summaryrefslogtreecommitdiff
path: root/Master/texmf/doc/asymptote/examples/intro.asy
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf/doc/asymptote/examples/intro.asy')
-rw-r--r--Master/texmf/doc/asymptote/examples/intro.asy958
1 files changed, 0 insertions, 958 deletions
diff --git a/Master/texmf/doc/asymptote/examples/intro.asy b/Master/texmf/doc/asymptote/examples/intro.asy
deleted file mode 100644
index fcafefb32a6..00000000000
--- a/Master/texmf/doc/asymptote/examples/intro.asy
+++ /dev/null
@@ -1,958 +0,0 @@
-orientation=Landscape;
-
-settings.tex="pdflatex";
-
-import slide;
-import three;
-import animate;
-
-bool long=true;
-
-usepackage("mflogo");
-
-usersetting();
-
-viewportsize=pagewidth-2pagemargin;
-
-// To generate bibliographic references:
-// asy -k goysr
-// bibtex goysr_
-bibliographystyle("alpha");
-
-itempen=fontsize(22pt);
-defaultpen(itempen);
-viewportmargin=(2,2);
-
-titlepage(long ? "Asymptote: The Vector Graphics Language" :
- "Interactive TeX-Aware 3D Vector Graphics",
- "John Bowman and Andy Hammerlindl",
-"Department of Mathematical and Statistical Sciences\\
- University of Alberta\\
-%and Instituto Nacional de Matem\'atica Pura e Aplicada (IMPA)
-\medskip\Green{Collaborators: Orest Shardt, Michail Vidiassov}",
-"June 30, 2010",
-"http://asymptote.sf.net/intro.pdf");
-
-title("History");
-item("1979: \TeX\ and \MF\ (Knuth)");
-item("1986: 2D B\'ezier control point selection (Hobby)");
-item("1989: MetaPost (Hobby)");
-item("2004: Asymptote");
-subitem("2004: initial public release (Hammerlindl, Bowman, \& Prince)");
-subitem("2005: 3D B\'ezier control point selection (Bowman)");
-subitem("2008: 3D interactive \TeX\ within PDF files (Shardt \& Bowman)");
-subitem("2009: 3D billboard labels that always face camera (Bowman)");
-subitem("2010: 3D PDF enhancements (Vidiassov \& Bowman)");
-
-title("Statistics (as of June, 2010)");
-item("Runs under Linux/UNIX, Mac OS X, Microsoft Windows.");
-item("4000 downloads/month from primary\hfill\\
- {\tt asymptote.sourceforge.net} site alone.");
-item("80\ 000 lines of low-level C++ code.");
-item("36\ 000 lines of high-level Asymptote code.");
-
-if(long) {
-title("Vector Graphics");
-item("Raster graphics assign colors to a grid of pixels.");
-figure("pixel.pdf");
-item("Vector graphics are graphics which still maintain their look when
- inspected at arbitrarily small scales.");
-asyfigure(asywrite("
-picture pic;
-
-path zoombox(real h) {
- return box((-h,-h/2),(min(10,h),min(10,h)/2));
-}
-
-frame zoom(real h, real next=0) {
- frame f;
- draw(f, (0,-100){W}..{E}(0,0), Arrow);
- clip(f, zoombox(h));
- if(next > 0)
- draw(f, zoombox(next));
-
- return scale(100/h)*f;
-}
-
-add(zoom(100), (0,0));
-add(zoom(10), (200,0));
-add(zoom(1), (400,0));
-"));
-}
-
-title("Cartesian Coordinates");
-
-item("Asymptote's graphical capabilities are based on four primitive
- commands: {\tt draw}, {\tt label}, {\tt fill}, {\tt clip} \cite{Bowman08}");
-
-asyfilecode("diagonal");
-item("units are {\tt PostScript} {\it big points\/} (1 {\tt bp} =
-1/72 {\tt inch})");
-item("{\tt --} means join the points with a linear segment to create
-a {\it path}");
-
-item("{\it cyclic\/} path:");
-
-asycode("
-draw((0,0)--(100,0)--(100,100)--(0,100)--cycle);
-");
-
-title("Scaling to a Given Size");
-
