diff options
Diffstat (limited to 'Master/texmf/asymptote/graph3.asy')
-rw-r--r-- | Master/texmf/asymptote/graph3.asy | 208 |
1 files changed, 30 insertions, 178 deletions
diff --git a/Master/texmf/asymptote/graph3.asy b/Master/texmf/asymptote/graph3.asy index 8fe6c9ed5c6..c2630e10f11 100644 --- a/Master/texmf/asymptote/graph3.asy +++ b/Master/texmf/asymptote/graph3.asy @@ -1509,6 +1509,27 @@ path3[] segment(triple[] v, bool[] cond, interpolate3 join=operator --) segment.length); } +bool uperiodic(triple[][] a) { + int n=a.length; + if(n == 0) return false; + int m=a[0].length; + triple[] a0=a[0]; + triple[] a1=a[n-1]; + real epsilon=sqrtEpsilon*norm(a); + for(int j=0; j < m; ++j) + if(abs(a0[j]-a1[j]) > epsilon) return false; + return true; +} +bool vperiodic(triple[][] a) { + int n=a.length; + if(n == 0) return false; + int m=a[0].length-1; + real epsilon=sqrtEpsilon*norm(a); + for(int i=0; i < n; ++i) + if(abs(a[i][0]-a[i][m]) > epsilon) return false; + return true; +} + // return the surface described by a matrix f surface surface(triple[][] f, bool[][] cond={}) { @@ -1533,6 +1554,7 @@ surface surface(triple[][] f, bool[][] cond={}) } surface s=surface(count); + s.index=new int[nx][ny]; int k=-1; for(int i=0; i < nx; ++i) { bool[] condi,condp; @@ -1542,122 +1564,18 @@ surface surface(triple[][] f, bool[][] cond={}) } triple[] fi=f[i]; triple[] fp=f[i+1]; + int[] indexi=s.index[i]; for(int j=0; j < ny; ++j) { if(all || (condi[j] && condi[j+1] && condp[j] && condp[j+1])) s.s[++k]=patch(new triple[] {fi[j],fp[j],fp[j+1],fi[j+1]}); - } - } - return s; -} - -private surface bispline(real[][] z, real[][] p, real[][] q, real[][] r, - real[] x, real[] y, bool[][] cond={}) -{ // z[i][j] is the value at (x[i],y[j]) - // p and q are the first derivatives with respect to x and y, respectively - // r is the second derivative ddu/dxdy - int n=x.length-1; - int m=y.length-1; - - bool all=cond.length == 0; - - int count; - if(all) - count=n*m; - else { - count=0; - for(int i=0; i < n; ++i) { - bool[] condi=cond[i]; - for(int j=0; j < m; ++j) - if(condi[j]) ++count; - } - } - - surface g=surface(count); - int k=-1; - for(int i=0; i < n; ++i) { - bool[] condi=all ? null : cond[i]; - real xi=x[i]; - real[] zi=z[i]; - real[] zp=z[i+1]; - real[] ri=r[i]; - real[] rp=r[i+1]; - real[] pi=p[i]; - real[] pp=p[i+1]; - real[] qi=q[i]; - real[] qp=q[i+1]; - real xp=x[i+1]; - real hx=(xp-xi)/3; - for(int j=0; j < m; ++j) { - real yj=y[j]; - real yp=y[j+1]; - if(all || condi[j]) { - triple[][] P=array(4,array(4,O)); - real hy=(yp-yj)/3; - real hxy=hx*hy; - // first x and y directions - for(int k=0; k < 4; ++k) { - P[k][0] += xi*X; - P[0][k] += yj*Y; - P[k][1] += (xp+2*xi)/3*X; - P[1][k] += (yp+2*yj)/3*Y; - P[k][2] += (2*xp+xi)/3*X; - P[2][k] += (2*yp+yj)/3*Y; - P[k][3] += xp*X; - P[3][k] += yp*Y; - } - // now z, first the value - P[0][0] += zi[j]*Z; - P[0][3] += zp[j]*Z; - P[3][0] += zi[j+1]*Z; - P[3][3] += zp[j+1]*Z; - // 2nd, first derivative - P[0][1] += (P[0][0].z+hx*pi[j])*Z; - P[3][1] += (P[3][0].z+hx*pi[j+1])*Z; - P[0][2] += (P[0][3].z-hx*pp[j])*Z; - P[3][2] += (P[3][3].z-hx*pp[j+1])*Z; - P[1][0] += (P[0][0].z+hy*qi[j])*Z; - P[1][3] += (P[0][3].z+hy*qp[j])*Z; - P[2][0] += (P[3][0].z-hy*qi[j+1])*Z; - P[2][3] += (P[3][3].z-hy*qp[j+1])*Z; - // 3nd, second derivative - P[1][1] += (P[1][0].z+P[0][1].z-P[0][0].z+hxy*ri[j])*Z; - P[2][1] += (P[2][0].z+P[3][1].z-P[3][0].z-hxy*ri[j+1])*Z; - P[1][2] += (P[0][2].z+P[1][3].z-P[0][3].z-hxy*rp[j])*Z; - P[2][2] += (P[3][2].z+P[2][3].z-P[3][3].z+hxy*rp[j+1])*Z; - g.s[++k]=patch(P); + indexi[j]=k; } - } } - return