summaryrefslogtreecommitdiff
path: root/Master/texmf/asymptote/contour3.asy
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf/asymptote/contour3.asy')
-rw-r--r--Master/texmf/asymptote/contour3.asy481
1 files changed, 481 insertions, 0 deletions
diff --git a/Master/texmf/asymptote/contour3.asy b/Master/texmf/asymptote/contour3.asy
new file mode 100644
index 00000000000..e9d8d928991
--- /dev/null
+++ b/Master/texmf/asymptote/contour3.asy
@@ -0,0 +1,481 @@
+import graph_settings;
+import three;
+
+real eps=10000*realEpsilon;
+
+private struct weighted
+{
+ triple normal;
+ real ratio;
+ int kpa0,kpa1,kpa2;
+ int kpb0,kpb1,kpb2;
+ triple v;
+}
+
+private struct bucket
+{
+ triple v;
+ triple val;
+ int count;
+}
+
+struct vertex
+{
+ triple v;
+ triple normal;
+}
+
+// A group of 3 or 4 points.
+private struct object
+{
+ bool active;
+ weighted[] pts;
+}
+
+// Return contour vertices for a 3D data array.
+// z: three-dimensional array of nonoverlapping mesh points
+// f: three-dimensional arrays of real data values
+// midpoint: optional array containing estimate of f at midpoint values
+vertex[][] contour3(triple[][][] v, real[][][] f,
+ real[][][] midpoint=new real[][][],
+ projection P=currentprojection)
+{
+ int nx=v.length-1;
+ if(nx == 0)
+ abort("array v must have length >= 2");
+ int ny=v[0].length-1;
+ if(ny == 0)
+ abort("array v[0] must have length >= 2");
+ int nz=v[0][0].length-1;
+ if(nz == 0)
+ abort("array v[0][0] must have length >= 2");
+
+ bool midpoints=midpoint.length > 0;
+
+ bucket[][][][] kps=new bucket[2nx+1][2ny+1][2nz+1][];
+ for(int i=0; i < 2nx+1; ++i)
+ for(int j=0; j < 2ny+1; ++j)
+ for(int k=0; k < 2nz+1; ++k)
+ kps[i][j][k]=new bucket[];
+
+ object[] objects;
+
+ // go over region a rectangle at a time
+ for(int i=0; i < nx; ++i) {
+ triple[][] vi=v[i];
+ triple[][] vp=v[i+1];
+ real[][] fi=f[i];
+ real[][] fp=f[i+1];
+ int i2=2i;
+ int i2p1=i2+1;
+ int i2p2=i2+2;
+ for(int j=0; j < ny; ++j) {
+ triple[] vij=vi[j];
+ triple[] vpj=vp[j];
+ triple[] vip=vi[j+1];
+ triple[] vpp=vp[j+1];
+ real[] fij=fi[j];
+ real[] fpj=fp[j];
+ real[] fip=fi[j+1];
+ real[] fpp=fp[j+1];
+ int j2=2j;
+ int j2p1=j2+1;
+ int j2p2=j2+2;
+
+ for(int k=0; k < nz; ++k) {
+ // vertex values
+ real vdat0=fij[k];
+ real vdat1=fij[k+1];
+ real vdat2=fip[k];
+ real vdat3=fip[k+1];
+ real vdat4=fpj[k];
+ real vdat5=fpj[k+1];
+ real vdat6=fpp[k];
+ real vdat7=fpp[k+1];
+
+ // define points
+ triple p000=vij[k];
+ triple p001=vij[k+1];
+ triple p010=vip[k];
+ triple p011=vip[k+1];
+ triple p100=vpj[k];
+ triple p101=vpj[k+1];
+ triple p110=vpp[k];
+ triple p111=vpp[k+1];
+ triple m0=0.25*(p000+p010+p110+p100);
+ triple m1=0.25*(p010+p110+p111+p011);
+ triple m2=0.25*(p110+p100+p101+p111);
+ triple m3=0.25*(p100+p000+p001+p101);
+ triple m4=0.25*(p000+p010+p011+p001);
+ triple m5=0.25*(p001+p011+p111+p101);
+ triple mc=0.5*(m0+m5);
+
+ // optimization: we make sure we don't work with empty rectangles
+ int countm=0;
+ int countz=0;
+ int countp=0;
+
+ void check(real vdat) {
+ if(vdat < -eps) ++countm;
+ else {
+ if(vdat <= eps) ++countz;
+ else ++countp;
+ }
+ }
+
+ check(vdat0);
+ check(vdat1);
+ check(vdat2);
+ check(vdat3);
+ check(vdat4);
+ check(vdat5);
+ check(vdat6);
+ check(vdat7);
+
+ if(countm == 8 || countp == 8 ||
+ ((countm == 7 || countp == 7) && countz == 1)) continue;
+
+ int k2=2k;
+ int k2p1=k2+1;
+ int k2p2=k2+2;
+
+ // Evaluate midpoints of cube sides.
