summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/sa-tikz/sa-tikz.sty
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/tex/latex/sa-tikz/sa-tikz.sty')
-rw-r--r--Master/texmf-dist/tex/latex/sa-tikz/sa-tikz.sty1043
1 files changed, 1043 insertions, 0 deletions
diff --git a/Master/texmf-dist/tex/latex/sa-tikz/sa-tikz.sty b/Master/texmf-dist/tex/latex/sa-tikz/sa-tikz.sty
new file mode 100644
index 00000000000..8ddb5185519
--- /dev/null
+++ b/Master/texmf-dist/tex/latex/sa-tikz/sa-tikz.sty
@@ -0,0 +1,1043 @@
+% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+%
+% Sa-TikZ package v0.5 * * (C) Claudio Fiandrino 2012
+%
+% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+\NeedsTeXFormat{LaTeX2e}
+\ProvidesPackage{sa-tikz}[2013/1/3 v0.5 Switching architectures design library.]
+\RequirePackage{tikz}
+\usetikzlibrary{calc,positioning,decorations.pathreplacing}
+
+% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+% UTILITY
+% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+
+% PGFMATHISODD: 1 = true, 0 = false
+%
+% #1: number to be checked
+% #2: output macro
+%
+% example:
+%% \pgfmathisodd{32}{output}
+%% \ifnum\output=1
+%% \node{\output};
+%% \fi
+\newcommand*{\pgfmathisodd}[2]{
+ \pgfmathparse{mod(#1,2)}
+ \pgfmathtruncatemacro\res\pgfmathresult
+ \global\expandafter\edef\csname #2\endcsname{\res}
+}
+
+% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+% KEY DEFINITION - Design choices
+% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+
+% * * * * * * * * * * * * * * * * * *
+% CLOS
+% * * * * * * * * * * * * * * * * * *
+
+% N is the key representing the number of inputs x number of modules first stage
+\pgfkeys{/tikz/.cd,%
+ N/.initial=10,%
+ N/.get=\N,%
+ N/.store in=\N,%
+}%
+
+% N label
+\pgfkeys{/tikz/.cd,%
+ N label/.initial=N,%
+ N label/.store in=\Nlabel,%
+ N label/.get=\Nlabel,%
+}%
+
+% r1 is the number of modules first stage
+% m1 is the number of inputs first stage per module
+
+\pgfkeys{/tikz/.cd,%
+ r1/.initial=5,%
+ r1/.store in=\rone,%
+ r1/.get=\rone,%
+}%
+
+% r1 label
+\pgfkeys{/tikz/.cd,%
+ r1 label/.initial={r\ensuremath{_1}},%
+ r1 label/.store in=\ronelabel,%
+ r1 label/.get=\ronelabel,%
+}%
+
+% m1 label
+\pgfkeys{/tikz/.cd,
+ m1 label/.initial={m\ensuremath{_1}},%
+ m1 label/.store in=\monelabel,%
+ m1 label/.get=\monelabel,%
+}%
+
+% r2 label
+\pgfkeys{/tikz/.cd,%
+ r2 label/.initial={r\ensuremath{_2}},%
+ r2 label/.store in=\rtwolabel,%
+ r2 label/.get=\rtwolabel,%
+}%
+
+% M is the key representing the number of inputs x number of modules last stage
+\pgfkeys{/tikz/.cd,%
+ M/.initial=10,%
+ M/.get=\M,%
+ M/.store in=\M,%
+}%
+
+% M label
+\pgfkeys{/tikz/.cd,%
+ M label/.initial=M,%
+ M label/.store in=\Mlabel,%
+ M label/.get=\Mlabel,%
+}%
+
+% r3 is the number of modules last stage
+% m3 is the number of inputs last stage per module
+\pgfmathtruncatemacro\rthree{5}%
+\pgfkeys{/tikz/.cd, r3/.initial=5}%
+\pgfkeys{/tikz/.cd, r3/.store in=\rthree}%
+
+% r3 label
+\pgfkeys{/tikz/.cd,%
+ r3 label/.initial={r\ensuremath{_3}},%
+ r3 label/.store in=\rthreelabel,%
+ r3 label/.get=\rthreelabel,%
+}%
+
+% m3 label
+\pgfkeys{/tikz/.cd,
+ m3 label/.initial={m\ensuremath{_3}},%
+ m3 label/.store in=\mthreelabel,%
+ m3 label/.get=\mthreelabel,%
+}%
+
+% * * * * * * * * * * * * * * * * * *
+% BENES
+% * * * * * * * * * * * * * * * * * *
+
+% P is the number of input/output ports
+\pgfkeys{/tikz/.cd,%
+ P/.initial=8,%
+ P/.get=\P,%
+ P/.store in=\P,%
+}%
+
+% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+% GENERAL SETTINGS - Keys and styles
+% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+
+% module customization
+\pgfkeys{/tikz/.cd,%
+ module size/.initial={1cm},%
+ module size/.get=\modulesize,%
+ module size/.store in=\modulesize,%
+}%
+
+\pgfkeys{/tikz/.cd,%
+ module ysep/.initial={1.5},%
+ module ysep/.get=\moduleysep,%
+ module ysep/.store in=\moduleysep,%
+}%
+
+\pgfkeys{/tikz/.cd,%
+ module xsep/.initial={3},%
+ module xsep/.get=\modulexsep,%
+ module xsep/.store in=\modulexsep,%
+}%
+
+\pgfkeys{/tikz/.cd,%
+ module font/.initial=\normalfont,%
+ module font/.get=\modulefont,%
+ module font/.store in=\modulefont,%
+}%
+
+\tikzset{module/.style={%
+ draw,rectangle, minimum size=\modulesize,
+ font=\modulefont,
+ }
+}
+