g; -} -// return the surface described by a real matrix f, interpolated with -// xsplinetype and ysplinetype. -surface surface(real[][] f, real[] x, real[] y, - splinetype xsplinetype=null, splinetype ysplinetype=xsplinetype, - bool[][] cond={}) -{ - real epsilon=sqrtEpsilon*max(abs(y)); - if(xsplinetype == null) - xsplinetype=(abs(x[0]-x[x.length-1]) <= epsilon) ? periodic : notaknot; - if(ysplinetype == null) - ysplinetype=(abs(y[0]-y[y.length-1]) <= epsilon) ? periodic : notaknot; - int n=x.length; int m=y.length; - real[][] ft=transpose(f); - real[][] tp=new real[m][]; - for(int j=0; j < m; ++j) - tp[j]=xsplinetype(x,ft[j]); - real[][] q=new real[n][]; - for(int i=0; i < n; ++i) - q[i]=ysplinetype(y,f[i]); - real[][] qt=transpose(q); - real[] d1=xsplinetype(x,qt[0]); - real[] d2=xsplinetype(x,qt[m-1]); - real[][] r=new real[n][]; - real[][] p=transpose(tp); - for(int i=0; i < n; ++i) - r[i]=clamped(d1[i],d2[i])(y,p[i]); - return bispline(f,p,q,r,x,y,cond); + if(uperiodic(f)) s.ucyclic(true); + if(vperiodic(f)) s.vcyclic(true); + + return s; } // return the surface described by a real matrix f, interpolated with @@ -1738,74 +1656,8 @@ surface surface(triple f(pair z), pair a, pair b, int nu=nmesh, int nv=nu, splinetype[] usplinetype, splinetype[] vsplinetype=Spline, bool cond(pair z)=null) { - real[] upt=uniform(a.x,b.x,nu); - real[] vpt=uniform(a.y,b.y,nv); - real[] ipt=sequence(nu+1); - real[] jpt=sequence(nv+1); - real[][] fx=new real[nu+1][nv+1]; - real[][] fy=new real[nu+1][nv+1]; - real[][] fz=new real[nu+1][nv+1]; - - bool[][] active; - bool all=cond == null; - if(!all) active=new bool[nu+1][nv+1]; - - real norm; - for(int i=0; i <= nu; ++i) { - real upti=upt[i]; - real[] fxi=fx[i]; - real[] fyi=fy[i]; - real[] fzi=fz[i]; - bool[] activei=all ? null : active[i]; - for(int j=0; j <= nv; ++j) { - pair z=(upti,vpt[j]); - triple f=(all || (activei[j]=cond(z))) ? f(z) : O; - norm=max(norm,abs(f)); - fxi[j]=f.x; - fyi[j]=f.y; - fzi[j]=f.z; - } - } - - real epsilon=sqrtEpsilon*norm; - - if(usplinetype.length == 0) { - bool uperiodic(real[][] a) { - for(int j=0; j < nv; ++j) - if(abs(a[0][j]-a[nu][j]) > epsilon) return false; - return true; - } - usplinetype=new splinetype[] {uperiodic(fx) ? periodic : notaknot, - uperiodic(fy) ? periodic : notaknot, - uperiodic(fz) ? periodic : notaknot}; - } else if(usplinetype.length != 3) abort("usplinetype must have length 3"); - - if(vsplinetype.length == 0) { - bool vperiodic(real[][] a) { - for(int i=0; i < nu; ++i) - if(abs(a[i][0]-a[i][nv]) > epsilon) return false; - return true; - } - vsplinetype=new splinetype[] {vperiodic(fx) ? periodic : notaknot, - vperiodic(fy) ? periodic : notaknot, - vperiodic(fz) ? periodic : notaknot}; - } else if(vsplinetype.length != 3) abort("vsplinetype must have length 3"); - - surface sx=surface(fx,ipt,jpt,usplinetype[0],vsplinetype[0],active); - surface sy=surface(fy,ipt,jpt,usplinetype[1],vsplinetype[1],active); - surface sz=surface(fz,ipt,jpt,usplinetype[2],vsplinetype[2],active); - - surface s=surface(sx.s.length); - for(int k=0; k < sx.s.length; ++k) { - triple[][] Q=new triple[4][4]; - for(int i=0; i < 4 ; ++i) { - for(int j=0; j < 4 ; ++j) { - Q[i][j]=(sx.s[k].P[i][j].z,sy.s[k].P[i][j].z,sz.s[k].P[i][j].z); - } - s.s[k]=patch(Q); - } - } - return s; + return surface(f,uniform(a.x,b.x,nu),uniform(a.y,b.y,nv), + usplinetype,vsplinetype,cond); } // return the surface described by a real function f over box(a,b), |