+ // Then evaluate midpoint of cube.
+ real vdat8=midpoints ? midpoint[i2p1][j2p1][k2] :
+ 0.25*(vdat0+vdat2+vdat6+vdat4);
+ real vdat9=midpoints ? midpoint[i2p1][j2p2][k2p1] :
+ 0.25*(vdat2+vdat6+vdat7+vdat3);
+ real vdat10=midpoints ? midpoint[i2p2][j2p1][k2p1] :
+ 0.25*(vdat7+vdat6+vdat4+vdat5);
+ real vdat11=midpoints ? midpoint[i2p1][j2][k2p1] :
+ 0.25*(vdat0+vdat4+vdat5+vdat1);
+ real vdat12=midpoints ? midpoint[i2][j2p1][k2p1] :
+ 0.25*(vdat0+vdat2+vdat3+vdat1);
+ real vdat13=midpoints ? midpoint[i2p1][j2p1][k2p2] :
+ 0.25*(vdat1+vdat3+vdat7+vdat5);
+ real vdat14=midpoints ? midpoint[i2p1][j2p1][k2p1] :
+ 0.125*(vdat0+vdat1+vdat2+vdat3+vdat4+vdat5+vdat6+vdat7);
+
+ // Go through the 24 pyramids, 4 for each side.
+
+ void addval(int kp0, int kp1, int kp2, triple add, triple v) {
+ bucket[] cur=kps[kp0][kp1][kp2];
+ for(int q=0; q < cur.length; ++q) {
+ if(length(cur[q].v-v) < eps) {
+ cur[q].val += add;
+ ++cur[q].count;
+ return;
+ }
+ }
+ bucket newbuck;
+ newbuck.v=v;
+ newbuck.val=add;
+ newbuck.count=1;
+ cur.push(newbuck);
+ }
+
+ void accrue(weighted w) {
+ triple val1=w.normal*w.ratio;
+ triple val2=w.normal*(1-w.ratio);
+ addval(w.kpa0,w.kpa1,w.kpa2,val1,w.v);
+ addval(w.kpb0,w.kpb1,w.kpb2,val2,w.v);
+ }
+
+ triple dir=P.vector();
+
+ void addnormals(weighted[] pts) {
+ triple vec2=pts[1].v-pts[0].v;
+ triple vec1=pts[0].v-pts[2].v;
+ triple vec0=-vec2-vec1;
+ vec2=unit(vec2);
+ vec1=unit(vec1);
+ vec0=unit(vec0);
+ triple normal=cross(vec2,vec1);
+ normal *= sgn(dot(normal,dir));
+ real angle0=acos(-dot(vec1,vec2));
+ real angle1=acos(-dot(vec2,vec0));
+ pts[0].normal=normal*angle0;
+ pts[1].normal=normal*angle1;
+ pts[2].normal=normal*(pi-angle0-angle1);
+ }
+
+ void addobj(object obj) {
+ if(!obj.active) return;
+
+ if(obj.pts.length == 4) {
+ weighted[] points=obj.pts;
+ object obj1;
+ object obj2;
+ obj1.active=true;
+ obj2.active=true;