+\tikzset{module extensible/.style={%
+ draw,rectangle, minimum size=#1,
+ },
+ module extensible/.default={\modulesize}
+}
+
+\pgfkeys{/tikz/.cd,%
+ module label opacity/.initial={1},%
+ module label opacity/.get=\modulelabelopacity,%
+ module label opacity/.store in=\modulelabelopacity,%
+}%
+
+\tikzset{module opacity/.style={
+ text opacity=\modulelabelopacity,
+ }
+}
+
+\pgfkeys{/tikz/.cd,%
+ pin length factor/.initial={1},%
+ pin length factor/.get=\pinlength,%
+ pin length factor/.store in=\pinlength,%
+}%
+
+% setting labels in math mode
+
+\tikzset{math mode labels/.style={%
+ execute at begin node=$,%
+ execute at end node=$,%
+ }
+}
+\pgfkeys{/tikz/.cd,%
+ use math mode labels/.is choice,%
+ use math mode labels/true/.style={math mode labels},%
+ use math mode labels/false/.style={},%
+}%
+
+\tikzset{set math mode labels/.style={%
+ use math mode labels=#1,%
+ },%
+ set math mode labels/.default=false,%
+}
+
+% disable the connections
+\newif\ifconnectiondisabled%
+\pgfkeys{/tikz/.cd, connections disabled/.is if=connectiondisabled}%
+\pgfkeys{/tikz/.cd, connections disabled/.default=false}%
+
+% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+% CODE
+% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+
+% CLOS SNB
+\tikzset{clos snb/.code={
+
+ % Number of ports per module
+ \pgfmathtruncatemacro{\mone}{\N/\rone}
+ \pgfmathtruncatemacro{\mthree}{\M/\rthree}
+
+ % COMPUTATION SNB CONDITION
+ \pgfmathtruncatemacro\rtwo{\mone+\mthree-1}
+
+ % MODULE 1
+ \foreach \i in {1,...,\rone}{
+ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep}
+ in
+ node[module,#1,module opacity,yshift=1cm] (r1-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult};
+
+ % INPUTS MODULE 1
+ % the number of inputs module one is exactly \mone
+ \pgfmathsetmacro\roneintervalspace{1/(\mone+1)}
+ \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput]
+ in {1,...,\mone}
+ \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {};
+
+ % OUTPUTS MODULE 1
+ % the number of outputs of module one is the number of modules stage 2 \rtwo
+ \pgfmathsetmacro\roneintervalspace{1/(\rtwo+1)}
+ \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput]
+ in {1,...,\rtwo}
+ \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {};
+ }
+
+ % MODULE 2
+ \foreach \i in {1,...,\rtwo}{
+ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep}
+ in
+ node[module,#1,module opacity,yshift=1cm] (r2-\i) at +(\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult};
+
+ % INPUTS MODULE 2
+ % the number of inputs of module two is the number of modules stage 1 \rone
+ \pgfmathsetmacro\rtwointervalspace{1/(\rone+1)}
+ \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput]
+ in {1,...,\rone}
+ \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {};
+
+ % OUTPUTS MODULE 2
+ % the number of outputs module two is exactly \rthree
+ \pgfmathsetmacro\rtwointervalspace{1/(\rthree+1)}
+ \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput]
+ in {1,...,\rthree}
+ \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {};
+
+ }
+
+ % MODULE 3
+ \foreach \i in {1,...,\rthree}{
+ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep}
+ in
+ node[module,#1,module opacity,yshift=1cm] (r3-\i) at +(2*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult};
+
+ % INPUTS MODULE 3
+ % the number of inputs of module three is the number of modules stage 2 \rtwo
+ \pgfmathsetmacro\rthreeintervalspace{1/(\rtwo+1)}
+ \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput]
+ in {1,...,\rtwo}
+ \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {};
+
+ % OUTPUTS MODULE 3
+ % the number of outputs module three is exactly \mthree
+ \pgfmathsetmacro\rthreeintervalspace{1/(\mthree+1)}
+ \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput]
+ in {1,...,\mthree}
+ \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {};
+
+ }
+
+ % Test if connections should be removed
+ \ifconnectiondisabled
+ \relax
+ \else
+ % DRAWING CONNECTIONS
+ %% from r1 to r2
+ \foreach \startmodule in {1,...,\rone}{
+ \foreach \conn in {1,...,\rtwo}
+ \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule);
+ }
+ %% from r2 to r3
+ \foreach \startmodule in {1,...,\rthree}{
+ \foreach \conn in {1,...,\rtwo}
+ \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule);
