From ec14d89f021dfd980cdfa7d093dff1030c8abc1f Mon Sep 17 00:00:00 2001 From: Karl Berry Date: Thu, 2 May 2013 21:47:19 +0000 Subject: dcpic (2may13) git-svn-id: svn://tug.org/texlive/trunk@30206 c570f23f-e606-0410-a88d-b1316a301751 --- Master/texmf-dist/doc/generic/dcpic/README.TEXLIVE | 8 - .../texmf-dist/doc/generic/dcpic/eurotex2001.pdf | Bin 0 -> 197271 bytes .../texmf-dist/doc/generic/dcpic/eurotex2001.tex | 916 +++++++++++++++++++++ Master/texmf-dist/doc/generic/dcpic/examples.pdf | Bin 0 -> 221190 bytes Master/texmf-dist/doc/generic/dcpic/examples.tex | 395 ++++----- Master/texmf-dist/doc/generic/dcpic/manDCPiC.pdf | Bin 0 -> 287676 bytes Master/texmf-dist/doc/generic/dcpic/manDCPiC.tex | 723 ++++++++++++++++ Master/texmf-dist/doc/generic/dcpic/manDCPiCpt.pdf | Bin 0 -> 297287 bytes Master/texmf-dist/doc/generic/dcpic/manDCPiCpt.tex | 846 +++++++++++++++++++ 9 files changed, 2695 insertions(+), 193 deletions(-) delete mode 100644 Master/texmf-dist/doc/generic/dcpic/README.TEXLIVE create mode 100644 Master/texmf-dist/doc/generic/dcpic/eurotex2001.pdf create mode 100644 Master/texmf-dist/doc/generic/dcpic/eurotex2001.tex create mode 100644 Master/texmf-dist/doc/generic/dcpic/examples.pdf create mode 100644 Master/texmf-dist/doc/generic/dcpic/manDCPiC.pdf create mode 100644 Master/texmf-dist/doc/generic/dcpic/manDCPiC.tex create mode 100644 Master/texmf-dist/doc/generic/dcpic/manDCPiCpt.pdf create mode 100644 Master/texmf-dist/doc/generic/dcpic/manDCPiCpt.tex (limited to 'Master/texmf-dist/doc/generic') diff --git a/Master/texmf-dist/doc/generic/dcpic/README.TEXLIVE b/Master/texmf-dist/doc/generic/dcpic/README.TEXLIVE deleted file mode 100644 index d6367106ff5..00000000000 --- a/Master/texmf-dist/doc/generic/dcpic/README.TEXLIVE +++ /dev/null @@ -1,8 +0,0 @@ -The following files have been removed in the TeX Live installation of -the current package, typically due to duplication, lack of space, or -missing source code. You can find these files on CTAN at - http://mirror.ctan.org/macros/generic/diagrams/dcpic -If questions or concerns, email tex-live@tug.org. - - manPT_dcpic.pdf - man_dcpic.pdf diff --git a/Master/texmf-dist/doc/generic/dcpic/eurotex2001.pdf b/Master/texmf-dist/doc/generic/dcpic/eurotex2001.pdf new file mode 100644 index 00000000000..b115f62a5eb Binary files /dev/null and b/Master/texmf-dist/doc/generic/dcpic/eurotex2001.pdf differ diff --git a/Master/texmf-dist/doc/generic/dcpic/eurotex2001.tex b/Master/texmf-dist/doc/generic/dcpic/eurotex2001.tex new file mode 100644 index 00000000000..4b54ad718c1 --- /dev/null +++ b/Master/texmf-dist/doc/generic/dcpic/eurotex2001.tex @@ -0,0 +1,916 @@ +% $Id: eurotex2001-pqa-article.tex,v 1.9 2001/11/12 09:53:59 pedro Exp pedro $ +\documentclass{europroc} +\usepackage[dvips]{graphicx} +\usepackage{dcpic,pictex} +\usepackage{calrsfs} +\usepackage{dsfont} +\usepackage{alltt} + + + +\begin{document} + +\title[DCpic]{DCpic, Commutative Diagrams in a (La)\TeX\ Document} +\author[Pedro Quaresma]{Pedro Quaresma\thanks{This work was partially +supported by the Portuguese Ministry of Science and Technology (MCT), +under the programme PRAXIS XXI.}\\ CISUC\\ Departamento de +Matem{\'a}tica, Universidade de Coimbra\\ 3001-454 COIMBRA, PORTUGAL} + + +\maketitle + +\begin{abstract} + DCpic is a package of \TeX\ macros for graphing Commutative Diagrams + in a (La)\TeX\ or Con\TeX t document. Its distinguishing features + are: the use of \PiCTeX\ a powerful graphical engine, and a simple + specification syntax. A commutative diagram is described in + terms of its objects and its arrows. The objects are + textual elements and the arrows can have various straight or curved + forms. + + We describe the syntax and semantics of the user's commands, and + present many