+ obj1.pts=new weighted[] {points[0],points[1],points[2]};
+ obj2.pts=new weighted[] {points[1],points[2],points[3]};
+ addobj(obj1);
+ addobj(obj2);
+ } else {
+ addnormals(obj.pts);
+ for(int q=0; q < obj.pts.length; ++q)
+ accrue(obj.pts[q]);
+ objects.push(obj);
+ }
+ }
+
+ weighted setupweighted(triple va, triple vb, real da, real db,
+ int[] kpa, int[] kpb) {
+ weighted w;
+ real ratio=abs(da/(db-da));
+ w.v=interp(va,vb,ratio);
+ w.ratio=ratio;
+ w.kpa0=i2+kpa[0];
+ w.kpa1=j2+kpa[1];
+ w.kpa2=k2+kpa[2];
+ w.kpb0=i2+kpb[0];
+ w.kpb1=j2+kpb[1];
+ w.kpb2=k2+kpb[2];
+
+ return w;
+ }
+
+ weighted setupweighted(triple v, int[] kp) {
+ weighted w;
+ w.v=v;
+ w.ratio=0.5;
+ w.kpa0=w.kpb0=i2+kp[0];
+ w.kpa1=w.kpb1=j2+kp[1];
+ w.kpa2=w.kpb2=k2+kp[2];
+
+ return w;
+ }
+
+ // Checks if a pyramid contains a contour object.
+ object checkpyr(triple v0, triple v1, triple v2, triple v3,
+ real d0, real d1, real d2, real d3,
+ int[] c0, int[] c1, int[] c2, int[] c3) {
+ object obj;
+ real a0=abs(d0);
+ real a1=abs(d1);
+ real a2=abs(d2);
+ real a3=abs(d3);
+
+ bool b0=a0 < eps;
+ bool b1=a1 < eps;
+ bool b2=a2 < eps;
+ bool b3=a3 < eps;
+
+ weighted[] pts;
+
+ if(b0) pts.push(setupweighted(v0,c0));
+ if(b1) pts.push(setupweighted(v1,c1));
+ if(b2) pts.push(setupweighted(v2,c2));
+ if(b3) pts.push(setupweighted(v3,c3));
+
+ if(!b0 && !b1 && abs(d0+d1)+eps < a0+a1)
+ pts.push(setupweighted(v0,v1,d0,d1,c0,c1));
+ if(!b0 && !b2 && abs(d0+d2)+eps < a0+a2)
+ pts.push(setupweighted(v0,v2,d0,d2,c0,c2));
+ if(!b0 && !b3 && abs(d0+d3)+eps < a0+a3)
+ pts.push(setupweighted(v0,v3,d0,d3,c0,c3));
+ if(!b1 && !b2 && abs(d1+d2)+eps < a1+a2)
+ pts.push(setupweighted(v1,v2,d1,d2,c1,c2));
+ if(!b1 && !b3 && abs(d1+d3)+eps < a1+a3)
+ pts.push(setupweighted(v1,v3,d1,d3,c1,c3));
+ if(!b2 && !b3 && abs(d2+d3)+eps < a2+a3)
+ pts.push(setupweighted(v2,v3,d2,d3,c2,c3));
+
+ int s=pts.length;
+ //There are three or four points.