-item("{\tt PostScript} units are often inconvenient.");
-
-item("Instead, scale user coordinates to a specified final size:");
-
-asyfilecode("square");
-
-item("One can also specify the size in {\tt cm}:");
-
-asycode("
-size(3cm,3cm);
-draw(unitsquare);
-");
-
-title("Labels");
-
-item("Adding and aligning \LaTeX\ labels is easy:");
-
-asycode(preamble="defaultpen(fontsize("+string(fontsize(itempen))+"));",
-"size(6cm);
-draw(unitsquare);
-label(\"$A$\",(0,0),SW);
-label(\"$B$\",(1,0),SE);
-label(\"$C$\",(1,1),NE);
-label(\"$D$\",(0,1),NW);
-");
-
-title("2D B\'ezier Splines");
-
-item("Using {\tt ..} instead of {\tt --} specifies a {\it B\'ezier cubic
-spline}:");
-
-code("
-draw(z0 .. controls c0 and c1 .. z1,blue);
-");
-asyfigure(asywrite("defaultpen(fontsize("+string(fontsize(itempen))+"));
-size(0,7cm);
-pair z0=(0,0);
-pair c0=(1,1);
-pair c1=(2,1);
-pair z1=(3,0);
-draw(z0..controls c0 and c1 .. z1,blue);
-draw(z0--c0--c1--z1,dashed);
-dot(\"$z_0$\",z0,W,red);
-dot(\"$c_0$\",c0,NW,red);
-dot(\"$c_1$\",c1,NE,red);
-dot(\"$z_1$\",z1,red);
-"));
-
-equation("(1-t)^3 z_0+3t(1-t)^2 c_0+3t^2(1-t) c_1+t^3 z_1, \qquad t\in [0,1].");
-
-title("Smooth Paths");
-
-item("Asymptote can choose control points for you, using the algorithms of
-Hobby and Knuth \cite{Hobby86,Knuth86b}:");
-
-string bean="
-pair[] z={(0,0), (0,1), (2,1), (2,0), (1,0)};
-";
-
-asycode(preamble="size(130,0);",bean+"
-draw(z[0]..z[1]..z[2]..z[3]..z[4]..cycle,
- grey+linewidth(5));
-dot(z,linewidth(7));
-");
-
-item("First, linear equations involving the curvature are solved to find the
- direction through each knot. Then, control points along those directions
- are chosen:");
-
-asyfigure(asywrite(preamble="size(130,0);",bean+"
-path p=z[0]..z[1]..z[2]..z[3]..z[4]..cycle;
-
-dot(z);
-draw(p,lightgrey+linewidth(5));
-dot(z);
-
-picture output;
-save();
-for(int i=0; i<length(p); ++i) {
- pair z=point(p,i), dir=dir(p,i);
- draw((z-0.3dir)--(z+0.3dir), Arrow);
-}
-add(output, currentpicture.fit(), (-0.5inch, 0), W);
-restore();
-
-save();
-guide g;
-for(int i=0; i<length(p); ++i) {
- dot(precontrol(p,i));
- dot(postcontrol(p,i));
- g=g--precontrol(p,i)--point(p,i)--postcontrol(p,i);
-}
-draw(g--cycle,dashed);
-add(output, currentpicture.fit(), (+0.5inch, 0), E);
-restore();
-
-shipout(output);
-"));
-
-title("Filling");
-item("The {\tt fill} primitive to fill the inside of a path:");
-asycode(preamble="size(0,200);","
-path star;
-for(int i=0; i < 5; ++i)
- star=star--dir(90+144i);
-star=star--cycle;
-
-fill(star,orange+zerowinding);
-draw(star,linewidth(3));
-
-fill(shift(2,0)*star,blue+evenodd);
-draw(shift(2,0)*star,linewidth(3));
-");
-
-title("Filling");
-item("Use a list of paths to fill a region with holes:");
-asycode(preamble="size(0,300);","
-path[] p={scale(2)*unitcircle, reverse(unitcircle)};
-fill(p,green+zerowinding);
-");
-
-title("Clipping");
-item("Pictures can be clipped to a path:");
-asycode(preamble="
-size(0,200);
-guide star;
-for(int i=0; i<5; ++i)
- star=star--dir(90+144i);
-star=star--cycle;","
-fill(star,orange+zerowinding);
-clip(scale(0.7)*unitcircle);
-draw(scale(0.7)*unitcircle);
-");
-
-title("Affine Transforms");
-
-item("Affine transformations: shifts, rotations, reflections, and scalings
- can be applied to pairs, paths, pens, strings, and even whole pictures:");