+ }
+ \fi
+ },
+}
+
+\tikzset{clos snb example/.code={
+
+ % Number of ports per module
+ \pgfmathtruncatemacro{\mone}{\N/\rone}
+ \pgfmathtruncatemacro{\mthree}{\M/\rthree}
+
+ % COMPUTATION SNB CONDITION
+ \pgfmathtruncatemacro\rtwo{\mone+\mthree-1}
+
+ % MODULE 1
+ \node[module,#1,module opacity](r1-1) at (0,0) {1};
+ \node[below of=r1-1,yshift=0.75ex](r1-dots) {\vdots};
+ \node[module,#1,module opacity,below of=r1-dots](r1-2) {\rone};
+
+ \foreach \i in {1,2}{
+ % INPUTS MODULE 1
+ % just two modules
+ \pgfmathsetmacro\roneintervalspace{1/(2+1)}
+ \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput]
+ in {1,2}
+ \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {};
+
+ % OUTPUTS MODULE 1
+ % just two modules
+ \pgfmathsetmacro\roneintervalspace{1/(2+1)}
+ \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput]
+ in {1,2}
+ \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {};
+ }
+
+ % MODULE 2
+ \node[module,#1,module opacity](r2-1) at (\modulexsep,0) {1};
+ \node[below of=r2-1,yshift=0.75ex](r2-dots) {\vdots};
+ \node[module,#1,module opacity,below of=r2-dots](r2-2) {\rtwo};
+
+ \foreach \i in {1,2}{
+ % INPUTS MODULE 2
+ % just two modules
+ \pgfmathsetmacro\rtwointervalspace{1/(2+1)}
+ \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput]
+ in {1,2}
+ \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {};
+
+ % OUTPUTS MODULE 2
+ % just two modules
+ \pgfmathsetmacro\rtwointervalspace{1/(2+1)}
+ \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput]
+ in {1,2}
+ \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {};
+ }
+
+ % MODULE 3
+ \node[module,#1,module opacity](r3-1) at (2*\modulexsep,0) {1};
+ \node[below of=r3-1,yshift=0.75ex](r3-dots) {\vdots};
+ \node[module,#1,module opacity,below of=r3-dots](r3-2) {\rthree};
+
+ \foreach \i in {1,2}{
+ % INPUTS MODULE 3
+ % just two modules
+ \pgfmathsetmacro\rthreeintervalspace{1/(2+1)}
+ \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput]
+ in {1,2}
+ \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {};
+
+ % OUTPUTS MODULE 3
+ % just two modules
+ \pgfmathsetmacro\rthreeintervalspace{1/(2+1)}
+ \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput]
+ in {1,2}
+ \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {};
+ }
+
+ % DRAWING CONNECTIONS
+ %% from r1 to r2
+ \foreach \startmodule in {1,2}{
+ \foreach \conn in {1,2}
+ \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule);
+ }
+ %% from r2 to r3
+ \foreach \startmodule in {1,2}{
+ \foreach \conn in {1,2}
+ \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule);
+ }
+
+ % SETTING LABELS
+ \node[below of=r1-2,set math mode labels] {\mone~\ensuremath{\times}~\rtwo};
+ \node[below of=r2-2,set math mode labels] {\rone~\ensuremath{\times}~\rthree};
+ \node[below of=r3-2,set math mode labels] {\rtwo~\ensuremath{\times}~\mthree};
+ \draw[decorate,decoration={brace}]($(r1-2-front input-2)-(0.1,0)$)--($(r1-1-front input-1)-(0.1,0)$) node[midway,left=0.1cm,set math mode labels]{\N};
+ \draw[decorate,decoration={brace}]($(r3-1-front output-1)+(0.1,0)$)--($(r3-2-front output-2)+(0.1,0)$) node[midway,right=0.1cm,set math mode labels]{\M};
+ },
+}
+
+% CLOS REAR
+
+\tikzset{clos rear/.code={
+
+ % Number of ports per module
+ \pgfmathtruncatemacro{\mone}{\N/\rone}
+ \pgfmathtruncatemacro{\mthree}{\M/\rthree}
+
+ % COMPUTATION REAR CONDITION
+ \pgfmathtruncatemacro\rtwo{max(\mone,\mthree)}
+
+ % MODULE 1
+ \foreach \i in {1,...,\rone}{
+ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep}
+ in
+ node[module,#1,module opacity,yshift=1cm] (r1-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult};
+
+ % INPUTS MODULE 1
+ % the number of inputs module one is exactly \mone
+ \pgfmathsetmacro\roneintervalspace{1/(\mone+1)}
+ \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput]
+ in {1,...,\mone}
+ \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {};
+
+ % OUTPUTS MODULE 1
+ % the number of outputs of module one is the number of modules stage 2 \rtwo
+ \pgfmathsetmacro\roneintervalspace{1/(\rtwo+1)}
+ \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput]
+ in {1,...,\rtwo}
+ \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {};
+ }
+
+ % MODULE 2
+ \foreach \i in {1,...,\rtwo}{
+ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep}
+ in
+ node[module,#1,module opacity,yshift=1cm] (r2-\i) at +(\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult};
+
+ % INPUTS MODULE 2
+ % the number of inputs of module two is the number of modules stage 1 \rone
+ \pgfmathsetmacro\rtwointervalspace{1/(\rone+1)}
+ \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput]
+ in {1,...,\rone}
+ \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {};
+
+ % OUTPUTS MODULE 2
+ % the number of outputs module two is exactly \rthree
+ \pgfmathsetmacro\rtwointervalspace{1/(\rthree+1)}
+ \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput]
+ in {1,...,\rthree}
+ \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {};
+
+ }
+
+ % MODULE 3
+ \foreach \i in {1,...,\rthree}{
+ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep}
+ in
+ node[module,#1,module opacity,yshift=1cm] (r3-\i) at +(2*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult};
+
+ % INPUTS MODULE 3
+ % the number of inputs of module three is the number of modules stage 2 \rtwo
+ \pgfmathsetmacro\rthreeintervalspace{1/(\rtwo+1)}
+ \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput]
+ in {1,...,\rtwo}
+ \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {};
+
+ % OUTPUTS MODULE 3
+ % the number of outputs module three is exactly \mthree
+ \pgfmathsetmacro\rthreeintervalspace{1/(\mthree+1)}
+ \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput]
+ in {1,...,\mthree}
+ \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {};
+ }
+
+ % Test if connections should be removed
+ \ifconnectiondisabled
+ \relax
+ \else
+ % DRAWING CONNECTIONS
+ %% from r1 to r2
+ \foreach \startmodule in {1,...,\rone}{
+ \foreach \conn in {1,...,\rtwo}
+ \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule);
+ }
+ %% from r2 to r3
+ \foreach \startmodule in {1,...,\rthree}{
+ \foreach \conn in {1,...,\rtwo}
+ \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule);
+ }
+ \fi
+ }
+}
+
+\tikzset{clos rear example/.code={
+
+ % Number of ports per module
+ \pgfmathtruncatemacro{\mone}{\N/\rone}
+ \pgfmathtruncatemacro{\mthree}{\M/\rthree}
+
+ % COMPUTATION REAR CONDITION
+ \pgfmathtruncatemacro\rtwo{max(\mone,\mthree)}
+
+ % MODULE 1
+ \node[module,#1,module opacity](r1-1) at (0,0) {1};
+ \node[below of=r1-1,yshift=0.75ex](r1-dots) {\vdots};
+ \node[module,#1,module opacity,below of=r1-dots](r1-2) {\rone};
+
+ \foreach \i in {1,2}{
+ % INPUTS MODULE 1
+ % just two modules
+ \pgfmathsetmacro\roneintervalspace{1/(2+1)}
+ \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput]
+ in {1,2}
+ \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {};
+
+ % OUTPUTS MODULE 1
+ % just two modules
+ \pgfmathsetmacro\roneintervalspace{1/(2+1)}
+ \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput]
+ in {1,2}
+ \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {};
+ }
+
+ % MODULE 2
+ \node[module,#1,module opacity](r2-1) at (\modulexsep,0) {1};
+ \node[below of=r2-1,yshift=0.75ex](r2-dots) {\vdots};
+ \node[module,#1,module opacity,below of=r2-dots](r2-2) {\rtwo};
+
+ \foreach \i in {1,2}{
+ % INPUTS MODULE 2
+ % just two modules
+ \pgfmathsetmacro\rtwointervalspace{1/(2+1)}
+ \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput]
+ in {1,2}
+ \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {};
+
+ % OUTPUTS MODULE 2
+ % just two modules
+ \pgfmathsetmacro\rtwointervalspace{1/(2+1)}
+ \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput]
+ in {1,2}
+ \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {};
+ }
+
+ % MODULE 3
+ \node[module,#1,module opacity](r3-1) at (2*\modulexsep,0) {1};
+ \node[below of=r3-1,yshift=0.75ex](r3-dots) {\vdots};
+ \node[module,#1,module opacity,below of=r3-dots](r3-2) {\rthree};
+
+ \foreach \i in {1,2}{
+ % INPUTS MODULE 3
+ % just two modules
+ \pgfmathsetmacro\rthreeintervalspace{1/(2+1)}
+ \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput]
+ in {1,2}
+ \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {};
+
+ % OUTPUTS MODULE 3
+ % just two modules
+ \pgfmathsetmacro\rthreeintervalspace{1/(2+1)}
+ \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput]
+ in {1,2}
+ \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {};
+ }
+
+ % DRAWING CONNECTIONS
+ %% from r1 to r2
