From c262054e6041bec309cd4ee58dc9c22cc1f40fae Mon Sep 17 00:00:00 2001 From: Peter Breitenlohner Date: Thu, 9 Jul 2009 11:52:21 +0000 Subject: synctex: more native line ends git-svn-id: svn://tug.org/texlive/trunk@14199 c570f23f-e606-0410-a88d-b1316a301751 --- .../synctexdir/tests/LM-Volume-manuscript.tex | 1015 +++++++++++++++++++- 1 file changed, 1009 insertions(+), 6 deletions(-) (limited to 'Build/source/texk/web2c/synctexdir/tests') diff --git a/Build/source/texk/web2c/synctexdir/tests/LM-Volume-manuscript.tex b/Build/source/texk/web2c/synctexdir/tests/LM-Volume-manuscript.tex index ba4ddbd48fd..2853bd550e2 100644 --- a/Build/source/texk/web2c/synctexdir/tests/LM-Volume-manuscript.tex +++ b/Build/source/texk/web2c/synctexdir/tests/LM-Volume-manuscript.tex @@ -1,6 +1,1009 @@ -\documentclass[ a4paper, oneside]{amsart} %\listfiles \RequirePackage{amsmath} \RequirePackage{bm} \RequirePackage{amssymb} \RequirePackage{upref} \RequirePackage{amsthm} \RequirePackage{enumerate} %\RequirePackage{pb-diagram} \RequirePackage{amsfonts} \RequirePackage[mathscr]{eucal} \RequirePackage{verbatim} \RequirePackage{xr} \def\@thm#1#2#3{% \ifhmode\unskip\unskip\par\fi \normalfont \trivlist \let\thmheadnl\relax \let\thm@swap\@gobble \let\thm@indent\indent % no indent \thm@headfont{\scshape}% heading font bold %\thm@notefont{\fontseries\mddefault\upshape}% \thm@notefont{}% \thm@headpunct{.}% add period after heading \thm@headsep 5\p@ plus\p@ minus\p@\relax \thm@preskip\topsep \thm@postskip\thm@preskip #1% style overrides \@topsep \thm@preskip % used by thm head \@topsepadd \thm@postskip % used by \@endparenv \def\@tempa{#2}\ifx\@empty\@tempa \def\@tempa{\@oparg{\@begintheorem{#3}{}}[]}% \else \refstepcounter{#2}% \def\@tempa{\@oparg{\@begintheorem{#3}{\csname the#2\endcsname}}[]}% \fi \@tempa } %Redefined commands %Greek Letters \newcommand{\al}{\alpha} \newcommand{\bet}{\beta} \newcommand{\ga}{\gamma} \newcommand{\de}{\delta } \newcommand{\e}{\epsilon} \newcommand{\ve}{\varepsilon} \newcommand{\f}{\varphi} \newcommand{\h}{\eta} \newcommand{\io}{\iota} \newcommand{\tht}{\theta} \newcommand{\ka}{\kappa} \newcommand{\lam}{\lambda} \newcommand{\m}{\mu} \newcommand{\n}{\nu} \newcommand{\om}{\omega} \newcommand{\p}{\pi} \newcommand{\vt}{\vartheta} \newcommand{\vr}{\varrho} \newcommand{\s}{\sigma} \newcommand{\x}{\xi} \newcommand{\z}{\zeta} \newcommand{\C}{\varGamma} \newcommand{\D}{\varDelta} \newcommand{\F}{\varPhi} \newcommand{\Lam}{\varLambda} \newcommand{\Om}{\varOmega} \newcommand{\vPsi}{\varPsi} \newcommand{\Si}{\varSigma} %New Commands \newcommand{\di}[1]{#1\nobreakdash-\hspace{0pt}dimensional}%\di n \newcommand{\nbdd}{\nobreakdash--} \newcommand{\nbd}{\nobreakdash-\hspace{0pt}} \newcommand{\ce}[1]{$C^#1$\nbd{estimate}} \newcommand{\ces}[1]{$C^#1$\nbd{estimates}} \newcommand{\fm}[1]{F_{|_{M_#1}}} \newcommand{\fmo}[1]{F_{|_{#1}}}%\fmo M \newcommand{\fu}[3]{#1\hspace{0pt}_{|_{#2_#3}}} \newcommand{\fv}[2]{#1\hspace{0pt}_{|_{#2}}} \newcommand{\cchi}[1]{\chi\hspace{0pt}_{_{#1}}} \newcommand{\so}{{\mc S_0}} %\newcommand\sql[1][u]{\sqrt{1-|D#1|^2}} \newcommand{\const}{\tup{const}} \newcommand{\slim}[2]{\lim_{\substack{#1\ra #2\\#1\ne #2}}} \newcommand{\pih}{\frac{\pi}{2}} \newcommand{\msp[1]}[1]{\mspace{#1mu}} \newcommand{\low}[1]{{\hbox{}_{#1}}} %Special Symbols \newcommand{\R}[1][n+1]{{\protect\mathbb R}^{#1}} \newcommand{\Cc}{{\protect\mathbb C}} \newcommand{\K}{{\protect\mathbb K}} \newcommand{\N}{{\protect\mathbb N}} \newcommand{\Q}{{\protect\mathbb Q}} \newcommand{\Z}{{\protect\mathbb Z}} \newcommand{\eR}{\stackrel{\lower1ex \hbox{\rule{6.5pt}{0.5pt}}}{\msp[3]\R[]}} \newcommand{\eN}{\stackrel{\lower1ex \hbox{\rule{6.5pt}{0.5pt}}}{\msp[1]\N}} \newcommand{\eO}{\stackrel{\lower1ex \hbox{\rule{6pt}{0.5pt}}}{\msc O}} %Special math symbols \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\Grad}{Grad} \DeclareMathOperator*{\es}{ess\,sup} \DeclareMathOperator{\graph}{graph} \DeclareMathOperator{\sub}{sub} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\lc}{lc} \DeclareMathOperator{\osc}{osc} \DeclareMathOperator{\pr}{pr} \DeclareMathOperator{\rec}{Re} \DeclareMathOperator{\imc}{Im} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\grad}{grad} \DeclareMathOperator{\Diff}{Diff} \DeclareMathOperator{\rg}{rg} \newcommand\im{\implies} \newcommand\ra{\rightarrow} \newcommand\xra{\xrightarrow} \newcommand\rra{\rightrightarrows} \newcommand\hra{\hookrightarrow} \newcommand{\nea}{\nearrow} \newcommand{\sea}{\searrow} \newcommand{\ua}{\uparrow} \newcommand{\da}{\downarrow} \newcommand{\rha}{\rightharpoondown} \newcommand{\wha}{\underset{w^*}\rightharpoondown} %PDE commands \newcommand\pa{\partial} \newcommand\pde[2]{\frac {\partial#1}{\partial#2}} \newcommand\pd[3]{\frac {\partial#1}{\partial#2^#3}} %e.g. \pd fxi \newcommand\pdc[3]{\frac {\partial#1}{\partial#2_#3}} %contravariant \newcommand\pdm[4]{\frac {\partial#1}{\partial#2_#3^#4}} %mixed \newcommand\pdd[4]{\frac {{\partial\hskip0.15em}^2#1}{\partial {#2^ #3}\,\partial{#2^#4}}} %e.g. \pdd fxij, Abl. zweiter Ordnung \newcommand\pddc[4]{\frac {{\partial\hskip0.15em}^2#1}{\partial {#2_ #3}\,\partial{#2_#4}}} \newcommand\PD[3]{\frac {{\partial\hskip0.15em}^2#1}{\partial #2\,\partial#3}} %e.g \PD fxy \newcommand\df[2]{\frac {d#1}{d#2}} \newcommand\sd{\vartriangle} \newcommand\sq[1][u]{\sqrt{1+|D#1|^2}} \newcommand\sql[1][u]{\sqrt{1-|D#1|^2}} \newcommand{\un}{\infty} \newcommand{\A}{\forall} \newcommand{\E}{\exists} %Set commands \newcommand{\set}[2]{\{\,#1\colon #2\,\}} \newcommand{\uu}{\cup} \newcommand{\ii}{\cap} \newcommand{\uuu}{\bigcup} \newcommand{\iii}{\bigcap} \newcommand{\uud}{ \stackrel{\lower 1ex \hbox {.}}{\uu}} \newcommand{\uuud}[1]{ \stackrel{\lower 1ex \hbox {.}}{\uuu_{#1}}} \newcommand\su{\subset} \newcommand\Su{\Subset} \newcommand\nsu{\nsubset} \newcommand\eS{\emptyset} \newcommand{\sminus}[1][28]{\raise 0.