-
-code("
-fill(P,blue);
-fill(shift(2,0)*reflect((0,0),(0,1))*P, red);
-fill(shift(4,0)*rotate(30)*P, yellow);
-fill(shift(6,0)*yscale(0.7)*xscale(2)*P, green);
-");
-asyfigure(asywrite("
-size(500,0);
-real bw=0.15;
-real sw=0.2;
-real r=0.15;
-
-path outside=(0,0)--(0,1)--
- (bw+sw,1)..(bw+sw+r+bw,1-(r+bw))..(bw+sw,1-2(r+bw))--
- (bw,1-2(r+bw))--(bw,0)--cycle;
-path inside=(bw,1-bw-2r)--(bw,1-bw)--
- (bw+sw,1-bw)..(bw+sw+r,1-bw-r)..(bw+sw,1-bw-2r)--cycle;
-//fill(new path[] {outside, reverse(inside)},yellow);
-
-path[] P={outside, reverse(inside)};
-
-fill(P,blue);
-fill(shift(2,0)*reflect((0,0),(0,1))*P, red);
-fill(shift(4,0)*rotate(30)*P, yellow);
-fill(shift(6,0)*yscale(0.7)*xscale(2)*P, green);
-"));
-
-if(long) {
-title("C++/Java-like Programming Syntax");
-
-code("// Declaration: Declare x to be real:
-real x;
-
-// Assignment: Assign x the value 1.
-x=1.0;
-
-// Conditional: Test if x equals 1 or not.
-if(x == 1.0) {
- write(\"x equals 1.0\");
-} else {
- write(\"x is not equal to 1.0\");
-}
-
-// Loop: iterate 10 times
-for(int i=0; i < 10; ++i) {
- write(i);
-}");
-}
-
-title("Modules");
-
-item("There are modules for Feynman diagrams,");
-asyfigure("eetomumu","height=6cm");
-remark("data structures,");
-asyfigure(asywrite("
-import binarytree;
-
-binarytree bt=binarytree(1,2,4,nil,5,nil,nil,0,nil,nil,3,6,nil,nil,7);
-draw(bt);
-"),"height=6cm");
-newslide();
-remark("algebraic knot theory:");
-asyfigure("knots");
-equations("\Phi\Phi(x_1,x_2,x_3,x_4,x_5)
- = &\rho_{4b}(x_1+x_4,x_2,x_3,x_5) + \rho_{4b}(x_1,x_2,x_3,x_4) \\
- + &\rho_{4a}(x_1,x_2+x_3,x_4,x_5) - \rho_{4b}(x_1,x_2,x_3,x_4+x_5) \\
- - &\rho_{4a}(x_1+x_2,x_3,x_4,x_5) - \rho_{4a}(x_1,x_2,x_4,x_5).");
-
-if(long) {
-title("Textbook Graph");
-asy(nativeformat(),"exp");
-filecode("exp.asy");
-label(graphic("exp."+nativeformat(),"height=10cm"),(0.5,0),
- Fill(figureborder,figuremattpen));
-
-title("Scientific Graph");
-asyfilecode("lineargraph","height=13cm",newslide=true);
-
-title("Data Graph");
-asyfilecode("datagraph","height=13cm",newslide=true);
-
-title("Imported Data Graph");
-asyfilecode("filegraph","height=15cm",newslide=true);
-
-title("Logarithmic Graph");
-asyfilecode("loggraph","height=15cm",newslide=true);
-title("Secondary Axis");
-} else
-title("Scientific Graph");
-
-asyfigure("secondaryaxis","height=15cm");
-
-title("Images and Contours");
-asyfigure("imagecontour","height=17cm");
-
-title("Multiple Graphs");
-asyfigure("diatom","height=17cm");
-
-title("Hobby's 2D Direction Algorithm");
-item("A tridiagonal system of linear equations is solved to determine any unspecified directions $\phi_k$ and $\theta_k$ through each knot $z_k$:");
-
-equation("\frac{\theta_{k-1}-2\phi_k}{\ell_k}=
-\frac{\phi_{k+1}-2\theta_k}{\ell_{k+1}}.");
-
-asyfigure("Hobbydir","height=9cm");
-
-item("The resulting shape may be adjusted by modifying optional {\it tension\/} parameters and {\it curl\/} boundary conditions.");
-
-title("Hobby's 2D Control Point Algorithm");
-item("Having prescribed outgoing and incoming path directions $e^{i\theta}$
-at node~$z_0$ and $e^{i\phi}$ at node $z_1$ relative to the
-vector $z_1-z_0$, the control points are determined as:");
-
-equations("u&=&z_0+e^{i\theta}(z_1-z_0)f(\theta,-\phi),\nonumber\\
-v&=&z_1-e^{i\phi}(z_1-z_0)f(-\phi,\theta),");
