summaryrefslogtreecommitdiff
path: root/Master/texmf/asymptote/simplex.asy
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf/asymptote/simplex.asy')
-rw-r--r--Master/texmf/asymptote/simplex.asy272
1 files changed, 272 insertions, 0 deletions
diff --git a/Master/texmf/asymptote/simplex.asy b/Master/texmf/asymptote/simplex.asy
new file mode 100644
index 00000000000..bd9f69c9324
--- /dev/null
+++ b/Master/texmf/asymptote/simplex.asy
@@ -0,0 +1,272 @@
+/*****
+ * simplex.asy
+ * Andy Hammerlindl 2004/07/27
+ *
+ * Solves the two-variable linear programming problem using the simplex method.
+ * This problem is specialized in that the second variable, "b", does not have
+ * a non-negativity condition, and the first variable, "a", is the quantity
+ * being maximized.
+ * Correct execution of the algorithm also assumes that the coefficient of "b"
+ * will be +1 or -1 in every added restriction, and that the problem can be
+ * initialized to a valid state by pivoting b with one of the slack
+ * variables. This assumption may in fact be incorrect.
+ *****/
+
+private real infinity=sqrt(0.25*realMax);
+
+struct problem {
+ typedef int var;
+ static var VAR_A = 0;
+ static var VAR_B = 1;
+
+ static int OPTIMAL = -1;
+ static var UNBOUNDED = -2;
+ static int INVALID = -3;
+
+ struct row {
+ real c, t[];
+ }
+
+ // The variables of the rows.
+ // Initialized for the two variable problem.
+ var[] v = {VAR_A, VAR_B};
+
+ // The rows of equalities.
+ row rowA() {
+ row r = new row;
+ r.c = 0;
+ r.t = new real[] {1, 0};
+ return r;
+ }
+ row rowB() {
+ row r = new row;
+ r.c = 0;
+ r.t = new real[] {0, 1};
+ return r;
+ }
+ row[] rows = {rowA(), rowB()};
+
+ // The number of original variables.
+ int n = rows.length;
+
+ // Pivot the variable v[col] with vp.
+ void pivot(int col, var vp)
+ {
+ var vc=v[col];
+
+ // Recalculate rows v[col] and vp for the pivot-swap.
+ row rvc = rows[vc], rvp = rows[vp];
+ real factor=1/rvp.t[col]; // NOTE: Handle rvp.t[col] == 0 case.
+ rvc.c=-rvp.c*factor;
+ rvp.c=0;
+ rvc.t=-rvp.t*factor;
+ rvp.t *= 0;
+ rvc.t[col]=factor;
+ rvp.t[col]=1;
+
+ var a=min(vc,vp);
+ var b=max(vc,vp);
+
+ // Recalculate the rows other than the two used for the above pivot.
+ for (var i = 0; i < a; ++i) {
+ row r=rows[i];
+ real m = r.t[col];
+ r.c += m*rvc.c;
+ r.t += m*rvc.t;
+ r.t[col]=m*factor;
+ }
+ for (var i = a+1; i < b; ++i) {
+ row r=rows[i];
+ real m = r.t[col];
+ r.c += m*rvc.c;
+ r.t += m*rvc.t;
+ r.t[col]=m*factor;
+ }
+ for (var i = b+1; i < rows.length; ++i) {
+ row r=rows[i];
+ real m = r.t[col];
+ r.c += m*rvc.c;
+ r.t += m*rvc.t;
+ r.t[col]=m*factor;
+ }
+
+ // Relabel the vars.
+ v[col] = vp;
+ }
+
+ // As b does not have a non-negativity condition, it must initially be
+ // pivoted out for a variable that does. This selects the initial
+ // variable to pivot with b. It also assumes that there is a valid
+ // solution with a == 0 to the linear programming problem, and if so, it
+ // picks a pivot to get to that state. In our case, a == 0 corresponds to
+ // a picture with the user coordinates shrunk down to zero, and if that
+ // doesn't fit, nothing will.