+ \foreach \startmodule in {1,2}{
+ \foreach \conn in {1,2}
+ \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule);
+ }
+ %% from r2 to r3
+ \foreach \startmodule in {1,2}{
+ \foreach \conn in {1,2}
+ \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule);
+ }
+
+ % SETTING LABELS
+ \node[below of=r1-2, set math mode labels] {\mone~\ensuremath{\times}~\rtwo};
+ \node[below of=r2-2, set math mode labels] {\rone~\ensuremath{\times}~\rthree};
+ \node[below of=r3-2, set math mode labels] {\rtwo~\ensuremath{\times}~\mthree};
+ \draw[decorate,decoration={brace}]($(r1-2-front input-2)-(0.1,0)$)--($(r1-1-front input-1)-(0.1,0)$) node[midway,left=0.1cm, set math mode labels]{\N};
+ \draw[decorate,decoration={brace}]($(r3-1-front output-1)+(0.1,0)$)--($(r3-2-front output-2)+(0.1,0)$) node[midway,right=0.1cm, set math mode labels]{\M};
+ },
+}
+
+% CLOS EXAMPLE WITH LABELS
+
+\tikzset{clos example with labels/.code={
+
+ % Number of ports per module
+ \pgfmathtruncatemacro{\mone}{\N/\rone}
+ \pgfmathtruncatemacro{\mthree}{\M/\rthree}
+
+ % COMPUTATION REAR CONDITION
+ \pgfmathtruncatemacro\rtwo{max(\mone,\mthree)}
+
+ % MODULE 1
+ \node[module,#1,module opacity](r1-1) at (0,0) {1};
+ \node[below of=r1-1,yshift=0.75ex](r1-dots) {\vdots};
+ \node[module,#1,module opacity,below of=r1-dots](r1-2) {\ronelabel};
+
+ \foreach \i in {1,2}{
+ % INPUTS MODULE 1
+ % just two modules
+ \pgfmathsetmacro\roneintervalspace{1/(2+1)}
+ \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput]
+ in {1,2}
+ \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {};
+
+ % OUTPUTS MODULE 1
+ % just two modules
+ \pgfmathsetmacro\roneintervalspace{1/(2+1)}
+ \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput]
+ in {1,2}
+ \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {};
+ }
+
+ % MODULE 2
+ \node[module,#1,module opacity](r2-1) at (\modulexsep,0) {1};
+ \node[below of=r2-1,yshift=0.75ex](r2-dots) {\vdots};
+ \node[module,#1,module opacity,below of=r2-dots](r2-2) {\rtwolabel};
+
+ \foreach \i in {1,2}{
+ % INPUTS MODULE 2
+ % just two modules
+ \pgfmathsetmacro\rtwointervalspace{1/(2+1)}
+ \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput]
+ in {1,2}
+ \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {};
+
+ % OUTPUTS MODULE 2
+ % just two modules
+ \pgfmathsetmacro\rtwointervalspace{1/(2+1)}
+ \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput]
+ in {1,2}
+ \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {};
+ }
+
+ % MODULE 3
+ \node[module,#1,module opacity](r3-1) at (2*\modulexsep,0) {1};
+ \node[below of=r3-1,yshift=0.75ex](r3-dots) {\vdots};
+ \node[module,#1,module opacity,below of=r3-dots](r3-2) {\rthreelabel};
+
+ \foreach \i in {1,2}{
+ % INPUTS MODULE 3
+ % just two modules
+ \pgfmathsetmacro\rthreeintervalspace{1/(2+1)}
+ \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput]
+ in {1,2}
+ \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {};
+
+ % OUTPUTS MODULE 3
+ % just two modules
+ \pgfmathsetmacro\rthreeintervalspace{1/(2+1)}
+ \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput]
+ in {1,2}
+ \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {};
+ }
+
+ % DRAWING CONNECTIONS
+ %% from r1 to r2
+ \foreach \startmodule in {1,2}{
+ \foreach \conn in {1,2}
+ \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule);
+ }
+ %% from r2 to r3
+ \foreach \startmodule in {1,2}{
+ \foreach \conn in {1,2}
+ \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule);
+ }
+
+ % SETTING LABELS
+ \node[below of=r1-2,set math mode labels] {\monelabel~\ensuremath{\times}~\rtwolabel};
+ \node[below of=r2-2,set math mode labels] {\ronelabel~\ensuremath{\times}~\rthreelabel};
+ \node[below of=r3-2,set math mode labels] {\rtwolabel~\ensuremath{\times}~\mthreelabel};
+ \draw[decorate,decoration={brace}]($(r1-2-front input-2)-(0.1,0)$)--($(r1-1-front input-1)-(0.1,0)$) node[midway,left=0.1cm,set math mode labels]{\Nlabel};
+ \draw[decorate,decoration={brace}]($(r3-1-front output-1)+(0.1,0)$)--($(r3-2-front output-2)+(0.1,0)$) node[midway,right=0.1cm,set math mode labels]{\Mlabel};
+ },
+}
+
+% BENES
+% uses modules 2x2
+
+\tikzset{benes/.code={
+
+ % Number of ports per module
+ \pgfmathtruncatemacro{\m}{2}
+
+ % Numbers of modules in the second stage