-
-remark("where the relative distance function $f(\theta,\phi)$ is given by Hobby [1986].");
-
-asyfigure("Hobbycontrol","height=9cm");
-
-if(long) {
-title("B\'ezier Curves in 3D");
-
-item("Apply an affine transformation");
-
-equation("x'_i=A_{ij} x_j+C_i");
-
-remark("to a B\'ezier curve:");
-
-equation("\displaystyle x(t)=\sum_{k=0}^3 B_k(t) P_k, \qquad t\in [0,1].");
-
-item("The resulting curve is also a B\'ezier curve:");
-
-skip(-2);
-
-equations("x'_i(t)&=&\sum_{k=0}^3 B_k(t) A_{ij}(P_k)_j+C_i\nonumber\\
-&=&\sum_{k=0}^3 B_k(t) P'_k,");
-
-skip(-2);
-
-remark("where $P'_k$ is the transformed $k^{\rm th}$ control point, noting
-$\displaystyle\sum_{k=0}^3 B_k(t)=1.$");
-}
-
-title("3D Generalization of Direction Algorithm");
-
-item("Must reduce to 2D algorithm in planar case.");
-
-item("Determine directions by applying Hobby's algorithm in the plane containing $z_{k-1}$, $z_k$, $z_{k+1}$.");
-
-// Reformulate Hobby's equations in terms of the angle $\psi_k=$
-item("The only ambiguity that can arise is the overall sign of the angles, which relates to viewing each 2D plane from opposing normal directions.");
-
-item("A reference vector based on the mean unit normal of successive segments can be used to resolve such ambiguities \cite{Bowman07,Bowman09}");
-
-title("3D Control Point Algorithm");
-
-item("Express Hobby's algorithm in terms of the absolute directions $\omega_0$ and~$\omega_1$:");
-skip(-1);
-equation("u=z_0+\omega_0\left|z_1-z_0\right|f(\theta,-\phi),");
-equation("v=z_1-\omega_1\left|z_1-z_0\right|f(-\phi,\theta),");
-
-asyfigure("Hobbycontrol");
-
-remark("interpreting $\theta$ and $\phi$ as the angle between the corresponding path direction vector and $z_1-z_0$.");
-
-item("Here there is an unambiguous reference vector for determining the relative sign of the angles $\phi$ and $\theta$.");
-
-viewportmargin=(2,0.5cm);
-//defaultpen(1.0);
-title("Interactive 3D Saddle");
-item("A unit circle in the $X$--$Y$ plane may be constructed with:
-{\tt (1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle}:");
-asyinclude("unitcircle3",8cm);
-remark("and then distorted into the saddle\\
-{\tt (1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle}:");
-asyinclude("saddle",8cm);
-//defaultpen(0.5);
-
-title("Lifting TeX to 3D");
-item("Glyphs are first split into simply connected regions and then decomposed into planar B\'ezier surface patches \cite{Bowman09,Shardt10}:");
-asyfigure("../examples/partitionExample");
-
-viewportmargin=(2,1cm);
-title("Label Manipulation");
-item("They can then be extruded and/or arbitrarily transformed:");
-asyinclude("../examples/label3solid");
-
-title("Billboard Labels");
-defaultpen(fontsize(36pt));
-asyinclude("../examples/billboard",15cm);
-defaultpen(itempen);
-
-title("Smooth 3D surfaces");
-asyinclude("../examples/sinc",25cm);
-
-title("Curved 3D Arrows");
-asyinclude("../examples/arrows3",20cm);
-
-title("Slide Presentations");
-item("Asymptote has a module for preparing slides.");
-item("It even supports embedded high-resolution PDF movies.");
-
-code('
-title("Slide Presentations");
-item("Asymptote has a module for preparing slides.");
-item("It even supports embedded high-resolution PDF movies.");
-');
-remark("\quad\ldots");
-
-import graph;
-
-pen p=linewidth(1);
-pen dotpen=linewidth(5);