#1ex\hbox{$\scriptstyle\setminus$}} \newcommand{\cpl}{\complement} \newcommand\inn[1]{{\stackrel{\msp[9]\circ}{#1}}} %Embellishments \newcommand{\ol}{\overline} \newcommand{\pri}[1]{#1^\prime} \newcommand{\whn}[1]{\widehat{(#1_n)}} \newcommand{\wh}{\widehat} %Logical commands \newcommand{\wed}{\wedge} \newcommand{\eqv}{\Longleftrightarrow} \newcommand{\lla}{\Longleftarrow} \newcommand{\lra}{\Longrightarrow} \newcommand{\bv}{\bigvee} \newcommand{\bw}{\bigwedge} \newcommand{\nim}{{\hskip2.2ex\not\hskip-1.5ex\im}} \DeclareMathOperator*{\Au}{\A} \DeclareMathOperator*{\Eu}{\E} \newcommand\ti{\times } %Norms \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\absb}[1]{\Bigl|#1\Bigr|} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\normb}[1]{\Big\lVert#1\Big\rVert} \newcommand{\nnorm}[1]{| \mspace{-2mu} |\mspace{-2mu}|#1| \mspace{-2mu} |\mspace{-2mu}|} \newcommand{\spd}[2]{\protect\langle #1,#2\protect\rangle} %Geometry \newcommand\ch[3]{\varGamma_{#1#2}^#3} \newcommand\cha[3]{{\bar\varGamma}_{#1#2}^#3} \newcommand{\riem}[4]{R_{#1#2#3#4}} \newcommand{\riema}[4]{{\bar R}_{#1#2#3#4}} \newcommand{\cod}{h_{ij;k}-h_{ik;j}=\riema\al\bet\ga\de\n^\al x_i^\bet x_j^\ga x_k^\de} \newcommand{\gau}[1][\s]{\riem ijkl=#1 \{h_{ik}h_{jl}-h_{il}h_{jk}\} + \riema \al\bet\ga\de x_i^\al x_j^\bet x_k^\ga x_l^\de} \newcommand{\ric}{\h_{i;jk}=\h_{i;kj}+\riem lijk\msp \h^l} %Font commands \newcommand{\tbf}{\textbf} \newcommand{\tit}{\textit} \newcommand{\tsl}{\textsl} \newcommand{\tsc}{\textsc} \newcommand{\trm}{\textrm} \newcommand{\tup}{\textup}% text upright \newcommand{\mbf}{\protect\mathbf} \newcommand{\mitc}{\protect\mathit} \newcommand{\mrm}{\protect\mathrm} \newcommand{\bs}{\protect\boldsymbol} \newcommand{\mc}{\protect\mathcal} \newcommand{\msc}{\protect\mathscr} %Miscellaneous \providecommand{\bysame}{\makeboc[3em]{\hrulefill}\thinspace} \newcommand{\la}{\label} \newcommand{\ci}{\cite} \newcommand{\bib}{\bibitem} \newcommand{\cq}[1]{\glqq{#1}\grqq\,} \newcommand{\cqr}{\glqq{$\lra$}\grqq\,} \newcommand{\cql}{\glqq{$\lla$}\grqq\,} \newcommand{\bt}{\begin{thm}} \newcommand{\bl}{\begin{lem}} \newcommand{\bc}{\begin{cor}} \newcommand{\bd}{\begin{definition}} \newcommand{\bpp}{\begin{prop}} \newcommand{\br}{\begin{rem}} \newcommand{\bn}{\begin{note}} \newcommand{\be}{\begin{ex}} \newcommand{\bes}{\begin{exs}} \newcommand{\bb}{\begin{example}} \newcommand{\bbs}{\begin{examples}} \newcommand{\ba}{\begin{axiom}} \newcommand{\et}{\end{thm}} \newcommand{\el}{\end{lem}} \newcommand{\ec}{\end{cor}} \newcommand{\ed}{\end{definition}} \newcommand{\epp}{\end{prop}} \newcommand{\er}{\end{rem}} \newcommand{\en}{\end{note}} \newcommand{\ee}{\end{ex}} \newcommand{\ees}{\end{exs}} \newcommand{\eb}{\end{example}} \newcommand{\ebs}{\end{examples}} \newcommand{\ea}{\end{axiom}} \newcommand{\bp}{\begin{proof}} \newcommand{\ep}{\end{proof}} \newcommand{\eps}{\renewcommand{\qed}{}\end{proof}} \newcommand{\bal}{\begin{align}} %\newcommand{\eal}{\end{align}} \newcommand{\bi}[1][1.]{\begin{enumerate}[\upshape #1]} \newcommand{\bia}[1][(1)]{\begin{enumerate}[\upshape #1]} \newcommand{\bin}[1][1]{\begin{enumerate}[\upshape\bfseries #1]} \newcommand{\bir}[1][(i)]{\begin{enumerate}[\upshape #1]} \newcommand{\bic}[1][(i)]{\begin{enumerate}[\upshape\hspace{2\cma}#1]} \newcommand{\bis}[2][1.]