diff options
Diffstat (limited to 'Master/texmf-dist/tex/latex/statex')
-rw-r--r-- | Master/texmf-dist/tex/latex/statex/statex.sty | 441 |
1 files changed, 441 insertions, 0 deletions
diff --git a/Master/texmf-dist/tex/latex/statex/statex.sty b/Master/texmf-dist/tex/latex/statex/statex.sty new file mode 100644 index 00000000000..a8f3f6f7d19 --- /dev/null +++ b/Master/texmf-dist/tex/latex/statex/statex.sty @@ -0,0 +1,441 @@ +%% +%% This is file `statex.sty'. +%% +%% Copyright (C) 2002-2006 by Rodney A Sparapani <rsparapa@mcw.edu> +%% +%% This file may be distributed and/or modified under the +%% conditions of the LaTeX Project Public License, either version 1.2 +%% of this license or (at your option) any later version. +%% The latest version of this license is in +%% +%% http://www.latex-project.org/lppl.txt +%% +%% and version 1.2 or later is part of all distributions of LaTeX +%% version 1999/12/01 or later. +%% +\NeedsTeXFormat{LaTeX2e} +\ProvidesPackage{statex}[2006/05/17 v1.6 a statistics style for latex] +\RequirePackage{ifthen} +\RequirePackage{amsmath} +\RequirePackage{amssymb} +\RequirePackage{bm} +\RequirePackage{color} +%\RequirePackage[dvipsnames,usenames]{color} + +%begin: borrowed from upgreek; thanks to Walter Schmidt <was@VR-Web.de> +%use Adobe Symbol for upright pi (constant) + \DeclareSymbolFont{ugrf@m}{U}{psy}{m}{n} + \DeclareMathSymbol{\cpi}{\mathord}{ugrf@m}{`p} +%to use Euler Roman comment previous lines and uncomment rest of block +% \DeclareFontFamily{U}{eur}{\skewchar\font'177} +% \DeclareFontShape{U}{eur}{m}{n}{% +% <-6> eurm5 <6-8> eurm7 <8-> eurm10}{} +% \DeclareFontShape{U}{eur}{b}{n}{% +% <-6> eurb5 <6-8> eurb7 <8-> eurb10}{} +% \DeclareSymbolFont{ugrf@m}{U}{eur}{m}{n} +% \SetSymbolFont{ugrf@m}{bold}{U}{eur}{b}{n} +% \DeclareMathSymbol{\cpi}{\mathord}{ugrf@m}{"19} +%end + +%new commands +\DeclareMathAlphabet{\sfsl}{OT1}{cmss}{m}{sl} +%the next command seems to have no effect when used in conjunction with