+ \pgfmathtruncatemacro\rtwo{\m}
+
+ % Number of modules in the first/third stage
+ \pgfmathtruncatemacro{\r}{\P/\m}
+
+ \ifnum\P=4
+ \def\increment{0-\i*0.5*\r*\moduleysep}
+ \def\xincrement{\r*0.25*\modulexsep}
+ \else
+ \def\increment{0-\i*0.39*\r*\moduleysep}
+ \def\xincrement{\r*0.2*\modulexsep}
+ \fi
+
+ % MODULE 1
+ \foreach \i in {1,...,\r}{
+ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep}
+ in
+ node[module,#1,module opacity,yshift=1cm] (r1-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult};
+
+ % INPUTS MODULE 1
+ % the number of inputs module one is exactly \mone
+ \pgfmathsetmacro\roneintervalspace{1/(\m+1)}
+ \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput]
+ in {1,...,\m}
+ \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {};
+
+ % OUTPUTS MODULE 1
+ % the number of outputs of module one is the number of modules stage 2 \rtwo
+ \pgfmathsetmacro\roneintervalspace{1/(\rtwo+1)}
+ \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput]
+ in {1,...,\rtwo}
+ \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {};
+ }
+
+ % MODULE 2
+ \foreach \i in {1,...,\rtwo}{
+
+ \path let \n1 = {int(0-\i)}, \n2={\increment}
+ in
+ node[module extensible={\r*0.5*\modulesize},#1,module opacity,yshift=1cm] (r2-\i) at +(\xincrement,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult};
+
+ % INPUTS MODULE 2
+ % the number of inputs of module two is the number of modules stage 1 \rone
+ \pgfmathsetmacro\rtwointervalspace{1/(\r+1)}
+ \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput]
+ in {1,...,\r}
+ \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {};
+
+ % OUTPUTS MODULE 2
+ % the number of outputs module two is exactly \rthree
+ \pgfmathsetmacro\rtwointervalspace{1/(\r+1)}
+ \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput]
+ in {1,...,\r}
+ \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {};
+
+ }
+
+ % MODULE 3
+ \foreach \i in {1,...,\r}{
+ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep}
+ in
+ node[module,#1,module opacity,yshift=1cm] (r3-\i) at +(2*\xincrement,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult};
+
+ % INPUTS MODULE 3
+ % the number of inputs of module three is the number of modules stage 2 \rtwo
+ \pgfmathsetmacro\rthreeintervalspace{1/(\rtwo+1)}
+ \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput]
+ in {1,...,\rtwo}
+ \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {};
+
+ % OUTPUTS MODULE 3
+ % the number of outputs module three is exactly \m
+ \pgfmathsetmacro\rthreeintervalspace{1/(\m+1)}
+ \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput]
+ in {1,...,\m}
+ \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {};
+ }
+
+ % Test if connections should be removed
+ \ifconnectiondisabled
+ \relax
+ \else
+ % DRAWING CONNECTIONS
+ %% from r1 to r2
+ \foreach \startmodule in {1,...,\r}{
+ \foreach \conn in {1,...,\rtwo}
+ \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule);
+ }
+ %% from r2 to r3
+ \foreach \startmodule in {1,...,\r}{
+ \foreach \conn in {1,...,\rtwo}
+ \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule);
+ }
+ \fi
+ }
+}
+
+% BENES COMPLETE
+
+\tikzset{benes complete/.code={
+
+ % Number of ports per module
+ \pgfmathtruncatemacro{\m}{2}
+
+ % Number of modules in the first/third stage
+ \pgfmathtruncatemacro{\r}{\P/\m}
+
+ % Number of stages
+ \pgfmathtruncatemacro{\stages}{2*round(log2(\P))-1}
+
+ % MODULES for all stages
+ \foreach \s [evaluate=\s as \numstage using int(\s-1)] in {1,...,\stages}{
+ \ifnum\s=1
+ % FIRST MODULE
+ \foreach \i in {1,...,\r}{
+ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep}
+ in
+ node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult};
+
+ % INPUTS MODULE 1
+ % the number of inputs module one is exactly \mone
+ \pgfmathsetmacro\roneintervalspace{1/(\m+1)}
+ \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput]
+ in {1,...,\m}
+ \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {};
+
+ % OUTPUTS MODULE 1
+ % the number of outputs of module one is the number of modules stage 2
+ \pgfmathsetmacro\roneintervalspace{1/(\m+1)}
+ \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput]
+ in {1,...,\m}
+ \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {};
+ }
+ \fi
+ \ifnum\s=\stages
+ % FINAL MODULE