-
-pair wheelpoint(real t) {return (t+cos(t),-sin(t));}
-
-guide wheel(guide g=nullpath, real a, real b, int n)
-{
- real width=(b-a)/n;
- for(int i=0; i <= n; ++i) {
- real t=a+width*i;
- g=g--wheelpoint(t);
- }
- return g;
-}
-
-real t1=0;
-real t2=t1+2*pi;
-
-picture base;
-draw(base,circle((0,0),1),p);
-draw(base,wheel(t1,t2,100),p+linetype("0 2"));
-yequals(base,Label("$y=-1$",1.0),-1,extend=true,p+linetype("4 4"));
-xaxis(base,Label("$x$",align=3SW),0,p);
-yaxis(base,"$y$",0,1.3,p);
-pair z1=wheelpoint(t1);
-pair z2=wheelpoint(t2);
-dot(base,z1,dotpen);
-dot(base,z2,dotpen);
-
-animation a;
-
-int n=25;
-real dt=(t2-t1)/n;
-for(int i=0; i <= n; ++i) {
- picture pic;
- size(pic,24cm);
- real t=t1+dt*i;
- add(pic,base);
- draw(pic,circle((t,0),1),p+red);
- dot(pic,wheelpoint(t),dotpen);
- a.add(pic);
-}
-
-display(a.pdf(delay=150,"controls"));
-
-title("Automatic Sizing");
-item("Figures can be specified in user coordinates, then
- automatically scaled to the desired final size.");
-asyfigure(asywrite("
-import graph;
-
-size(0,100);
-
-frame cardsize(real w=0, real h=0, bool keepAspect=Aspect) {
- picture pic;
- pic.size(w,h,keepAspect);
-
- real f(real t) {return 1+cos(t);}
-
- guide g=polargraph(f,0,2pi,operator ..)--cycle;
- filldraw(pic,g,pink);
-
- xaxis(pic,\"$x$\",above=true);
- yaxis(pic,\"$y$\",above=true);
-
- dot(pic,\"$(a,0)$\",(1,0),N);
- dot(pic,\"$(2a,0)$\",(2,0),N+E);
-
- frame f=pic.fit();
- label(f,\"{\tt size(\"+string(w)+\",\"+string(h)+\");}\",point(f,S),align=S);
- return f;
-}
-
-add(cardsize(0,50), (0,0));
-add(cardsize(0,100), (230,0));
-add(cardsize(0,200), (540,0));
-"));
-
-title("Deferred Drawing");
-item("We can't draw a graphical object until we know the scaling
- factors for the user coordinates.");
-item("Instead, store a function that, given the scaling information, draws
- the scaled object.");
-code("
-void draw(picture pic=currentpicture, path g, pen p=currentpen) {
- pic.add(new void(frame f, transform t) {
- draw(f,t*g,p);
- });
- pic.addPoint(min(g),min(p));
- pic.addPoint(max(g),max(p));
-}
-");
-
-title("Coordinates");
-item("Store bounding box information as the sum of user and true-size
- coordinates:");
-asyfigure(asywrite("
-size(0,150);
-
-path q=(0,0){dir(70)}..{dir(70)}(100,50);
-pen p=rotate(30)*yscale(0.7)*(lightblue+linewidth(20));
-draw(q,p);
-draw((90,10),p);
-
-currentpicture.add(new void(frame f, transform t) {
- draw(f,box(min(t*q)+min(p),max(t*q)+max(p)), dashed);
- });
-
-draw(box(min(q),max(q)));
-
-frame f;
-draw(f,box(min(p),max(p)));
-
-add(f,min(q));
-add(f,max(q));
-
-draw(q);
-"));
-
-code("pic.addPoint(min(g),min(p));
-pic.addPoint(max(g),max(p));");
-item("Filling ignores the pen width:");
-code("pic.addPoint(min(g),(0,0));
-pic.addPoint(max(g),(0,0));");
-item("Communicate with \LaTeX\ {\it via\/} a pipe to determine label sizes:");
-
-asyfigure(asywrite("
-size(0,100);
-
-pen p=fontsize(30pt);
-frame f;
-label(f, \"$E=mc^2$\", p);
-draw(f, box(min(f),max(f)));
-shipout(f);
-"));
-
-title("Sizing");
-
-item("When scaling the final figure to a given size $S$, we first need to
- determine a scaling factor $a>0$ and a shift $b$ so that all of the
- coordinates when transformed will lie in the interval $[0,S]$.");
-
-item("That is, if $u$ and $t$ are the user and truesize components:");