bm!?! +\SetMathAlphabet{\sfsl}{bold}{OT1}{cmss}{bx}{sl} +\DeclareMathOperator{\logit}{logit} +\DeclareMathOperator{\diag}{diag} +\DeclareMathOperator{\erf}{erf} +\newcommand*{\chisq}{\relax\ifmmode\chi^2\else$\chi^2$\fi} +%\newcommand*{\e}[1]{\mathrm{e}\ifthenelse{\equal{#1}{}}{}{^{#1}}} +\newcommand*{\e}[1]{\mathrm{e}^{#1}} +%\newcommand*{\exp}[1]{\mathrm{e}^{#1}} +\newcommand*{\E}[2][]{\text{E}\ifthenelse{\equal{#1}{}}{}{_{#1}} \wrap{#2}} +\newcommand*{\ha}{{\frac{\alpha}{2}}} +\newcommand*{\I}[2][]{\text{I}\ifthenelse{\equal{#1}{}}{}{_{#1}} \wrap[()]{#2}} +\newcommand*{\IBeta}[2]{\frac{\Gamma[#1+#2]}{\Gamma[#1]\Gamma[#2]}} +\newcommand*{\If}{\;\text{if}\;\;} +%\newcommand*{\ij}{{i,j}} +\newcommand*{\im}{\mathrm{i}} +%\newcommand*{\lb}{\left[} +%\newcommand*{\lp}{\left(} +%\newcommand*{\lr}[1][]{\left[ #1 \right]} +\newcommand*{\ol}{\overline} +\newcommand*{\ow}{\;\text{otherwise}\;\;} +\newcommand*{\rb}{\right]} +\newcommand*{\rp}{\right)} +\newcommand*{\sd}{\sigma} +\newcommand*{\ul}{\underline} +\newcommand*{\V}[2][]{\text{V}\ifthenelse{\equal{#1}{}}{}{_{#1}} \wrap{#2}} +\newcommand*{\where}{\;\;\text{where}\;\;} +\newcommand*{\wrap}[2][]% +{\ifthenelse{\equal{#1}{}}{\left[ #2 \right]}% +{\ifthenelse{\equal{#1}{()}}{\left( #2 \right)}% +{\ifthenelse{\equal{#1}{\{\}}}{\left\{ #2 \right\}}% +%{\ifthenelse{\equal{#1}{(.}}{\left( #2 \right.}% +%{\ifthenelse{\equal{#1}{[.}}{\left[ #2 \right.}% +{\ifthenelse{\equal{#1}{\{.}}{\left\{ #2 \right.}{}}}}} +\newcommand*{\xy}{{xy}} +\newcommand*{\XY}{{XY}} +%\newcommand*{\n}[1][]{_{n #1}} +%\def\bp(#1){\left(#1\right)} +%\newcommand*{\bb}[1][]{\left[ #1 \right]} + +%re-definitions +%\def~{\relax\ifmmode\sim\else\nobreakspace{}\fi} +\renewcommand*{~}{\relax\ifmmode\sim\else\nobreakspace{}\fi} + +\newcommand*{\iid}{\;\stackrel{\text{iid}}{~}\;} +\newcommand*{\ind}{\;\stackrel{\text{ind}}{~}\;} +\newcommand*{\indpr}{\;\stackrel{\text{ind}}{\stackrel{\text{prior}}{~}}\;} +\newcommand*{\post}{\;\stackrel{\text{post}}{~}\;} +\newcommand*{\prior}{\;\stackrel{\text{prior}}{~}\;} + +%\let\STATEXi=\i +%\renewcommand*{\i}[1][]{\ifthenelse{\equal{#1}{}}{\STATEXi}{_{i #1}}} + +\let\STATEXGamma=\Gamma +\renewcommand*{\Gamma}[1][]{\STATEXGamma\ifthenelse{\equal{#1}{}}{}{\wrap[()]{#1}}} + +\let\STATEXand=\and +\renewcommand*{\and}{\relax\ifmmode\expandafter\;\;\text{and}\;\;\else\expandafter\STATEXand\fi} + +\let\STATEXH=\H +\renewcommand*{\H}{\relax\ifmmode\expandafter\text{H}\else\expandafter\STATEXH\fi} + +\let\STATEXP=\P +\renewcommand*{\P}[2][]{\ifthenelse{\equal{#2}{}}{\STATEXP}% +{\text{P}\ifthenelse{\equal{#1}{}}{}{_{#1}}\wrap{#2}}} + +\renewcommand*{\|}{\relax\ifmmode\expandafter\mid\else\expandafter$\mid$\fi} + +%%Discrete distributions +%declarations +\newcommand*{\B}[1]{\mathrm{B}\wrap[()]{#1}} +\newcommand*{\BB}[1]{\mathrm{Beta\!