examples of their use. +\end{abstract} + +\keywords{Commutative Diagrams, (La)\TeX, \PiCTeX} + +\section{Introduction} + +\initial{3}{C}{\scshape ommutative Diagrams} (Diagramas Comutativos, +in Portuguese), are a kind of graphs which are widely used in Category +Theory~\cite{Herrlich73,MacLane71,Pierce98}, not only as a concise and +convenient notation but also for ``arrow chasing'', a powerful tool +for mathematical thought. For example, the fact that in a Category we +have arrow composition is easily expressed by the following +commutative diagram. + +$$ +\begindc{\commdiag}[30] +\obj(10,15){$A$} +\obj(25,15){$B$} +\obj(40,15){$C$} +\mor(10,15)(25,15){$f$} +\mor(25,15)(40,15){$g$} +\cmor((10,11)(11,7)(15,6)(25,6)(35,6)(39,7)(40,11)) +\pup(25,3){$g\circ f$} +\enddc +$$ + +The word commutative means that the result from going throught the +path $f$ plus $g$ is equal to the result from going throught the path +$g\circ f$. Most of the graphs used in Category Theory are digraphs which +we can specify in terms of its objects, and its arrows. + +The (La)\TeX\ approach to typesetting can be characterized as +``logical design''~\cite{Knuth86,Lamport94,Otten99}, but commutative +diagrams are pieces of ``visual design'', and that, in our opinion is +the {\em piece de resistance} of commutative diagrams package +implementation in (La)\TeX. In a commutative diagrams package a user +seeks the simplest notation, a logical notation, with the most +powerful graphical engine possible, the visual part. The DCpic +package, along with the package by John +Reynolds~\cite{Feruglio94,Reynolds87}, has the simplest notation off +all the commutative diagrams packages described in the Feruglio +article~\cite{Feruglio94}. In terms of graphical capabilities the +\PiCTeX~\cite{Wichura87} package provides us with the best +\TeX-graphics engine, that is, without going to {\em Postscript} +specials. + +The DCpic package depends only of \PiCTeX\ and \TeX, +which means that you can use it in all formats that are based on these +two. We have tested DCpic with \LaTeX, \TeX\ plain, pdf\LaTeX, +pdf\TeX~\cite{Thanh99}, and Con\TeX t~\cite{Otten99}; we are confident +that it can be used under many other formats. + +The present version (3.1) of DCpic package is available in CTAN and in +the author's Web-page\footnote{http://www.mat.uc.pt/{\~{}}pedro/LaTeX/}. + + +\section{Constructing Commutative Diagrams} + +DCpic depends on \PiCTeX, thus you must include an apropriate command +to load \PiCTeX\ and DCpic in your document, +e.g. ``{\tt $\backslash$usepackage\{dcpic,pictex\}}'', in a \LaTeX\ document. + +A commutative diagram in DCpic is a ``picture'' in \PiCTeX, in which +we place our {\em objects} and {\em morphisms} (arrows). The user's +commands in DCpic are: {\tt begindc} and {\tt enddc} which establishe +the coordinate system where the objects will by placed; {\tt obj}, the +command which defines the place and the contents of each object; {\tt +mor}, and {\tt cmor}, the commands which define the morphisms, linear +and curved arrows, and its labels. + +Now we will describe each of these commands in greater detail. + +\subsection{The Diagram Environment} + +The command {\tt begindc}, establishes a Cartesian coordinate system +with 1pt units, + +\begin{alltt} + \(\backslash\)begindc[{\em}] \dots \(\backslash\)enddc +\end{alltt} +such a small unit gives us a good control over the placement of the +graphical objects, but in most of the diagrams not involving curved +arrows such a ``fine grain'' is not desirable, so the optional +argument specifies a magnifying factor $m\in\mathds{N}$, with a default +value of 30. The advantage of this decision is twofold: we can define +the ``grain'' of the diagram, and we can adjust the size of the +diagram