-equation("0\le au+t+b \le S.");
-
-item("Maximize the variable $a$ subject to a number of inequalities.");
-
-item("Use the simplex method to solve the resulting linear programming problem.");
-
-if(long) {
-title("Sizing");
-item("Every addition of a coordinate $(t,u)$ adds two restrictions");
-equation("au+t+b\ge 0,");
-equation("au+t+b\le S,");
-remark("and each drawing component adds two coordinates.");
-item("A figure could easily produce thousands of restrictions, making the
- simplex method impractical.");
-
-item("Most of these restrictions are redundant, however. For instance, with
- concentric circles, only the largest circle needs to be accounted for.");
-asyfigure(asywrite("
-import palette;
-size(160,0);
-pen[] p=Rainbow(NColors=11);
-for(int i=1; i<10; ++i) {
- draw(scale(i)*unitcircle, p[i]+linewidth(2));
-}
-"));
-
-title("Redundant Restrictions");
-item("In general, if $u\le u'$ and $t\le t'$ then");
-equation("au+t+b\le au'+t'+b");
-remark("for all choices of $a>0$ and $b$, so");
-equation("0\le au+t+b\le au'+t'+b\le S.");
-item("This defines a partial ordering on coordinates. When sizing a picture,
- the program first computes which coordinates are maximal (or minimal) and
- only sends effective constraints to the simplex algorithm.");
-item("In practice, the linear programming problem will have less than a dozen
- restraints.");
-item("All picture sizing is implemented in Asymptote code.");
-}
-
-title("Infinite Lines");
-item("Deferred drawing allows us to draw infinite lines.");
-code("drawline(P, Q);");
-
-asyfigure("elliptic","height=12cm");
-
-title("Helpful Math Notation");
-
-item("Integer division returns a {\tt real}. Use {\tt quotient} for an integer
- result:");
-code("3/4 == 0.75 quotient(3,4) == 0");
-
-item("Caret for real and integer exponentiation:");
-code("2^3 2.7^3 2.7^3.2");
-
-item("Many expressions can be implicitly scaled by a numeric constant:");
-code("2pi 10cm 2x^2 3sin(x) 2(a+b)");
-
-item("Pairs are complex numbers:");
-code("(0,1)*(0,1) == (-1,0)");
-
-title("Function Calls");
-
-item("Functions can take default arguments in any position. Arguments are
- matched to the first possible location:");
-string unitsize="unitsize(0.65cm);";
-string preamble="void drawEllipse(real xsize=1, real ysize=xsize, pen p=blue) {
- draw(xscale(xsize)*yscale(ysize)*unitcircle, p);
-}
-";
-
-asycode(preamble=unitsize,preamble+"
-drawEllipse(2);
-drawEllipse(red);
-");
-
-item("Arguments can be given by name:");
-asycode(preamble=unitsize+preamble,"
-drawEllipse(xsize=2, ysize=1);
-drawEllipse(ysize=2, xsize=3, green);
-");
-
-if(long) {
-title("Rest Arguments");
-item("Rest arguments allow one to write a function that takes an arbitrary
- number of arguments:");
-code("
-int sum(... int[] nums) {
- int total=0;
- for(int i=0; i < nums.length; ++i)
- total += nums[i];
- return total;
-}
-
-sum(1,2,3,4); // returns 10
-sum(); // returns 0
-sum(1,2,3 ... new int[] {4,5,6}); // returns 21
-
-int subtract(int start ... int[] subs) {
- return start - sum(... subs);
-}
-");
-}
-
-title("High-Order Functions");
-
-item("Functions are first-class values. They can be passed to other
- functions:");
-code("import graph;
-real f(real x) {
- return x*sin(10x);
-}
-draw(graph(f,-3,3,300),red);");
-asyfigure(asywrite("
-import graph;
