summaryrefslogtreecommitdiff
path: root/Master/texmf/asymptote/tube.asy
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf/asymptote/tube.asy')
-rw-r--r--Master/texmf/asymptote/tube.asy210
1 files changed, 210 insertions, 0 deletions
diff --git a/Master/texmf/asymptote/tube.asy b/Master/texmf/asymptote/tube.asy
new file mode 100644
index 00000000000..f62d3897adf
--- /dev/null
+++ b/Master/texmf/asymptote/tube.asy
@@ -0,0 +1,210 @@
+// Author: Philippe Ivaldi
+// Based on this paper:
+// http://www.cs.hku.hk/research/techreps/document/TR-2007-07.pdf
+// Note: the additional rotation for a cyclic smooth spine curve is not
+// yet properly determined.
+// TODO: Implement variational principles for RMF with boundary conditions:
+// minimum total angular speed OR minimum total squared angular speed
+
+import three;
+
+// A 3D version of roundedpath(path, real).
+path3 roundedpath(path3 A, real r)
+{
+ // Author of this routine: Jens Schwaiger
+ guide3 rounded;
+ triple before, after, indir, outdir;
+ int len=length(A);
+ bool guideclosed=cyclic(A);
+ if(len < 2) {return A;};
+ if(guideclosed) {rounded=point(point(A,0)--point(A,1),r);}
+ else {rounded=point(A,0);}
+ for(int i=1; i < len; i=i+1) {
+ before=point(point(A,i)--point(A,i-1),r);
+ after=point(point(A,i)--point(A,i+1),r);
+ indir=dir(point(A,i-1)--point(A,i),1);
+ outdir=dir(point(A,i)--point(A,i+1),1);
+ rounded=rounded--before{indir}..{outdir}after;
+ }
+ if(guideclosed) {
+ before=point(point(A,0)--point(A,len-1),r);
+ indir=dir(point(A,len-1)--point(A,0),1);
+ outdir=dir(point(A,0)--point(A,1),1);
+ rounded=rounded--before{indir}..{outdir}cycle;
+ } else rounded=rounded--point(A,len);
+
+ return rounded;
+}
+
+real[] sample(path3 g, real r, real relstep=0)
+{
+ real[] t;
+ int n=length(g);
+ if(relstep <= 0) {
+ for(int i=0; i < n; ++i) {
+ real S=straightness(g,i);
+ if(S < sqrtEpsilon*r)
+ t.push(i);
+ else
+ render(subpath(g,i,i+1),new void(path3, real s) {t.push(i+s);});
+ }
+ t.push(n);
+ } else {
+ int nb=ceil(1/relstep);
+ relstep=n/nb;
+ for(int i=0; i <= nb; ++i)
+ t.push(i*relstep);
+ }
+ return t;
+}
+
+struct Rmf
+{
+ triple p,r,t; // s=cross(t,r);
+ real reltime;
+ void operator init(triple p, triple r, triple t, real reltime)
+ {
+ this.p=p;
+ this.r=r;
+ this.t=t;
+ this.reltime=reltime;
+ }
+}
+
+real degrees(Rmf a, Rmf b)
+{
+ real d=degrees(acos1(dot(a.r,b.r)));
+ real dt=dot(cross(a.r,b.r),a.t);
+ d=dt > 0 ? d : 360-d;
+ return d%360;
+}
+
+private Rmf[] rmf(path3 g, Rmf U0=Rmf(O,O,O,0), real[] t)
+{
+ if(U0.t == O) {
+ triple d=dir(g,0);
+ U0=Rmf(point(g,0),perp(d),d,0);
+ }
+ int l=length(g);
+ Rmf[] R={U0};
+ triple rp,v1,v2,tp,ti,p;
+ real c;
+
+ for(int i=0; i < t.length-1; ++i) {
+ p=point(g,t[i+1]);