+ if(s > 2) {
+ obj.active=true;
+ obj.pts=pts;
+ } else obj.active=false;
+
+ return obj;
+ }
+
+ void check4pyr(triple v0, triple v1, triple v2, triple v3,
+ triple v4, triple v5,
+ real d0, real d1, real d2, real d3, real d4, real d5,
+ int[] c0, int[] c1, int[] c2, int[] c3, int[] c4,
+ int[] c5) {
+ addobj(checkpyr(v5,v4,v0,v1,d5,d4,d0,d1,c5,c4,c0,c1));
+ addobj(checkpyr(v5,v4,v1,v2,d5,d4,d1,d2,c5,c4,c1,c2));
+ addobj(checkpyr(v5,v4,v2,v3,d5,d4,d2,d3,c5,c4,c2,c3));
+ addobj(checkpyr(v5,v4,v3,v0,d5,d4,d3,d0,c5,c4,c3,c0));
+ }
+
+ static int[] pp000={0,0,0};
+ static int[] pp001={0,0,2};
+ static int[] pp010={0,2,0};
+ static int[] pp011={0,2,2};
+ static int[] pp100={2,0,0};
+ static int[] pp101={2,0,2};
+ static int[] pp110={2,2,0};
+ static int[] pp111={2,2,2};
+ static int[] pm0={1,1,0};
+ static int[] pm1={1,2,1};
+ static int[] pm2={2,1,1};
+ static int[] pm3={1,0,1};
+ static int[] pm4={0,1,1};
+ static int[] pm5={1,1,2};
+ static int[] pmc={1,1,1};
+
+ check4pyr(p000,p010,p110,p100,mc,m0,
+ vdat0,vdat2,vdat6,vdat4,vdat14,vdat8,
+ pp000,pp010,pp110,pp100,pmc,pm0);
+ check4pyr(p010,p110,p111,p011,mc,m1,
+ vdat2,vdat6,vdat7,vdat3,vdat14,vdat9,
+ pp010,pp110,pp111,pp011,pmc,pm1);
+ check4pyr(p110,p100,p101,p111,mc,m2,
+ vdat6,vdat4,vdat5,vdat7,vdat14,vdat10,
+ pp110,pp100,pp101,pp111,pmc,pm2);
+ check4pyr(p100,p000,p001,p101,mc,m3,
+ vdat4,vdat0,vdat1,vdat5,vdat14,vdat11,
+ pp100,pp000,pp001,pp101,pmc,pm3);
+ check4pyr(p000,p010,p011,p001,mc,m4,
+ vdat0,vdat2,vdat3,vdat1,vdat14,vdat12,
+ pp000,pp010,pp011,pp001,pmc,pm4);
+ check4pyr(p001,p011,p111,p101,mc,m5,
+ vdat1,vdat3,vdat7,vdat5,vdat14,vdat13,
+ pp001,pp011,pp111,pp101,pmc,pm5);
+ }
+ }
+ }
+
+ vertex preparevertex(weighted w) {
+ vertex ret;
+ triple normal=O;
+ bool first=true;
+ bucket[] kp1=kps[w.kpa0][w.kpa1][w.kpa2];
+ bucket[] kp2=kps[w.kpb0][w.kpb1][w.kpb2];
+ bool notfound1=true;
+ bool notfound2=true;
+ int count=0;
+ int stop=max(kp1.length,kp2.length);
+ for(int r=0; r < stop; ++r) {
+ if(notfound1) {
+ if(length(w.v-kp1[r].v) < eps) {
+ if(first) {
+ ret.v=kp1[r].v;
+ first=false;
+ }
+ normal += kp1[r].val;
+ count += kp1[r].count;
+ notfound1=false;
+ }
+ }
+ if(notfound2) {
+ if(length(w.v-kp2[r].v) < eps) {
+ if(first) {
+ ret.v=kp2[r].v;
+ first=false;
+ }
+ normal += kp2[r].val;
+ count += kp2[r].count;
+ notfound2=false;
+ }
+ }
+ }
+ ret.normal=normal*2/count;
+ return ret;
+ }
+
+ // Prepare return value.
+ vertex[][] g;
+
+ for(int q=0; q < objects.length; ++q) {
+ object p=objects[q];
+ g.push(new vertex[] {preparevertex(p.pts[0]),preparevertex(p.pts[1]),
+ preparevertex(p.pts[2])});
+ }
+ return g;
+}
+
+// Return contour vertices for a 3D data array on a uniform lattice.