-\!Bin}\wrap[()]{#1}} +\newcommand*{\Bin}[1]{\mathrm{Bin}\wrap[()]{#1}} +\newcommand*{\Dir}[1]{\mathrm{Dirichlet}\wrap[()]{#1}} +\newcommand*{\HG}[1]{\mathrm{Hypergeometric}\wrap[()]{#1}} +\newcommand*{\M}[1]{\mathrm{Multinomial}\wrap[()]{#1}} +\newcommand*{\NB}[1]{\mathrm{Neg\!-\!Bin}\wrap[()]{#1}} +\newcommand*{\Poi}[1]{\mathrm{Poisson}\wrap[()]{#1}} +\let\Poisson=\Poi +%probability mass functions +\newcommand*{\pBB}[4][x]{\frac{\Gamma[#2+1]\Gamma[#3+#1]\Gamma[#2+#4-#1]\Gamma[#3+#4]}% +{\Gamma[#1+1]\Gamma[#2-#1+1]\Gamma[#2+#3+#4]\Gamma[#3]\Gamma[#4]}% +\I[#1]{\{0, 1,\., #2\}}, \where #3>0,\; #4>0 \and n=1, 2,\.} +%\newcommand{\pBB}[4][x]{\frac{\Gamma[#2+1]}{\Gamma[#1+1]\Gamma[#2-#1+1]}% +%\frac{\Gamma[#3+#1]\Gamma[#2+#4-#1]}{\Gamma[#2+#3+#4]}% +%\frac{\Gamma[#3+#4]}{\Gamma[#3]\Gamma[#4]}\I[#1]{\{0, 1,\., #2\}},% +%\where #3>0,\; #4>0 \and n=1, 2,\.} +\newcommand*{\pBin}[3][x]{\binom{#2}{#1}#3^#1 \wrap[()]{1-#3}^{#2-#1}% +\I[#1]{\{0,1,\.,#2\}}, \where p \in \wrap[()]{0, 1} \and n=1, 2,\.} +\newcommand*{\pPoi}[2][x]{\frac{1}{#1!}#2^{#1}\e{-#2}\I[#1]{\{0, 1,\.\}}, \where #2>0} + +%%Continuous distributions +%declarations +\newcommand*{\Cau}[1]{\mathrm{Cauchy}\wrap[()]{#1}} +\let\Cauchy=\Cau +\newcommand*{\Chi}[1]{\mathrm{\chi^2}\wrap[()]{#1}} +\let\Chisq=\Chi +\newcommand*{\Bet}[1]{\mathrm{Beta}\wrap[()]{#1}} +\let\Beta=\Bet +\newcommand*{\Exp}[1]{\mathrm{Exp}\wrap[()]{#1}} +\newcommand*{\F}[1]{\mathrm{F}\wrap[()]{#1}} +\newcommand*{\Gam}[1]{\mathrm{Gamma}\wrap[()]{#1}} +\newcommand*{\IC}[1]{\mathrm{\chi^{-2}}\wrap[()]{#1}} +\newcommand*{\IG}[1]{\mathrm{Gamma^{-1}}\wrap[()]{#1}} +\newcommand*{\IW}[1]{\mathrm{Wishart^{-1}}\wrap[()]{#1}} +\newcommand*{\Log}[1]{\mathrm{Logistic}\wrap[()]{#1}} +\newcommand*{\LogN}[1]{\mathrm{Log\!