+ \foreach \i in {1,...,\r}{
+ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep}
+ in
+ node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(\numstage*0.6*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult};
+
+ % INPUTS MODULE \s
+ % the number of inputs of module three is the number of modules stage 2 \rtwo
+ \pgfmathsetmacro\rintervalspace{1/(\m+1)}
+ \foreach \rinput[evaluate=\rinput as \rinterval using \rintervalspace*\rinput]
+ in {1,...,\m}
+ \node[circle,draw,scale=0.1] (r\s-\i-input-\rinput)at($(r\s-\i.north west)!\rinterval!(r\s-\i.south west)$) {};
+
+ % OUTPUTS MODULE \s
+ % the number of outputs module three is exactly \mthree
+ \pgfmathsetmacro\rintervalspace{1/(\m+1)}
+ \foreach \routput[evaluate=\routput as \rinterval using \rintervalspace*\routput]
+ in {1,...,\m}
+ \draw ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r\s-\i-front output-\routput){}--($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$) node[circle,draw,scale=0.1] (r\s-\i-output-\routput) {};
+ }
+ \fi
+ \pgfmathparse{and(\s>1,\s<\stages)}
+ \let\cond\pgfmathresult
+ \ifnum\cond=1
+ % INTERMEDIATE MODULEs
+ \foreach \i in {1,...,\r}{
+ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep}
+ in
+ node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(\numstage*0.6*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult};
+
+ % INPUTS MODULE \s
+ % the number of inputs of module three is the number of modules stage 2 \rtwo
+ \pgfmathsetmacro\rintervalspace{1/(\m+1)}
+ \foreach \rinput[evaluate=\rinput as \rinterval using \rintervalspace*\rinput]
+ in {1,...,\m}
+ \node[circle,draw,scale=0.1] (r\s-\i-input-\rinput)at($(r\s-\i.north west)!\rinterval!(r\s-\i.south west)$) {};
+
+ % OUTPUTS MODULE \s
+ % the number of outputs module three is exactly \mthree
+ \pgfmathsetmacro\rintervalspace{1/(\m+1)}
+ \foreach \routput[evaluate=\routput as \rinterval using \rintervalspace*\routput]
+ in {1,...,\m}
+ \node[circle,draw,scale=0.1] (r\s-\i-output-\routput) at($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$) {};
+ }
+ \fi
+ }
+ % end modules
+
+
+ % Test if connections should be removed
+ \ifconnectiondisabled
+ \relax
+ \else
+ % CONNECTIONS
+
+ % the algorithm works for all the stages a part from the two in the middle
+ \ifnum\P>4 % in this case there are just two stages, thus the algorithm fails: treat it separately
+ % Compute \stages/2: they are the stages from left to the middle or from right to the middle
+ \pgfmathparse{floor(divide(\stages,2))}
+ \pgfmathtruncatemacro\stagesondirection{\pgfmathresult-1}
+
+ % on left
+ \foreach \stg[evaluate=\stg as \nextstg using int(\stg+1)] in {1,...,\stagesondirection}{
+ \pgfmathtruncatemacro\applicationon{\P/(2^\stg)}% number of modules over which the algorithm is applied
+ \pgfmathtruncatemacro\repetition{int(2^(\stg-1))}% the algorithm should be repeated for \repetition times
+ \foreach \t in {1,...,\repetition}{
+ \pgfmathtruncatemacro\startingpoint{1+((\t-1)*\applicationon)}
+ \pgfmathtruncatemacro\endingpoint{(\startingpoint+\applicationon)-1}
+ \foreach \startmodule in {\startingpoint,...,\endingpoint}{
+ \pgfmathisodd{\startmodule}{initmodule}
+ \ifnum\t=1
+ \ifnum\initmodule=1
+ % if odd
+ \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2)}
+ \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2)}
+ \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-1);
+ \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-1);
+ \else
+ % if even
+ \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2)}
+ \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2)}
+ \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-2);
+ \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-2);
+ \fi
+ \fi
+ \ifnum\t=2
+ \ifnum\initmodule=1
+ % if odd
+ \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2))}
+ \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2))}
+ \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-1);
+ \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-1);
+ \else
+ % if even
+ \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2))}
+ \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2))}
+ \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-2);
+ \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-2);
