From f9ba1f4431124f48769a2666d5d9ec921345ca71 Mon Sep 17 00:00:00 2001 From: Karl Berry Date: Mon, 9 Jan 2006 00:43:17 +0000 Subject: doc 2 git-svn-id: svn://tug.org/texlive/trunk@78 c570f23f-e606-0410-a88d-b1316a301751 --- Master/texmf-dist/doc/fonts/arev/prosper-text.tex | 34 +++++++++++++++++++++++ 1 file changed, 34 insertions(+) create mode 100644 Master/texmf-dist/doc/fonts/arev/prosper-text.tex (limited to 'Master/texmf-dist/doc/fonts/arev/prosper-text.tex') diff --git a/Master/texmf-dist/doc/fonts/arev/prosper-text.tex b/Master/texmf-dist/doc/fonts/arev/prosper-text.tex new file mode 100644 index 00000000000..77116889a03 --- /dev/null +++ b/Master/texmf-dist/doc/fonts/arev/prosper-text.tex @@ -0,0 +1,34 @@ +%prosper-text.tex + +\frame[t] +{ + \frametitle{Characterization of the Imaginary Forms} + + \blue{\textbf{Theorem.}} + + Let $S=\{v_1,v_2,\ldots,v_k\}$ be a \green{set of vectors} in $\mathbb{R}^n$. + + \bigskip + + Consider $\mathcal{F}(S)=\sum_{i=1}^k \delta(v_i v_j w) \sigma_{i,j}$. + + \bigskip + + If \red{$\mathcal{F}(S)\le \varepsilon$}, then + + \[ + \phi(S,\alpha)=\frac{1}{2\pi i} \int_{-\infty}^{753} + \frac{\tilde{W}_{n}(\gamma)\cos\left(\sqrt{x^{2}}\right)}{f'(x) R/a}dx + =\det\left(\begin{array}{cc} + \alpha^{2} & \Pi\\ + \omega & x\otimes y\end{array}\right) + \] + + \bigskip \ + + \emph{Note}: If $\beta\in\Gamma$, then the form is \red{undefined} at the points in $S\cap\Gamma$, and the integral $I_l(i_1)$ diverges as $\varepsilon \rightarrow 0$. This pathological behavior \purple{can be handled} by taking + $\Gamma \subseteq S$. + +} + +\end{document} -- cgit v1.2.3