+ v1=p-R[i].p;
+ c=dot(v1,v1);
+ if(c != 0) {
+ rp=R[i].r-2*dot(v1,R[i].r)*v1/c;
+ ti=R[i].t;
+ tp=ti-2*dot(v1,ti)*v1/c;
+ ti=dir(g,t[i+1]);
+ v2=ti-tp;
+ rp=rp-2*dot(v2,rp)*v2/dot(v2,v2);
+ R.push(Rmf(p,unit(rp),unit(ti),t[i+1]/l));
+ } else {
+ write("Warning: path3 has duplicated point in Rmf.");
+ R.push(R[R.length-1]);
+ }
+ }
+ return R;
+}
+
+restricted int coloredNodes=1;
+restricted int coloredSegments=2;
+
+struct coloredpath
+{
+ path p;
+ pen[] pens(real);
+ bool usepens=false;
+ int colortype=coloredSegments;
+
+ void operator init(path p, pen[] pens=new pen[] {currentpen},
+ int colortype=coloredSegments)
+ {
+ this.p=p;
+ this.pens=new pen[] (real t) {return pens;};
+ this.usepens=true;
+ this.colortype=colortype;
+ }
+
+ void operator init(path p, pen[] pens(real), int colortype=coloredSegments)
+ {
+ this.p=p;
+ this.pens=pens;
+ this.usepens=true;
+ this.colortype=colortype;
+ }
+
+ void operator init(path p, pen pen(real))
+ {
+ this.p=p;
+ this.pens=new pen[] (real t) {return new pen[] {pen(t)};};
+ this.usepens=true;
+ this.colortype=coloredSegments;
+ }
+}
+
+coloredpath operator cast(path p)
+{
+ coloredpath cp=coloredpath(p);
+ cp.usepens=false;
+ return cp;
+}
+
+coloredpath operator cast(guide p)
+{
+ return coloredpath(p);
+}
+
+private surface surface(Rmf[] R, coloredpath cp,transform T(real)=
+ new transform(real t) {return identity();},
+ bool cyclic)
+{
+ path g=cp.p;
+ int l=length(g);
+ bool[] planar;
+ for(int i=0; i < l; ++i)
+ planar[i]=straight(g,i);
+
+ surface s;
+ path3 sec=path3(T(R[0].reltime)*g);
+ real adjust=0;
+ if(cyclic) adjust=-degrees(R[0],R[R.length-1])/(R.length-1);
+ path3 sec1=shift(R[0].p)*transform3(R[0].r,cross(R[0].t,R[0].r),R[0].t)*sec,
+ sec2;
+
+ for(int i=1; i < R.length; ++i) {
+ sec=path3(T(R[i].reltime)*g);
+ sec2=shift(R[i].p)*transform3(R[i].r,cross(R[i].t,R[i].r),R[i].t)*
+ rotate(i*adjust,Z)*sec;
+ for(int j=0; j < l; ++j) {
+ surface st=surface(subpath(sec1,j,j+1)--subpath(sec2,j+1,j)--cycle,
+ planar=planar[j]);
+ if(cp.usepens) {
+ pen[] tp1=cp.pens(R[i-1].reltime), tp2=cp.pens(R[i].reltime);
+ tp1.cyclic(true); tp2.cyclic(true);
+ if(cp.colortype == coloredSegments) {
+ st.colors(new pen[][] {{tp1[j],tp1[j],tp2[j],tp2[j]}});
+ } else {
+ st.colors(new pen[][] {{tp1[j],tp1[j+1],tp2[j+1],tp2[j]}});
+ }
+ }
+ s.append(st);
+ }
+ sec1=sec2;
+ }
+ return s;
+}
+
+surface tube(path3 g, coloredpath section,
+ transform T(real)=new transform(real t) {return identity();},
+ real corner=1, real relstep=0)
+{
+ pair M=max(section.p), m=min(section.p);
+ real[] t=sample(g,max(M.x-m.x,M.y-m.y)/max(realEpsilon,abs(corner)),
+ min(abs(relstep),1));
+ t.cyclic(cyclic(g));
+ return surface(rmf(g,t),section,T,cyclic(g));
+}