-\!N}\wrap[()]{#1}} +\newcommand*{\N}[3][]{\mathrm{N}\ifthenelse{\equal{#1}{}}{}{_{#1}}\wrap[()]{#2,\ #3}} +\newcommand*{\Par}[1]{\mathrm{Pareto}\wrap[()]{#1}} +\let\Pareto=\Par +\newcommand*{\Tsq}[1]{\mathrm{T^2}\wrap[()]{#1}} +\newcommand*{\U}[1]{\mathrm{U}\wrap[()]{#1}} +\newcommand*{\W}[1]{\mathrm{Wishart}\wrap[()]{#1}} + +\let\STATEXt=\t +\renewcommand*{\t}[1]{\relax\ifmmode\expandafter\mathrm{t}\wrap[()]{#1}% +\else\expandafter\STATEXt{#1}\fi} +%probability density functions +\newcommand*{\pBet}[3][x]{\IBeta{#2}{#3}% +#1^{#2-1}\wrap[()]{1-#1}^{#3-1}\I[#1]{0,\ 1}, \where #2>0 \and #3>0} +\newcommand*{\pCau}[3][x]{\ifthenelse{\equal{#2, #3}{0, 1}}{\frac{1}{\cpi\wrap[()]{1+#1}^2}}% +{\frac{1}{#3\cpi\left\{1+\wrap{\wrap[()]{x-#2}/#3}^2\right\}}, \where #3>0}} +\newcommand*{\pChi}[2][x]{\frac{2^{-#2/2}}{\Gamma[#2/2]}#1^{#2/2-1}\e{-#1/2}% +\I[#1]{0,\infty}, \where #2>0} +\newcommand*{\pExp}[2][x]{\frac{1}{#2}\e{-#1/#2}\I[#1]{0,\infty},% +\where #2>0} +\newcommand*{\pGam}[3][x]{\frac{#3^{#2}}{\Gamma[#2]}#1^{#2-1}\e{-#3#1}% +\I[#1]{0,\infty}, \where #2>0 \and #3>0} +\newcommand*{\pN}[3][x]{\ifthenelse{\equal{#2, #3}{0, 1}}% +{\frac{1}{\sqrt{2\cpi}}\e{-#1^2/2}}% +{\frac{1}{\sqrt{2\cpi#3}}\e{-\wrap[()]{#1-#2}^2/2#3}}} +\newcommand*{\pPar}[3][x]{\frac{#3}{#2\wrap[()]{1+#1/#2}^{#3+1}}\I[#1]{0,\infty},% +\where #2>0 \and #3>0} +\newcommand*{\pU}[3][x]{\ifthenelse{\equal{#2, #3}{0, 1}}{\I[#1]{0,\ 1}}% +{\frac{1}{#3-#2}\I[#1]{#2,\ #3}, \where #2<#3}} + +%re-define other accents +\let\STATEXequal=\= +\renewcommand*{\=}{\relax\ifmmode\expandafter\bar\else\expandafter\STATEXequal\fi} +\let\STATEXhat=\^ +\renewcommand*{\^}{\relax\ifmmode\expandafter\widehat\else\expandafter\STATEXhat\fi} +\let\STATEXtilde=\~ +\renewcommand*{\~}{\relax\ifmmode\expandafter\widetilde\else\expandafter\STATEXtilde\fi} +\let\STATEXsinglequote=\' +\renewcommand*{\'}[1]{\relax\ifmmode\expandafter{\wrap[()]{#1}}\else\expandafter\STATEXsinglequote{#1}\fi} +\let\STATEXb=\b +\renewcommand*{\b}{\relax\ifmmode\expandafter\bar\else\expandafter\STATEXb\fi} +\let\STATEXc=\c +\renewcommand*{\c}[1]{\relax\ifmmode\expandafter\mathrm{#1}\else\expandafter\STATEXc{#1}\fi} +\let\STATEXd=\d +\renewcommand*{\d}[1]{\relax\ifmmode\expandafter\,\mathrm{d}#1\else\expandafter\STATEXd{#1}\fi} +\let\STATEXdot=\. +\renewcommand*{\.