{\begin{enumerate}[\upshape\hspace{#2\parindent}#1]} \newcommand{\ei}{\end{enumerate}} % comma is raised when components are quotients \newcommand\ndots{\raise 0.47ex \hbox {,}\hskip0.06em\cdots % \raise 0.47ex \hbox {,}\hskip0.06em} %Layout commands \newcommand{\clearemptydoublepage}{\newpage{\pagestyle{empty}\cleardoublepage}} \newcommand{\q}{\quad} \newcommand{\qq}{\qquad} \newcommand{\vs}[1][3]{\vskip#1pt} \newcommand{\hs}[1][12]{\hskip#1pt} \newcommand{\hp}{\hphantom} \newcommand{\vp}{\vphantom} \newcommand\cl{\centerline} \newcommand\nl{\newline} \newcommand\nd{\noindent} \newcommand{\nt}{\notag} % %my private skips; set to 0 to restore default \newskip\Csmallskipamount \Csmallskipamount=\smallskipamount \newskip\Cmedskipamount \Cmedskipamount=\medskipamount \newskip\Cbigskipamount \Cbigskipamount=\bigskipamount \newcommand\cvs{\vspace\Csmallskipamount} \newcommand\cvm{\vspace\Cmedskipamount} \newcommand\cvb{\vspace\Cbigskipamount} \newskip\csa \csa=\smallskipamount \newskip\cma \cma=\medskipamount \newskip\cba \cba=\bigskipamount \newdimen\spt \spt=0.5pt %%special roster macro \newcommand\citem{\cvs\advance\itemno by 1{(\romannumeral\the\itemno})\hskip3pt} \newcommand{\bitem}{\cvm\nd\advance\itemno by 1{\bf\the\itemno}\hspace{\cma}} \newcommand\cendroster{\cvm\itemno=0} %New counts \newcount\itemno \itemno=0 %Labels \newcommand{\las}[1]{\label{S:#1}} \newcommand{\lass}[1]{\label{SS:#1}} \newcommand{\lae}[1]{\label{E:#1}} \newcommand{\lat}[1]{\label{T:#1}} \newcommand{\lal}[1]{\label{L:#1}} \newcommand{\lad}[1]{\label{D:#1}} \newcommand{\lac}[1]{\label{C:#1}} \newcommand{\lan}[1]{\label{N:#1}} \newcommand{\lap}[1]{\label{P:#1}} \newcommand{\lar}[1]{\label{R:#1}} \newcommand{\laa}[1]{\label{A:#1}} %Referencing \newcommand{\rs}[1]{Section~\ref{S:#1}} \newcommand{\rss}[1]{Section~\ref{SS:#1}} \newcommand{\rt}[1]{Theorem~\ref{T:#1}} \newcommand{\rl}[1]{Lemma~\ref{L:#1}} \newcommand{\rd}[1]{Definition~\ref{D:#1}} \newcommand{\rc}[1]{Corollary~\ref{C:#1}} \newcommand{\rn}[1]{Number~\ref{N:#1}} \newcommand{\rp}[1]{Proposition~\ref{P:#1}} \newcommand{\rr}[1]{Remark~\ref{R:#1}} \newcommand{\raa}[1]{Axiom~\ref{A:#1}} \newcommand{\re}[1]{\eqref{E:#1}} %Index \newcommand{\ind}[1]{#1\index{#1}} \RequirePackage{upref} \RequirePackage{amsthm} %\usepackage{amsfonts} %\usepackage{amsintx} \RequirePackage{enumerate}%\begin{enumerate}[(i)] %%\usepackage{showkeys} \setlength{\textwidth}{4.7in}%JDG \setlength{\textheight}{7.5in} \usepackage{germanquotes} \theoremstyle{plain} \newtheorem{thm}{Theorem}[section] \newtheorem{lem}[thm]{Lemma} \newtheorem{prop}[thm]{Proposition} \newtheorem{cor}[thm]{Corollary} \theoremstyle{definition} \newtheorem{rem}[thm]{Remark} \newtheorem{definition}[thm]{Definition} \newtheorem{example}[thm]{Example} \newtheorem{ex}[thm]{Exercise} \swapnumbers \theoremstyle{remark} \newtheorem{case}{Case} \numberwithin{equation}{section} %\renewcommand{\qed}{q.e.d.