+ var initVar()
+ {
+ real min=infinity, max=-infinity;
+ var argmin=0, argmax=0;
+
+ for (var i = 2; i < rows.length; ++i) {
+ row r=rows[i];
+ if (r.t[VAR_B] > 0) {
+ real val=r.c/r.t[VAR_B];
+ if (val < min) {
+ min=val;
+ argmin=i;
+ }
+ } else if (r.t[VAR_B] < 0) {
+ real val=r.c/r.t[VAR_B];
+ if (val > max) {
+ max=val;
+ argmax=i;
+ }
+ }
+ }
+
+ // If b has a minimal value, choose a pivot that will give b its minimal
+ // value. Otherwise, if b has maximal value, choose a pivot to give b its
+ // maximal value.
+ return argmin != 0 ? argmin :
+ argmax != 0 ? argmax :
+ UNBOUNDED;
+ }
+
+ // Initialize the linear program problem by moving into an acceptable state
+ // this assumes that b is unrestrained and is the second variable.
+ // NOTE: Works in limited cases, may be bug-ridden.
+ void init()
+ {
+ // Find the lowest constant term in the equations.
+ var lowest = 0;
+ for (var i = 2; i < rows.length; ++i) {
+ if (rows[i].c < rows[lowest].c)
+ lowest = i;
+ }
+
+ // Pivot if necessary.
+ if (lowest != 0)
+ pivot(VAR_B, lowest);
+ }
+
+ // Selects a column to pivot on. Returns OPTIMAL if the current state is
+ // optimal. Assumes we are optimizing the first row.
+ int selectColumn()
+ {
+ int i=find(rows[0].t > 0,1);
+ return (i >= 0) ? i : OPTIMAL;
+ }
+
+ // Select the new variable associated with a pivot on the column given.
+ // Returns UNBOUNDED if the space is unbounded.
+ var selectVar(int col)
+ {
+ // We assume that the first two vars (a and b) once swapped out, won't be
+ // swapped back in. This finds the variable which gives the tightest
+ // non-negativity condition restricting our optimization. This turns
+ // out to be the max of c/t[col]. Note that as c is positive, and
+ // t[col] is negative, all c/t[col] will be negative, so we are finding
+ // the smallest in magnitude.
+ var vp=UNBOUNDED;
+ real max=-infinity;
+ for (int i = 2; i < rows.length; ++i) {
+ row r=rows[i];
+ if(r.c < max*r.t[col]) {
+ max=r.c/r.t[col]; vp=i;
+ }
+ }
+
+ return vp;
+ }
+
+ // Checks that the rows are in a valid state.
+ bool valid()
+ {
+ // Checks that constants are valid.
+ bool validConstants() {
+ for (int i = 0; i < rows.length; ++i)
+ if (rows[i].c < 0)
+ return false;
+ return true;
+ }
+
+ // Check a variable to see if its row is simple.
+ // NOTE: Simple rows could be optimized out, since they are not really
+ // used.
+ bool validVar(int col) {
+
+ var vc = v[col];
+ row rvc = rows[vc];
+
+ if (rvc.c != 0)
+ return false;
+ for (int i = 0; i < n; ++i)
+ if (rvc.t[i] != (i == col ? 1 : 0))
+ return false;
+
+ return true;
+ }
+
+ if (!validConstants()) {
+ return false;
+ }
+ for (int i = 0; i < n; ++i)
+ if (!validVar(i)) {
+ return false;
+ }
+
+ return true;
+ }
+
+
+ // Perform the algorithm to find the optimal solution. Returns OPTIMAL,
+ // UNBOUNDED, or INVALID (if no solution is possible).
+ int optimize()
+ {
+ // Put into a valid state to begin and pivot b out.
+ var iv=initVar();
+ if (iv == UNBOUNDED)
+ return iv;
+ pivot(VAR_B, iv);
+
+ if (!valid())
+ return INVALID;
+
+ while(true) {
+ int col = selectColumn();
+
+ if (col == OPTIMAL)
+ return col;
+ var vp = selectVar(col);
+
+ if (vp == UNBOUNDED)
+ return vp;
+
+ pivot(col, vp);
+ }
+
+ // Shouldn't reach here.
+ return INVALID;
+ }
+
+ // Add a restriction to the problem:
+ // t1*a + t2*b + c >= 0
+ void addRestriction(real t1, real t2, real c)
+ {
+ row r = new row;
+ r.c = c;
+ r.t = new real[] {t1, t2};
+ rows.push(r);
+ }
+
+ // Return the value of a computed.
+ real a()
+ {
+ return rows[VAR_A].c;
+ }
+
+ // Return the value of b computed.
+ real b()
+ {
+ return rows[VAR_B].c;
+ }
+}