}{\relax\ifmmode\expandafter\dots\else\expandafter\STATEXdot\fi} + +%commands to create documentation for TI-83 calculators +\newcommand*{\Alpha}[1][]{{\fcolorbox{black}{ForestGreen}{\color{white}\textsf{ALPHA}}}\textbf{\color{ForestGreen}\textsf{#1}}} +\newcommand*{\Alock}{\Snd[A-LOCK]} +\newcommand*{\Blackbox}{\relax\ifmmode\expandafter\blacksquare\else\expandafter$\blacksquare$\fi} +\newcommand*{\Distr}{\Snd[DISTR]} +\newcommand*{\Down}{\framebox{\footnotesize$^\Downarrow$}} +\newcommand*{\EE}{\Snd[EE]} +\newcommand*{\Enter}{\framebox{\textsf{ENTER}}} +\newcommand*{\Graph}{\framebox{\textsf{GRAPH}}} +\newcommand*{\List}[1]{\textbf{\color{Dandelion}\textsf{$\text{L}_#1$}}} +\newcommand*{\Left}{\framebox{$^\Leftarrow$}} +\newcommand*{\Math}{\framebox{\textsf{MATH}}} +\newcommand*{\Matrx}{\Snd[MATRX]} +\newcommand*{\Prgm}{\framebox{\textsf{PRGM}}} +\newcommand*{\Quit}{\Snd[QUIT]} +\newcommand*{\Rect}{\rule{4pt}{6pt}} +\newcommand*{\Right}{\framebox{$^\Rightarrow$}} +\newcommand*{\Snd}[1][]{{\fcolorbox{black}{Dandelion}{\color{white}\textsf{2nd}}}\textbf{\color{Dandelion}\textsf{#1}}} +\newcommand*{\Solve}{\Alpha[SOLVE]} +\newcommand*{\Stat}{\framebox{\textsf{STAT}}} +\newcommand*{\Statplot}{\Snd[STAT PLOT]} +\newcommand*{\Sto}{\framebox{\textsf{STO}$\Rightarrow$}} +\newcommand*{\Signm}{\framebox{\textsf{(-)}}} +\newcommand*{\Up}{\framebox{\footnotesize$^\Uparrow$}} +\newcommand*{\Window}{\framebox{\textsf{WINDOW}}} + +\let\STATEXBox=\Box +\renewcommand*{\Box}{\relax\ifmmode\expandafter\STATEXBox\else\expandafter$\STATEXBox$\fi} + +\let\STATEXto=\to +\renewcommand*{\to}{\relax\ifmmode\expandafter\STATEXto\else\expandafter$\STATEXto$\fi} + +\endinput + +\documentclass[dvipsnames,usenames]{report} +\usepackage{statex} +\usepackage{shortvrb} +\MakeShortVerb{@} +% Examples +\begin{document} +Many accents have been re-defined + +@ c \c{c} \pi \cpi@ $$ c \c{c} \pi \cpi$$ %upright constants like the speed of light and 3.14159... + +@int \e{\im x} \d{x}@ $$\int \e{\im x} \d{x}$$ %\d{x}; also note new commands \e and \im + +@\^{\beta_1}=b_1@ $$\^{\beta_1}=b_1$$ + +@\=x=\frac{1}{n}\sum x_i@ $$\=x=\frac{1}{n}\sum x_i$$ %also, \b{x}, but see \ol{x} below + +@\b{x} = \frac{1}{n} \wrap[()]{x_1 +\.+ x_n}@ $$\b{x} = \frac{1}{n} \wrap[()]{x_1 +\.+ x_n}$$ + +Sometimes overline is better: @\b{x}\ vs.\ \ol{x}@ $$\b{x}\ vs.\ \ol{x}$$ + +And, underlines are nice too: @\ul{x}@ $$\ul{x}$$ + +A few other nice-to-haves: + +@\Gamma[n+1]=n!@ $$\Gamma[n+1]=n!