+ \fi
+ \fi
+ \ifnum\t>2
+ \ifnum\initmodule=1
+ % if odd
+ \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))}
+ \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))}
+ \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-1);
+ \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-1);
+ \else
+ % if even
+ \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))}
+ \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))}
+ \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-2);
+ \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-2);
+ \fi
+ \fi
+ }
+ }
+ }
+
+ % on the right
+
+ \foreach \stg[evaluate=\stg as \currstg using int(\stages-(\stg-1)),
+ evaluate=\stg as \nextstg using int(\currstg-1)] in {1,...,\stagesondirection}{
+ \pgfmathtruncatemacro\applicationon{\P/(2^\stg)}% number of modules over which the algorithm is applied
+ \pgfmathtruncatemacro\repetition{int(2^(\stg-1))}% the algorithm should be repeated for \repetition times
+ \foreach \t in {1,...,\repetition}{
+ \pgfmathtruncatemacro\startingpoint{1+((\t-1)*\applicationon)}
+ \pgfmathtruncatemacro\endingpoint{(\startingpoint+\applicationon)-1}
+ \foreach \startmodule in {\startingpoint,...,\endingpoint}{
+ \pgfmathisodd{\startmodule}{initmodule}
+ \ifnum\t=1
+ \ifnum\initmodule=1
+ % if odd
+ \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2)}
+ \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2)}
+ \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-1);
+ \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-1);
+ \else
+ % if even
+ \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2)}
+ \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2)}
+ \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-2);
+ \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-2);
+ \fi
+ \fi
+ \ifnum\t=2
+ \ifnum\initmodule=1
+ % if odd
+ \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2))}
+ \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2))}
+ \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-1);
+ \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-1);
+ \else
+ % if even
+ \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2))}
+ \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2))}
+ \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-2);
+ \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-2);
+ \fi
+ \fi
+ \ifnum\t>2
+ \ifnum\initmodule=1
+ % if odd
+ \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))}
+ \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))}
+ \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-1);
+ \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-1);
+ \else
+ % if even
+ \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))}
+ \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))}
+ \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-2);
+ \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-2);
+ \fi
+ \fi
+ }
+ }
+ }
+
+ \fi
+
+
+ % * * * *
+ % 2 Intermediate stages
+
+ % Compute \stages/2
+ \pgfmathparse{floor(divide(\stages,2))}
+ \pgfmathtruncatemacro\middlestage{\pgfmathresult}
+ \pgfmathtruncatemacro\middlestagei{int(\middlestage+1)}
+ \pgfmathtruncatemacro\middlestageii{int(\middlestagei+1)}
+
+ % Drawing
+ \foreach \startmodule in {1,...,\r}{
+ \pgfmathisodd{\startmodule}{initmodule}
+ \ifnum\initmodule=1
+ % if odd
+ \pgfmathtruncatemacro\endmodule{int(\startmodule+1)}
+ \draw(r\middlestage-\startmodule-output-1)--(r\middlestagei-\startmodule-input-1);
+ \draw(r\middlestage-\startmodule-output-2)--(r\middlestagei-\endmodule-input-1);
+ \draw(r\middlestagei-\startmodule-output-1)--(r\middlestageii-\startmodule-input-1);
+ \draw(r\middlestagei-\startmodule-output-2)--(r\middlestageii-\endmodule-input-1);
+ \else
+ % if even
+ \pgfmathtruncatemacro\endmodule{int(\startmodule-1)}
+ \draw(r\middlestage-\startmodule-output-1)--(r\middlestagei-\endmodule-input-2);
+ \draw(r\middlestage-\startmodule-output-2)--(r\middlestagei-\startmodule-input-2);
+ \draw(r\middlestagei-\startmodule-output-1)--(r\middlestageii-\endmodule-input-2);
+ \draw(r\middlestagei-\startmodule-output-2)--(r\middlestageii-\startmodule-input-2);
+ \fi
+ }
+ % end connections
+ \fi % disable connections
+ }
+}
+
+
+\endinput