summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/luatex/optex/base/pdfuni-string.opm
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/tex/luatex/optex/base/pdfuni-string.opm')
-rw-r--r--Master/texmf-dist/tex/luatex/optex/base/pdfuni-string.opm127
1 files changed, 0 insertions, 127 deletions
diff --git a/Master/texmf-dist/tex/luatex/optex/base/pdfuni-string.opm b/Master/texmf-dist/tex/luatex/optex/base/pdfuni-string.opm
deleted file mode 100644
index 25781ddfb4f..00000000000
--- a/Master/texmf-dist/tex/luatex/optex/base/pdfuni-string.opm
+++ /dev/null
@@ -1,127 +0,0 @@
-%% This is part of the OpTeX project, see http://petr.olsak.net/optex
-
-\_codedecl \pdfunidef {PDFunicode strings for outlines <2021-02-08>} % preloaded in format
-
- \_doc -----------------------------
- \`\_hexprint` is a command defined in Lua, that scans a number and expands
- to its UTF-16 Big Endian encoded form for use in PDF hexadecimal strings.
- \_cod -----------------------------
-
-\bgroup
-\_catcode`\%=12
-\_gdef\_hexprint{\_directlua{
- local num = token.scan_int()
- if num < 0x10000 then
- tex.print(string.format("%04X", num))
- else
- num = num - 0x10000
- local high = bit32.rshift(num, 10) + 0xD800
- local low = bit32.band(num, 0x3FF) + 0xDC00
- tex.print(string.format("%04X%04X", high, low))
- end
-}}
-\egroup
-
- \_doc -----------------------------
- \`\pdfunidef``\macro{<text>}` does more things than only converting to hexadecimal PDF string.
- The <text> can be scanned in verbatim mode (it is true becuase \^`\_Xtoc`
- reads the <text> in verbatim mode). First `\edef` do
- `\_scantextokens\unexpanded` and second `\edef` expands the parameter
- according to current values on selected macros from `\_regoul`. Then
- \`\_removeoutmath` converts `..$x^2$..` to `..x^2..`, i.e removes dollars.
- Then \`\_removeoutbraces` converts `..{x}..` to `..x..`.
- Finally, the <text> is detokenized, spaces are preprocessed using \^`\replstring`
- and then the \`\_pdfunidefB` is repeated on each character. It calls the
- `\directlua` chunk to print hexadecimal numbers in the macro \^`\_hexprint`.\nl
- Characters for quotes (and separators for quotes) are activated by first
- `\_scatextokens` and they are defined as the same non-active characters.
- But `\_regoul` can change this definition.
- \_cod -----------------------------
-
-\_def\_pdfunidef#1#2{%
- \_begingroup
- \_catcodetable\_optexcatcodes \_adef"{"}\_adef'{'}%
- \_the\_regoul \_relax % \_regmacro alternatives of logos etc.
- \_ifx\_savedttchar\_undefined \_def#1{\_scantextokens{\_unexpanded{#2}}}%
- \_else \_lccode`\;=\_savedttchar \_lowercase{\_prepinverb#1;}{#2}\fi
- \_edef#1{#1}%
- \_escapechar=-1
- \_edef#1{#1\_empty}%
- \_escapechar=`\\
- \_ea\_edef \_ea#1\_ea{\_ea\_removeoutmath #1$\_end$}% $x$ -> x
- \_ea\_edef \_ea#1\_ea{\_ea\_removeoutbraces #1{\_end}}% {x} -> x
- \_edef#1{\_detokenize\_ea{#1}}%
- \_replstring#1{ }{{ }}% text text -> text{ }text
- \_catcode`\\=12 \_let\\=\_bslash
- \_edef\_out{<FEFF}
- \_ea\_pdfunidefB#1^% text -> \_out in octal
- \_ea
- \_endgroup
- \_ea\_def\_ea#1\_ea{\_out>}
-}
-\_def\_pdfunidefB#1{%
- \_ifx^#1\_else
- \_edef\_out{\_out \_hexprint `#1}
- \_ea\_pdfunidefB \_fi
-}
-
-\_def\_removeoutbraces #1#{#1\_removeoutbracesA}
-\_def\_removeoutbracesA #1{\_ifx\_end#1\_else #1\_ea\_removeoutbraces\_fi}
-\_def\_removeoutmath #1$#2${#1\_ifx\_end#2\_else #2\_ea\_removeoutmath\_fi}
-
- \_doc -----------------------------
- The \`\_prepinverb``<macro><separator>{<text>}`,
- e.g.\ `\_prepinverb\tmpb|{aaa |bbb| cccc |dd| ee}`
- does `\def\tmpb{<su>{aaa }bbb<su>{ cccc }dd<su>{ ee}}` where
- <su> is `\scantextokens\unexpanded`. It means that in-line verbatim
- are not argument of `\scantextoken`. First `\edef\tmpb` tokenizes again
- the <text> but not the parts which were in the the in-line verbatim.
- \_cod -----------------------------
-
-\_def\_prepinverb#1#2#3{\_def#1{}%
- \_def\_dotmpb ##1#2##2{\_addto#1{\_scantextokens{\_unexpanded{##1}}}%
- \_ifx\_end##2\_else\_ea\_dotmpbA\_ea##2\_fi}%
- \_def\_dotmpbA ##1#2{\_addto#1{##1}\_dotmpb}%
- \_dotmpb#3#2\_end
-}
-
- \_doc -----------------------------
- The \^`\regmacro` is used in order to sed the values of macros
- `\em`, `\rm`, `\bf`, `\it`, `\bi`, `\tt`, `\/` and `~` to values usable in
- PDF outlines.
- \_cod -----------------------------
-
-\_regmacro {}{}{\_let\em=\_empty \_let\rm=\_empty \_let\bf=\_empty
- \_let\it=\_empty \_let\bi=\_empty \_let\tt=\_empty \_let\/=\_empty
- \_let~=\_space
-}
-\public \pdfunidef ;
-
-\_endcode % --------------------------------
-
-There are only two encodings for PDF strings (used in PDFoutlines, PDFinfo,
-etc.). The first one is PDFDocEncoding which is single-byte encoding, but it
-misses most international characters.
-
-The second encoding is Big Endian UTF-16 which is implemented in this file. It
-encodes a single character in either two or four bytes.
-This encoding is \TeX/-discomfortable because it looks like
-
-\begtt
-<FEFF 0043 0076 0069 010D 0065 006E 00ED 0020 006A 0065 0020 007A 00E1 0074
-011B 017E 0020 0061 0020 0078 2208 D835DD44>
-\endtt
-
-This example shows a hexadecimal PDF string (enclosed in \code{<>} as opposed
-to the literal PDF string enclosed in `()`). In these strings each byte is
-represented by two hexadecimal characters (`0-9`, `A-F`). You can tell the
-encoding is UTF-16BE, becuase it starts with \"Byte order mark" `FEFF`. Each
-unicode character is then encoded in one or two byte pairs. The example string
-corresponds to the text \"Cvičení je zátěž a ${\rm x} ∈ 𝕄$". Notice the 4 bytes
-for the last character, $𝕄$. (Even the whitespace would be OK in a PDF file,
-because it should be ignored by PDF viewers, but \LuaTeX\ doesn't allow it.)
-
-\_endinput
-
-2021-02-08 \_octalprint -> \_hexprint
-2020-03-12 Released