-size(300,0);
-real f(real x) {
- return x*sin(10x);
-}
-draw(graph(f,-3,3,300),red);
-"));
-
-if(long) {
-title("Higher-Order Functions");
-item("Functions can return functions:");
-equation("f_n(x)=n\sin\left(\frac{x}{n}\right).");
-skip();
-string preamble="
-import graph;
-size(300,0);
-";
-string graphfunc2="
-typedef real func(real);
-func f(int n) {
- real fn(real x) {
- return n*sin(x/n);
- }
- return fn;
-}
-
-func f1=f(1);
-real y=f1(pi);
-
-for(int i=1; i<=5; ++i)
- draw(graph(f(i),-10,10),red);
-";
-code(graphfunc2);
-string name=asywrite(graphfunc2,preamble=preamble);
-asy(nativeformat(),name+".asy");
-label(graphic(name+"."+nativeformat()),(0.5,0),
- Fill(figureborder,figuremattpen));
-
-title("Anonymous Functions");
-
-item("Create new functions with {\tt new}:");
-code("
-path p=graph(new real (real x) { return x*sin(10x); },-3,3,red);
-
-func f(int n) {
- return new real (real x) { return n*sin(x/n); };
-}");
-
-item("Function definitions are just syntactic sugar for assigning function
-objects to variables.");
-code("
-real square(real x) {
- return x^2;
-}
-");
-
-remark("is equivalent to");
-code("
-real square(real x);
-square=new real (real x) {
- return x^2;
-};
-");
-
-title("Structures");
-
-item("As in other languages, structures group together data.");
-code("
-struct Person {
- string firstname, lastname;
- int age;
-}
-Person bob=new Person;
-bob.firstname=\"Bob\";
-bob.lastname=\"Chesterton\";
-bob.age=24;
-");
-
-item("Any code in the structure body will be executed every time a new structure
- is allocated...");
-code("
-struct Person {
- write(\"Making a person.\");
- string firstname, lastname;
- int age=18;
-}
-Person eve=new Person; // Writes \"Making a person.\"
-write(eve.age); // Writes 18.
-");
-
-title("Modules");
-
-item("Function and structure definitions can be grouped into modules:");
-code("
-// powers.asy
-real square(real x) { return x^2; }
-real cube(real x) { return x^3; }
-");
-remark("and imported:");
-code("
-import powers;
-real eight=cube(2.0);
-draw(graph(powers.square, -1, 1));
-");
-}
-
-title("Object-Oriented Programming");
-item("Functions are defined for each instance of a structure.");
-code("
-struct Quadratic {
- real a,b,c;
- real discriminant() {
- return b^2-4*a*c;
- }
- real eval(real x) {
- return a*x^2 + b*x + c;
- }
-}
-");
-
-item("This allows us to construct ``methods'' which are just normal functions
- declared in the environment of a particular object:");
-code("
-Quadratic poly=new Quadratic;
-poly.a=-1; poly.b=1; poly.c=2;
-
-real f(real x)=poly.eval;
-real y=f(2);
-draw(graph(poly.eval, -5, 5));
-");
-
-title("Specialization");
-
-item("Can create specialized objects just by redefining methods:");
-code("
-struct Shape {
- void draw();
- real area();
-}
-
-Shape rectangle(real w, real h) {
- Shape s=new Shape;
- s.draw = new void () {
- fill((0,0)--(w,0)--(w,h)--(0,h)--cycle); };
- s.area = new real () { return w*h; };
- return s;
-}
-
-Shape circle(real radius) {
- Shape s=new Shape;
- s.draw = new void () { fill(scale(radius)*unitcircle); };
- s.area = new real () { return pi*radius^2; }
- return s;
-}
-");
-
-title("Overloading");
-item("Consider the code:");
-code("
-int x1=2;
-int x2() {
- return 7;
-}
-int x3(int y) {
- return 2y;
-}
-
-write(x1+x2()); // Writes 9.