} \usepackage{xr-hyper} -\usepackage{url} \usepackage[hyperindex=true, pdfauthor= Claus\ Gerhardt, pdftitle= LM-Volume, bookmarks=true, extension= pdf, colorlinks=true, plainpages=false,hyperfootnotes=true, debug=false, pagebackref]{hyperref} \newcommand{\anl}{\htmladdnormallink} %\listfiles \begin{document} %\larger[1] \title{Estimates for the volume of a Lorentzian manifold} % author one information \author{Claus Gerhardt} \address{Ruprecht-Karls-Universit\"at, Institut f\"ur Angewandte Mathematik, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany} %\curraddr{} \email{gerhardt@math.uni-heidelberg.de} \urladdr{\url{http://www.math.uni-heidelberg.de/studinfo/gerhardt/}} %\thanks{} % author two information %\author{} %\address{} %\curraddr{} %\email{} %\thanks{} % \subjclass[2000]{35J60, 53C21, 53C44, 53C50, 58J05} \keywords{Lorentzian manifold, volume estimates, cosmological spacetime, general relativity, constant mean curvature, CMC hypersurface} \date{April 18, 2002} % % at present the "communicated by" line appears only in ERA and PROC %\commby{} %\dedicatory{} \begin{abstract} We prove new estimates for the volume of a Lorentzian mani\-fold and show especially that cosmological spacetimes with crushing singularities have finite volume. \end{abstract} \maketitle \thispagestyle{empty} \setcounter{section}{-1} \section{Introduction} \cvb Let $N$ be a $(n+1)$-dimensional Lorentzian manifold and suppose that $N$ can be decomposed in the form \begin{equation}\lae{0.1} N=N_0\uu N_-\uu N_+, \end{equation} \cvm \nd where $N_0$ has finite volume and $N_-$ resp. $N_+$ represent the critical past resp. future Cauchy developments with not necessarily a priori bounded volume. We assume that $N_+$ is the future Cauchy development of a Cauchy hypersurface $M_1$, and $N_-$ the past Cauchy development of a hypersurface $M_2$, or, more precisely, we assume the existence of a time function $x^0$, such that \begin{equation} \begin{aligned} N_+&={x^0}^{-1}([t_1,T_+)),&\qq M_1=\{x^0=t_1\}&,\\ N_-&={x^0}^{-1}((T_-,t_2]),&\qq M_2=\{x^0=t_2\}&, \end{aligned} \end{equation} \cvm \nd and that the Lorentz metric can be expressed as \begin{equation}\lae{0.3} d\bar s^2=e^{2\psi}\{-{dx^0}^2+\s_{ij}(x^0,x)dx^idx^j\}, \end{equation} \cvm \nd where $x=(x^i)$ are local coordinates for the space-like hypersurface $M_1$ if $N_+$ is considered resp. $M_2$ in case of $N_-$. The coordinate system $(x^\al)_{0\le\al\le n}$ is supposed to be future directed, i.e. the \tit{past} directed unit normal $(\nu^\al)$ of the level sets \begin{equation} M(t)=\{x^0=t\} \end{equation} \cvm \nd is of the form \begin{equation}\lae{0.5} (\nu^\al)=-e^{-\psi}(1,0,\ldots,0). \end{equation} \cvm If we assume the mean curvature of the slices $M(t)$ with respect to the past directed normal---cf. \ci[Section 2]{cg8} for a more detailed explanation of our conventions---is strictly bounded away from zero, then, the following volume estimates can be proved \bt\lat{0.1} Suppose there exists a positive constant $\e_0$ such that \begin{align} H(t)&\ge \e_0&\A\,t_1\le t< T_+&,\lae{0.6}\\ \intertext{and} H(t)&\le-\e_0&\A\,T_-t_1$ \begin{equation}\lae{1.14} \int_{t_1}^te^\psi\le \ga_1 \end{equation} because the left-hand side is the length of the future directed curve \begin{equation} \ga(\tau)=(\tau,x)\qq t_1\le\tau\le t. \end{equation} \cvm Let us now look at the cylinder $Q(t_1,T)$ as in \re{1.8} and \re{1.9}. We