikzpicture}% + }{% + \begin{tikzpicture} [scale=0.8, transform shape] + \draw (0,0) coordinate (circuit north west) + to [short, -*] ++(0,-1) + to [R, l=$R$] ++(0,-2) + -- ++(2,0) + to [short, *-] ++(2,0) + to [L, -*, i_<=$i_L$, l=$L$] ++(0,2) + to [R, -*, l_=$R$] ++(-2,0) coordinate (IGp) + to [R, -*, l_=$R$] ++(-2,0); + \draw (IGp) to [I, i<=\relax, l=$I_G$] ++(0,-2); + \draw (circuit north west) -- ++(1.5,0) coordinate (Swm); + \coordinate (Swp) at ($(Swm)+(1,0)$); + \draw (Swp) + -- ++(1.5,0) + -- ++(0,-1) + ; + \node [circ] at (Swm){}; + \node [circ] at (Swp){}; + \draw [thick] (Swm) -- (Swp); + \draw [densely dotted,thin] let \p1 = ($(Swp)-(Swm)$) in (Swm) -- ++(30:({veclen(\x1,\y1)});); + \coordinate (Swmiddown) at ($(Swm)!0.5!(Swp) + (0,-0.2)$); + \draw [->, switcharc] (Swmiddown) arc [start angle=-10, end angle=60, radius=0.6cm]; + \end{tikzpicture}} +\item \examtwoblockstop{11cm}{4cm}{ + \begin{tikzpicture} + \node (text) [align=justify, text width=0.97\textwidth] {% + Il carico trifase rappresentato nella figura viene alimentato mediante una terna simmetrica di tensioni concatenate. + Se la potenza assorbita quando l’interruttore è chiuso è $P_c =$ \SI{3}{\kW}, qual è la potenza $P_a$ assorbita con l’interruttore aperto? (\textit{2 punti}) + }; + \node (Pa) [draw, anchor=north west, minimum width=1cm, minimum height = 1cm] at (text.south west) {$P_{a}$}; + \node (Pa box) [draw, anchor=north west, minimum width=7cm, minimum height = 1cm] at ($(Pa.north east)+(-\pgflinewidth,0)$) {}; + \end{tikzpicture} + }{ + \begin{tikzpicture}[scale=0.8, transform shape] + \draw (0,0) + node [label={left:$1$}] {} + to [short, *-, i=\relax] ++(1,0) coordinate (R1p); + \draw (0,1.5) + node [label={left:$2$}] {} + to [short, *-, i=\relax] ++(1,0) coordinate (R2p); + \draw (0,3) + node [label={left:$3$}] {} + to [short, *-, i=\relax] ++(1,0) coordinate (R3p); + \draw (R1p) + to [short] ++(0.5,0) + to [R, l=$R$] ++(1,0) + to [short] ++(0.5,0) + to [short, -*] ++(0,1) + ; + \draw (R2p) + to [short, *-] ++(0,0.5) + -- ++(0.5,0) + to [R, l=$2R$] ++(1,0) + to [short] ++(0.5,0) + -- ++(0,-0.2) coordinate (Swm) + ; + \draw (R2p) + to [short] ++(0,-0.5) + -- ++(0.5,0) + to [R, l=$2R$] ++(1,0) + to [short] ++(0.5,0) + -- ++(0,+0.2) coordinate (Swp) + ; + \draw (R3p) + to [short] ++(0.5,0) + to [R, l=$R$] ++(1,0) + to [short] ++(0.5,0) + to [short, -*] ++(0,-1) + ; + \node [circ] at (Swm){}; + \node [circ] at (Swp){}; + \draw [thick] (Swm) -- (Swp); + \draw [densely dotted] let \p1 = ($(Swp)-(Swm)$) in (Swm) -- ++(-60:({veclen(\x1,\y1)});); + \coordinate (Swmiddown) at ($(Swm)!0.5!(Swp) + (-0.1,0)$); + \draw [->, switcharc] let \p1 = ($(Swp)-(Swm)$) in (Swmiddown) arc [start angle=-100, end angle=-45, radius=({veclen(\x1,\y1)})]; + \end{tikzpicture} + } +\item \examtwoblockstop{11cm}{5cm}{ + \begin{tikzpicture} + \node (text) [align=justify, text width=0.97\textwidth] {% + Si considerino due avvolgimenti di $N_1$ e $N_2$ spire disposti su un nucleo toroidale avente raggio medio $r$ e sezione $S$. + Se il raggio $r$ viene raddoppiato, è possibile mantenere invariato il coefficiente di mutua induzione dei due avvolgimenti: (\textit{1 punto}) + }; + \node (choices) [anchor=north west, text width=0.97\textwidth] at (text.south west) {% + $\square \;$ dimezzando il numero di spire di entrambi gli avvolgimenti\\ + $\square \;$ raddoppiando il numero di spire di entrambi gli avvolgimenti\\ + $\square \;$ raddoppiando il numero di spire di uno degli avvolgimenti\\ + $\square \;$ raddoppiando il valore delle correnti nei due avvolgimenti}; + \end{tikzpicture} + }{ + \begin{tikzpicture} + \node (image) {\includegraphics[width=0.9\textwidth]{toroid_mutual}}; + \end{tikzpicture} + } +\item \examoneblocktop{15cm}{ + \begin{tikzpicture} + \node (text) [align=justify, text width=0.97\textwidth] {% + L’area racchiusa da un ciclo di isteresi nel piano H-B corrisponde: (\textit{1 punto}) + }; + \node (choices) [anchor=north west, text width=0.97\textwidth] at (text.south west) {% + $\square \;$ alla potenza dissipata in un ciclo di isteresi\\ + $\square \;$ alla densità volumetrica di energia dissipata in un ciclo di isteresi\\ + $\square \;$ all’energia accumulata nel campo magnetico in un ciclo di isteresi}; + \end{tikzpicture} + } +\item \examoneblocktop{15cm}{ + \begin{tikzpicture} + \node (text) [align=justify, text width=0.97\textwidth] {% + In condizioni di risonanza il fattore di potenza di un bipolo RLC serie è: (\textit{1 punto}) + }; + \node (choices) [anchor=north west, text width=0.97\textwidth] at (text.south west) {% + $\square \;$ nullo\\ + $\square \;$ minimo\\ + $\square \;$ massimo}; + \end{tikzpicture} + } +\item \examoneblocktop{15cm}{ + \begin{tikzpicture} + \node (text) [align=justify, text width=0.97\textwidth] {% + Il valore medio della potenza istantanea reattiva assorbita da un bipolo passivo in regime sinusoidale: (\textit{1 punto}) + }; + \node (choices) [anchor=north west, text width=0.97\textwidth] at (text.south west) {% + $\square \;$ è sempre $\geq$ 0 \\ + $\square \;$ è sempre $\leq$ 0 \\ + $\square \;$ è sempre nullo \\ + $\square \;$ è $\geq$ 0 per i bipoli RL e $\leq$ 0 per i bipoli RC}; + \end{tikzpicture} + } +\end{enumerate} +\end{document} \ No newline at end of file -- cgit v1.2.3