to the available space. +\begin{itemize} +\item a ``course grain'' diagram is specified almost as a table, with +the numbers giving us the lines and the columns were the objects will +be placed, the following diagram has the default magnification factor: + +\begin{center} + \begin{tabular}{cc} + \begindc{\commdiag}[300] + \obj(1,1){$A$} + \obj(3,1){$B$} + \obj(3,3){$C$} + \mor(1,1)(3,1){$f$}[\atright,\solidarrow] + \mor(1,1)(3,3){$g$} + \mor(3,1)(3,3){$h$}[\atright,\solidarrow] + \enddc &\tt + \begin{tabular}[b]{l} + $\backslash$begindc\{$\backslash$commdiag\}\\ + $\backslash$obj(1,1)\{\$A\$\}\\ + $\backslash$obj(3,1)\{\$B\$\}\\ + $\backslash$obj(3,3)\{\$C\$\}\\ + $\backslash$mor(1,1)(3,1)\{\$f\$\}[$\backslash$atright,$\backslash$solidarrow]\\ + $\backslash$mor(1,1)(3,3)\{\$g\$\}\\ + $\backslash$mor(3,1)(3,3)\{\$h\$\}[$\backslash$atright,$\backslash$solidarrow]\\ + $\backslash$enddc + \end{tabular} + \end{tabular} +\end{center} +\item a ``fine grain'' diagram is a bit harder to design but it gives +us a better control over the objects placement, the following diagram +has a magnification factor of three, this gives us the capability of +drawing the arrows $f$ and $f^\prime$ very close together: +\begin{center} + \begin{tabular}{cc} + \begindc{\commdiag}[30] + \obj(10,10){$A$} + \obj(30,10){$B$} + \obj(30,30){$C$} + \mor(10,9)(30,9){$f$}[\atright,\solidarrow] + \mor(10,11)(30,11){$f^\prime$} + \mor(10,10)(30,30){$g$} + \mor(30,10)(30,30){$h$}[\atright,\solidarrow] + \enddc &\tt + \begin{tabular}[b]{l} + $\backslash$begindc\{$\backslash$commdiag\}[30]\\ + $\backslash$obj(10,10)\{\$A\$\}\\ + $\backslash$obj(30,10)\{\$B\$\}\\ + $\backslash$obj(30,30)\{\$C\$\}\\ + $\backslash$mor(10,9)(30,9)\{\$f\$\}[$\backslash$atright,$\backslash$solidarrow]\\ + $\backslash$mor(10,11)(30,11)\{\$f{\^{}}$\backslash$prime\$\}\\ + $\backslash$mor(10,10)(30,30)\{\$g\$\}\\ + $\backslash$mor(30,10)(30,30)\{\$h\$\}[$\backslash$atright,$\backslash$solidarrow]\\ + $\backslash$enddc + \end{tabular} + \end{tabular} +\end{center} +\item the magnification factor gives us the capability of adapting the + size of the diagram to the available space, without having to + redesign the diagram, for example the specification of the + next two diagrams differs only in the magnification factor: 30 for + the first; and 25 for the second. +\begin{center} + \begin{tabular}{cc} + \begindc{\commdiag}[300] + \obj(1,1){$A$} + \obj(3,1){$B$} + \obj(3,3){$C$} + \mor(1,1)(3,1){$f$}[\atright,\solidarrow] + \mor(1,1)(3,3){$g$} + \mor(3,1)(3,3){$h$}[\atright,\solidarrow] + \enddc & + \begindc{\commdiag}[250] + \obj(1,1){$A$} + \obj(3,1){$B$} + \obj(3,3){$C$} + \mor(1,1)(3,1){$f$}[\atright,\solidarrow] + \mor(1,1)(3,3){$g$} + \mor(3,1)(3,3){$h$}[\atright,\solidarrow] + \enddc + \end{tabular} +\end{center} +\end{itemize} + +Note that the magnification factor does not interfere with the size of +the objects, but only with the size of the diagram as a whole. + +After establishing our ``drawing board'' we can begin placing our +``objects'' on it, we have three commands to do so, the {\tt obj}, +{\tt mor}, and {\tt cmor}, for objects, morphisms, and ``curved'' +morphisms respectively. + + +\subsection{Objects} + +Each object has a place and a content + +\begin{alltt} + \(\backslash\)obj({\em},{\em})\{{\em}\} +\end{alltt} +the $x$ and $y$, integer values, will be multiplied by the magnifying +factor. The {\em contents} will be put in the centre of an ``hbox'' +expanding to both sides of $(m\times x,m\times y)$. + + +\subsection{Linear Arrows} + + +Each linear arrow will have as mandatory arguments two pairs of +coordinates, the beginning and the ending points, and a label, + +{\small\begin{alltt} +\(\backslash\)mor({\em},{\em})({\em},{\em})[{\em},{\em}]\{{\em