-write(x3(x1)+x2()); // Writes 11.
-");
-
-title("Overloading");
-item("{\tt x1}, {\tt x2}, and {\tt x3} are never used in the same context, so
- they can all be renamed {\tt x} without ambiguity:");
-code("
-int x=2;
-int x() {
- return 7;
-}
-int x(int y) {
- return 2y;
-}
-
-write(x+x()); // Writes 9.
-write(x(x)+x()); // Writes 11.
-");
-
-item("Function definitions are just variable definitions, but variables are
- distinguished by their signatures to allow overloading.");
-
-title("Operators");
-item("Operators are just syntactic sugar for functions, and can be addressed or
- defined as functions with the {\tt operator} keyword.");
-code("
-int add(int x, int y)=operator +;
-write(add(2,3)); // Writes 5.
-
-// Don't try this at home.
-int operator +(int x, int y) {
- return add(2x,y);
-}
-write(2+3); // Writes 7.
-");
-item("This allows operators to be defined for new types.");
-
-title("Operators");
-item("Operators for constructing paths are also functions:");
-code("a.. controls b and c .. d--e");
-remark("is equivalent to");
-code(
- "operator --(operator ..(a, operator controls(b,c), d), e)");
-item("This allowed us to redefine all of the path operators for 3D paths.");
-
-title("Summary");
-
-item("Asymptote:");
-subitem("uses IEEE floating point numerics;");
-subitem("uses C++/Java-like syntax;");
-subitem("supports deferred drawing for automatic picture sizing;");
-subitem("supports Grayscale, RGB, CMYK, and HSV colour spaces;");
-subitem("supports PostScript shading, pattern fills, and function shading;");
-subitem("can fill nonsimply connected regions;");
-subitem("generalizes MetaPost path construction algorithms to 3D;");
-subitem("lifts \TeX\ to 3D;");
-subitem("supports 3D billboard labels and PDF grouping.");
-
-bibliography("refs");
-
-viewportmargin=(2,2);
-viewportsize=0;
-defaultpen(0.5);
-title("\mbox{Asymptote: 2D \& 3D Vector Graphics Language}");
-asyinclude("../examples/logo3");
-skip();
-center("\tt http://asymptote.sf.net");
-center("(freely available under the LGPL license)");
-
-// LocalWords: pdflatex mflogo viewportsize pagewidth pagemargin goysr bibtex
-// LocalWords: itempen defaultrender medskip Orest Shardt Vidiassov MF ezier
-// LocalWords: Hammerlindl MetaPost PDF hfill LGPL pdf asywrite zoombox LaTeX
-// LocalWords: asyfilecode PostScript asycode unitsquare beziercurve grey bw
-// LocalWords: lightgrey zerowinding evenodd sw unitsize drawEllipse nums fn
-// LocalWords: frac graphfunc func nativeformat figureborder figuremattpen bt
-// LocalWords: firstname lastname eval eetomumu binarytree filecode datagraph
-// LocalWords: lineargraph filegraph loggraph secondaryaxis imagecontour ij
-// LocalWords: tridiagonal Hobbydir nonumber Hobbycontrol th viewportmargin
-// LocalWords: asyinclude dotpen wheelpoint yequals xaxis yaxis cardsize mc
-// LocalWords: polargraph filldraw addPoint lightblue truesize le au NColors
-// LocalWords: drawline unityroot mult oct intang IEEE numerics HSV colour
-// LocalWords: nonsimply