have \begin{equation} \begin{aligned} \abs{Q(t_1,T)}&=\int_{t_1}^T\int_{M(t_1)}e^\psi\sqrt{g(t,x)}\le \int_{t_1}^T\int_{M(t_1)}e^\psi\sqrt{g(t_1,x)}\\[\cma] &\le \ga_1\int_{M(t_1)}\sqrt{g(t_1,x)}=\ga_1\abs{M(t_1)} \end{aligned} \end{equation} by applying Fubini's theorem and the estimates \re{1.13} and \re{1.14}. \ep \cvb \section{Cosmological spacetimes}\las{2} \cvb A cosmological spacetime is a globally hyperbolic Lorentzian manifold $N$ with compact Cauchy hypersurface $\so$, that satisfies the timelike convergence condition, i.e. \begin{equation} \bar R_{\al\bet}\nu^\al\nu^\bet\ge 0 \qq \A\,\spd\nu\nu=-1. \end{equation} \cvm If there exist crushing singularities, see \ci{es} or \ci{cg1} for a definition, then, we proved in \ci{cg1} that $N$ can be foliated by spacelike hypersurfaces $M(\tau)$ of constant mean curvature $\tau$, $-\un<\tau<\un$, \begin{equation} N=\uuu_{0\ne\tau\in \R[]}M(\tau)\uu{\msc C}_0, \end{equation} \cvm \nd where $\msc C_0$ consists either of a single maximal slice or of a whole continuum of maximal slices in which case the metric is stationary in $\msc C_0$. But in any case $\msc C_0$ is a compact subset of $N$. \cvm In the complement of $\msc C_0$ the mean curvature function $\tau$ is a regular function with non-vanishing gradient that can be used as a new time function, cf. \ci{cg6} for a simple proof. \cvm Thus, the Lorentz metric can be expressed in Gaussian coordinates $(x^\al)$ with $x^0=\tau$ as in \re{0.3}. We choose arbitrary $\tau_2<0<\tau_1$ and de\-fine \begin{equation} \begin{aligned} N_0&=\set{(\tau,x)}{\tau_2\le\tau \le \tau_1},\\ N_-&=\set{(\tau,x)}{-\un<\tau \le \tau_2},\\ N_+&=\set{(\tau,x)}{\tau_1\le \tau<\un}. \end{aligned} \end{equation} \cvm Then, $N_0$ is compact, and the volumes of $N_-, N_+$ can be estimated by \begin{align} \abs{N_+}&\le \frac1{\tau_1}\abs{M(\tau_1)},\\ \intertext{and} \abs{N_-}&\le \frac1{\abs{\tau_2}}\abs{M(\tau_2)}. \end{align} \cvm Hence, we have proved \bt A cosmological spacetime $N$ with crushing singularities has finite volume. \et \cvb \br Let $N$ be a spacetime with compact Cauchy hypersurface and suppose that a subset $N_-\su N$ is foliated by constant mean curvature slices $M(\tau)$ such that \begin{equation} N_-=\uuu_{0<\tau\le \tau_2}M(\tau) \end{equation} \cvm \nd and suppose furthermore, that $x^0=\tau$ is a time function---which will be the case if the timelike convergence condition is satisfied---so that the metric can be represented in Gaussian coordinates $(x^\al)$ with $x^0=\tau$. \cvm Consider the cylinder $Q(\tau,\tau_2)=\{\tau\le x^0\le \tau_2\}$ for some fixed $\tau$. Then, \begin{equation} \abs{Q(\tau,\tau_2)}=\int_\tau^{\tau_2}\int_Me^\psi=\int_\tau ^{\tau_2}H^{-1}\int_MH e^\psi, \end{equation} \cvm \nd and we obtain in view of \re{1.7} \begin{equation} \tau^{-1}_2\{\abs {M(\tau)}-\abs{M(\tau_2)}\}\le\abs{Q(\tau,\tau_2)}, \end{equation} \cvm \nd and conclude further \begin{equation} \lim_{\tau\ra 0}\msp[2]\abs{M(\tau)}\le \tau_2\abs{N_-}+\abs{M(\tau_2)}, \end{equation} \nd i.e. \begin{equation} \lim_{\tau\ra 0}\msp[2]\abs{M(\tau)}=\un\im \abs{N_-}=\un. \end{equation} \er \cvb \section{The Riemannian case} \cvb Suppose that $N$ is a Riemannian manifold that is decomposed as in \re{0.1} with metric \begin{equation} d\bar s^2=e^{2\psi}\{{dx^0}^2+\s_{ij}(x^0,x)dx^idx^j\}. \end{equation} \cvm The Gau{\ss} formula and the Weingarten equation for a hypersurface now have the form \begin{align} x^\al_{ij}&=-h_{ij}\nu^\al,\\ \intertext{and} \nu^\al_i&=h^k_ix^\al_k. \end{align} \cvm As default normal vector---if such a choice is possible---we choose the outward normal, which, in case of the coordinate slices $M(t)=\{x^0=t\}$ is given by \begin{equation} (\nu^\al)=e^{-\psi}(1,0,\ldots,0). \end{equation} \cvm Thus, the coordinate slices are solutions of the evolution problem \begin{equation} \dot x=e^\psi \nu, \end{equation} \cvm \nd and, therefore, \begin{equation} \dot g_{ij}=2e^\psi h_{ij}, \end{equation} \cvm \nd i.e. we have the opposite sign compared to the Lorentzian case leading to \begin{equation} \frac d{dt}\abs{M(t)}=\int_Me^\psi H. \end{equation} \cvm The arguments in \rs{1} now yield \bt \tup{(i)} Suppose there exists a positive constant $\e_0$ such that the mean curvature $H(t)$ of the slices $M(t)$ is estimated by \begin{align} H(t)&\ge \e_0&\A\,t_1\le t< T_+&,\\ \intertext{and} H(t)&\le-\e_0&\A\,T_-t_1$ +\begin{equation}\lae{1.14} +\int_{t_1}^te^\psi\le \ga_1 +\end{equation} +because the left-hand side is the length of the future directed curve +\begin{equation} +\ga(\tau)=(\tau,x)\qq t_1\le\tau\le t. +\end{equation} + +\cvm +Let us now look at the cylinder $Q(t_1,T)$ as in \re{1.8} and \re{1.9}. We have +\begin{equation} +\begin{aligned} +\abs{Q(t_1,T)}&=\int_{t_1}^T\int_{M(t_1)}e^\psi\sqrt{g(t,x)}\le +\int_{t_1}^T\int_{M(t_1)}e^\psi\sqrt{g(t_1,x)}\\[\cma] +&\le \ga_1\int_{M(t_1)}\sqrt{g(t_1,x)}=\ga_1\abs{M(t_1)} +\end{aligned} +\end{equation} +by applying Fubini's theorem and the estimates \re{1.13} and \re{1.14}. +\ep + +\cvb +\section{Cosmological spacetimes}\las{2} + +\cvb +A cosmological spacetime is a globally hyperbolic Lorentzian manifold $N$ with +compact Cauchy hypersurface $\so$, that satisfies the timelike convergence +condition, i.e. + +\begin{equation} +\bar R_{\al\bet}\nu^\al\nu^\bet\ge 0 \qq \A\,\spd\nu\nu=-1. +\end{equation} + +\cvm +If there exist crushing singularities, see \ci{es} or \ci{cg1} for a definition, then, +we proved in +\ci{cg1} that +$N$ can be foliated by spacelike hypersurfaces $M(\tau)$ of constant mean +curvature $\tau$, $-\un<\tau<\un$, + +\begin{equation} +N=\uuu_{0\ne\tau\in \R[]}M(\tau)\uu{\msc C}_0, +\end{equation} + + +\cvm +\nd where $\msc C_0$ consists either of a single maximal slice or of a whole +continuum of maximal slices in which case the metric is stationary in $\msc +C_0$. But in any case $\msc C_0$ is a compact subset of $N$. + +\cvm +In the complement of $\msc C_0$ the mean curvature function $\tau$ is a regular +function with non-vanishing gradient that can be used as a new time function, cf. +\ci{cg6} for a simple proof. + +\cvm +Thus, the Lorentz metric can be expressed in Gaussian coordinates $(x^\al)$ with +$x^0=\tau$ as in \re{0.3}. We choose arbitrary $\tau_2<0<\tau_1$ and de\-fine + +\begin{equation} +\begin{aligned} +N_0&=\set{(\tau,x)}{\tau_2\le\tau \le \tau_1},\\ +N_-&=\set{(\tau,x)}{-\un<\tau \le \tau_2},\\ +N_+&=\set{(\tau,x)}{\tau_1\le \tau<\un}. +\end{aligned} +\end{equation} + +\cvm +Then, $N_0$ is compact, and the volumes of $N_-, N_+$ can be estimated by + +\begin{align} +\abs{N_+}&\le \frac1{\tau_1}\abs{M(\tau_1)},\\ +\intertext{and} +\abs{N_-}&\le \frac1{\abs{\tau_2}}\abs{M(\tau_2)}. +\end{align} + +\cvm +Hence, we have proved + +\bt +A cosmological spacetime $N$ with crushing singularities has finite volume. +\et + +\cvb +\br +Let $N$ be a spacetime with compact Cauchy hypersurface and suppose that a +subset +$N_-\su N$ is foliated by constant mean curvature slices $M(\tau)$ such that + +\begin{equation} +N_-=\uuu_{0<\tau\le \tau_2}M(\tau) +\end{equation} + +\cvm +\nd and suppose furthermore, that $x^0=\tau$ is a time function---which will be +the case if the timelike convergence condition is satisfied---so that the metric +can be represented in Gaussian coordinates $(x^\al)$ with $x^0=\tau$. + +\cvm +Consider the cylinder $Q(\tau,\tau_2)=\{\tau\le x^0\le \tau_2\}$ for some +fixed $\tau$. Then, + +\begin{equation} +\abs{Q(\tau,\tau_2)}=\int_\tau^{\tau_2}\int_Me^\psi=\int_\tau +^{\tau_2}H^{-1}\int_MH e^\psi, +\end{equation} + +\cvm +\nd and we obtain in view of \re{1.7} + +\begin{equation} +\tau^{-1}_2\{\abs {M(\tau)}-\abs{M(\tau_2)}\}\le\abs{Q(\tau,\tau_2)}, +\end{equation} + +\cvm +\nd and conclude further + +\begin{equation} +\lim_{\tau\ra 0}\msp[2]\abs{M(\tau)}\le \tau_2\abs{N_-}+\abs{M(\tau_2)}, +\end{equation} + +\nd i.e. + +\begin{equation} +\lim_{\tau\ra 0}\msp[2]\abs{M(\tau)}=\un\im \abs{N_-}=\un. +\end{equation} +\er + +\cvb +\section{The Riemannian case} + +\cvb +Suppose that $N$ is a Riemannian manifold that is decomposed as in \re{0.1} with +metric + + +\begin{equation} +d\bar s^2=e^{2\psi}\{{dx^0}^2+\s_{ij}(x^0,x)dx^idx^j\}. +\end{equation} + +\cvm +The Gau{\ss} formula and the Weingarten equation for a hypersurface now have +the form + +\begin{align} +x^\al_{ij}&=-h_{ij}\nu^\al,\\ +\intertext{and} +\nu^\al_i&=h^k_ix^\al_k. +\end{align} + + +\cvm +As default normal vector---if such a choice is possible---we choose the outward +normal, which, in case of the coordinate slices $M(t)=\{x^0=t\}$ is given by + +\begin{equation} +(\nu^\al)=e^{-\psi}(1,0,\ldots,0). +\end{equation} + + +\cvm +Thus, the coordinate slices are solutions of the evolution problem + +\begin{equation} +\dot x=e^\psi \nu, +\end{equation} + +\cvm +\nd and, therefore, + +\begin{equation} +\dot g_{ij}=2e^\psi h_{ij}, +\end{equation} + +\cvm +\nd i.e. we have the opposite sign compared to the Lorentzian case leading to + +\begin{equation} +\frac d{dt}\abs{M(t)}=\int_Me^\psi H. +\end{equation} + +\cvm +The arguments in \rs{1} now yield + +\bt +\tup{(i)} Suppose there exists a positive constant $\e_0$ such that the mean +curvature $H(t)$ of the slices $M(t)$ is estimated by + +\begin{align} +H(t)&\ge \e_0&\A\,t_1\le t< T_+&,\\ +\intertext{and} +H(t)&\le-\e_0&\A\,T_-