$$ + +@\binom{n}{x}@ $$\binom{n}{x}$$ %provided by amsmath package + +@\e{x}@ $$\e{x}$$ + +%$\H_0: \mu_\ij=0$ vs. $\H_1: \mu_\ij \neq 0$ %\ijk too + +@\logit \wrap{p} = \log \wrap{\frac{p}{1-p}}@ $$\logit \wrap{p} = \log \wrap{\frac{p}{1-p}}$$ +\pagebreak +Common distributions along with other features follows: + +Normal Distribution + +@Z ~ \N{0}{1}, \where \E{Z}=0 \and \V{Z}=1@ $$Z ~ \N{0}{1}, \where \E{Z}=0 \and \V{Z}=1$$ + +@\P{|Z|>z_\ha}=\alpha@ $$\P{|Z|>z_\ha}=\alpha$$ + +@\pN[z]{0}{1}@ $$\pN[z]{0}{1}$$ + +or, in general + +@\pN[z]{\mu}{\sd^2}@ $$\pN[z]{\mu}{\sd^2}$$ + +Sometimes, we subscript the following operations: + +@\E[z]{Z}=0, \V[z]{Z}=1, \and \P[z]{|Z|>z_\ha}=\alpha@ $$\E[z]{Z}=0, \V[z]{Z}=1, \and \P[z]{|Z|>z_\ha}=\alpha$$ + +Multivariate Normal Distribution + +@\bm{X} ~ \N[p]{\bm{\mu}}{\sfsl{\Sigma}}@ $$\bm{X} ~ \N[p]{\bm{\mu}}{\sfsl{\Sigma}}$$ %\bm provided by the bm package + +Chi-square Distribution + +@Z_i \iid \N{0}{1}, \where i=1 ,\., n@ $$Z_i \iid \N{0}{1}, \where i=1 ,\., n$$ + +@\chisq = \sum_i Z_i^2 ~ \Chi{n}@ $$\chisq = \sum_i Z_i^2 ~ \Chi{n}$$ + +@\pChi[z]{n}@ $$\pChi[z]{n}$$ + +t Distribution + +@\frac{\N{0}{1}}{\sqrt{\frac{\Chisq{n}}{n}}} ~ \t{n}@ $$\frac{\N{0}{1}}{\sqrt{\frac{\Chisq{n}}{n}}} ~ \t{n}$$ +\pagebreak +F Distribution + +@X_i, Y_{\~i} \iid \N{0}{1} \where i=1 ,\., n; \~i=1 ,\., m \and \V{X_i, Y_{\~i}}=\sd_\xy=0@ $$X_i, Y_{\~i} \iid \N{0}{1} \where i=1 ,\., n; \~i=1 ,\., m \and \V{X_i, Y_{\~i}}=\sd_\xy=0$$%\XY too + +@\chisq_x = \sum_i X_i^2 ~ \Chi{n}@ $$\chisq_x = \sum_i X_i^2 ~ \Chi{n}$$ + +@\chisq_y = \sum_{\~i} Y_{\~i}^2 ~ \Chi{m}@ $$\chisq_y = \sum_{\~i} Y_{\~i}^2 ~ \Chi{m}$$ + +@\frac{\chisq_x}{\chisq_y} ~ \F{n, m}@ $$\frac{\chisq_x}{\chisq_y} ~ \F{n, m}$$ + +Beta Distribution + +@B=\frac{\frac{n}{m}F}{1+\frac{n}{m}F} ~ \Bet{\frac{n}{2}, \frac{m}{2}}@ $$B=\frac{\frac{n}{m}F}{1+\frac{n}{m}F} ~ \Bet{\frac{n}{2}, \frac{m}{2}}$$ + +@\pBet{\alpha}{\beta}@ $$\pBet{\alpha}{\beta}$$ + +Gamma Distribution + +@G ~ \Gam{\alpha, \beta}@ $$G ~ \Gam{\alpha, \beta}$$ + +@\pGam{\alpha}{\beta}@ $$\pGam{\alpha}{\beta}$$ + +Cauchy Distribution + +@C ~ \Cau{\theta, \nu}@ $$C ~ \Cau{\theta, \nu}$$ + +@\pCau{\theta}{\nu}@ $$\pCau{\theta}{\nu}$$ + +Uniform Distribution + +@X ~ \U{0, 1}@ $$X ~ \U{0, 1}$$ + +@\pU{0}{1}@ $$\pU{0}{1}$$ + +or, in general + +@\pU{a}{b}@ $$\pU{a}{b}$$ + +Exponential Distribution + +@X ~ \Exp{\lambda}@ $$X ~ \Exp{\lambda}$$ + +@\pExp{\lambda}@ $$\pExp{\lambda}$$ + +Hotelling's $T^2$ Distribution + +@X ~ \Tsq{\nu_1, \nu_2}@ $$X ~ \Tsq{\nu_1, \nu_2}$$ + +Inverse Chi-square Distribution + +@X ~ \IC{\nu}@ $$X ~ \IC{\nu}$$ + +Inverse Gamma Distribution + +@X ~ \IG{\alpha, \beta}@ $$X ~ \IG{\alpha, \beta}$$ + +Pareto Distribution + +@X ~ \Par{\alpha, \beta}@ $$X ~ \Par{\alpha, \beta}$$ + +@\pPar{\alpha}{\beta}@ $$\pPar{\alpha}{\beta}$$ + +Wishart Distribution + +@\sfsl{X} ~ \W{\nu, \sfsl{S}}@ $$\sfsl{X} ~ \W{\nu, \sfsl{S}}$$ + +Inverse Wishart Distribution + +@\sfsl{X} ~ \IW{\nu, \sfsl{S^{-1}}}@ $$\sfsl{X} ~ \IW{\nu, \sfsl{S^{-1}}}$$ + +Binomial Distribution + +@X ~ \Bin{n, p}@ $$X ~ \Bin{n, p}$$ + +@\pBin{n}{p}@ $$\pBin{n}{p}$$ + +Bernoulli Distribution + +@X ~ \B{p}@ $$X ~ \B{p}$$ + +Beta-Binomial Distribution + +@X ~ \BB{p}@ $$X ~ \BB{p}$$ + +@\pBB{n}{\alpha}{\beta}@ $$\pBB{n}{\alpha}{\beta}$$ + +Negative-Binomial Distribution + +@X ~ \NB{n, p}@ $$X ~ \NB{n, p}$$ + +Hypergeometric Distribution + +@X ~ \HG{n, M, N}@ $$X ~ \HG{n, M, N}$$ + +Poisson Distribution + +@X ~ \Poi{\mu}@ $$X ~ \Poi{\mu}$$ + +@\pPoi{\mu}@ $$\pPoi{\mu}$$ + +Dirichlet Distribution + +@\bm{X} ~ \Dir{\alpha_1 \. \alpha_k}@ $$\bm{X} ~ \Dir{\alpha_1 \. \alpha_k}$$ + +Multinomial Distribution + +@\bm{X} ~ \M{n, \alpha_1 \. \alpha_k}@ $$\bm{X} ~ \M{n, \alpha_1 \. \alpha_k}$$ + +\pagebreak + +To compute critical values for the Normal distribution, create the +NCRIT program for your TI-83 (or equivalent) calculator. At each step, the +calculator display is shown, followed by what you should do (\Rect\ is the +cursor):\\ +\Rect\\ +\Prgm\to@NEW@\to@1:Create New@\\ +@Name=@\Rect\\ +NCRIT\Enter\\ +@:@\Rect\\ +\Prgm\to@I/O@\to@2:Prompt@\\ +@:Prompt@ \Rect\\ +\Alpha[A],\Alpha[T]\Enter\\ +@:@\Rect\\ +\Distr\to@DISTR@\to@3:invNorm(@\\ +@:invNorm(@\Rect\\ +1-(\Alpha[A]$\div$\Alpha[T]))\Sto\Alpha[C]\Enter\\ +@:@\Rect\\ +\Prgm\to@I/O@\to@3:Disp@\\ +@:Disp@ \Rect\\ +\Alpha[C]\Enter\\ +@:@\Rect\\ +\Quit\\ + +Suppose @A@ is $\alpha$ and @T@ is the number of tails. To run the program:\\ +\Rect\\ +\Prgm\to@EXEC@\to@NCRIT@\\ +@prgmNCRIT@\Rect\\ +\Enter\\ +@A=?@\Rect\\ +0.05\Enter\\ +@T=?@\Rect\\ +2\Enter\\ +@1.959963986@ +\end{document} |