summaryrefslogtreecommitdiff
path: root/Master/texmf-doc/doc/german/kopka/uebungen/kapitel5/ueb5-8.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-doc/doc/german/kopka/uebungen/kapitel5/ueb5-8.tex')
-rw-r--r--Master/texmf-doc/doc/german/kopka/uebungen/kapitel5/ueb5-8.tex11
1 files changed, 0 insertions, 11 deletions
diff --git a/Master/texmf-doc/doc/german/kopka/uebungen/kapitel5/ueb5-8.tex b/Master/texmf-doc/doc/german/kopka/uebungen/kapitel5/ueb5-8.tex
deleted file mode 100644
index bcea1ea43b4..00000000000
--- a/Master/texmf-doc/doc/german/kopka/uebungen/kapitel5/ueb5-8.tex
+++ /dev/null
@@ -1,11 +0,0 @@
-\documentclass{article}
-\usepackage{german}
-\setlength{\textwidth}{135mm}
-\begin{document}
-\noindent
-Die Gammafunktion $\Gamma(x)$ ist definiert als:
-\[ \Gamma(x)\equiv\lim_{n\to\infty}\prod_{\nu=0}^{n-1}\frac{n!n^{x-1}}{x+\nu}
- = \lim_{n\to\infty}\frac{n!n^{x-1}}{x(x+1)(x+2)\cdots(x+n-1)}
- \equiv\int_0^\infty e^{-t}t^{x-1}\,dt \]
-Die Integraldefinition gilt nur f"ur $x>0$ (2.\ Eulersches Integral).
-\end{document}