+// f: three-dimensional arrays of real data values
+// midpoint: optional array containing estimate of f at midpoint values
+// a,b: diagonally opposite points of rectangular parellelpiped domain
+vertex[][] contour3(real[][][] f, real[][][] midpoint=new real[][][],
+ triple a, triple b, projection P=currentprojection)
+
+{
+ int nx=f.length-1;
+ if(nx == 0)
+ abort("array f must have length >= 2");
+ int ny=f[0].length-1;
+ if(ny == 0)
+ abort("array f[0] must have length >= 2");
+ int nz=f[0][0].length-1;
+ if(nz == 0)
+ abort("array f[0][0] must have length >= 2");
+
+ triple[][][] v=new triple[nx+1][ny+1][nz+1];
+ for(int i=0; i <= nx; ++i) {
+ real xi=interp(a.x,b.x,i/nx);
+ triple[][] vi=v[i];
+ for(int j=0; j <= ny; ++j) {
+ triple[] vij=v[i][j];
+ real yj=interp(a.y,b.y,j/ny);
+ for(int k=0; k <= nz; ++k) {
+ vij[k]=(xi,yj,interp(a.z,b.z,k/nz));
+ }
+ }
+ }
+ return contour3(v,f,midpoint,P);
+}
+
+// Return contour vertices for a 3D data array, using a pyramid mesh
+// f: real-valued function of three real variables
+// a,b: diagonally opposite points of rectangular parellelpiped domain
+// nx,ny,nz number of subdivisions in x, y, and z directions
+vertex[][] contour3(real f(real, real, real), triple a, triple b,
+ int nx=nmesh, int ny=nx, int nz=nx,
+ projection P=currentprojection)
+{
+ // evaluate function at points and midpoints
+ real[][][] dat=new real[nx+1][ny+1][nz+1];
+ real[][][] midpoint=new real[2nx+2][2ny+2][2nz+1];
+
+ for(int i=0; i <= nx; ++i) {
+ real x=interp(a.x,b.x,i/nx);
+ real x2=interp(a.x,b.x,(i+0.5)/nx);
+ real[][] dati=dat[i];
+ real[][] midpointi2=midpoint[2i];
+ real[][] midpointi2p1=midpoint[2i+1];
+ for(int j=0; j <= ny; ++j) {
+ real y=interp(a.y,b.y,j/ny);
+ real y2=interp(a.y,b.y,(j+0.5)/ny);
+ real datij[]=dati[j];
+ real[] midpointi2p1j2=midpointi2p1[2j];
+ real[] midpointi2p1j2p1=midpointi2p1[2j+1];
+ real[] midpointi2j2p1=midpointi2[2j+1];
+ for(int k=0; k <= nz; ++k) {
+ real z=interp(a.z,b.z,k/nz);
+ real z2=interp(a.z,b.z,(k+0.5)/nz);
+ datij[k]=f(x,y,z);
+ if(i == nx || j == ny || k == nz) continue;
+ int k2p1=2k+1;
+ midpointi2p1j2p1[2k]=f(x2,y2,z);
+ midpointi2p1j2p1[k2p1]=f(x2,y2,z2);
+ midpointi2p1j2[k2p1]=f(x2,y,z2);
+ midpointi2j2p1[k2p1]=f(x,y2,z2);
+ if(i == 0) midpoint[2nx][2j+1][k2p1]=f(b.x,y2,z2);
+ if(j == 0) midpointi2p1[2ny][k2p1]=f(x2,b.y,z2);
+ if(k == 0) midpointi2p1j2p1[2nz]=f(x2,y2,b.z);
+ }
+ }
+ }
+ return contour3(dat,midpoint,a,b,P);
+}
+
+// Construct contour surface for a 3D data array, using a pyramid mesh.
+surface surface(vertex[][] g)
+{
+ surface s=surface(g.length);
+ for(int i=0; i < g.length; ++i) {
+ vertex[] cur=g[i];
+ s.s[i]=patch(new triple[] {cur[0].v,cur[0].v,cur[1].v,cur[2].v},
+ normals=new triple[] {cur[0].normal,cur[0].normal,
+ cur[1].normal,cur[2].normal});
+ }
+ return s;
+}