summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/mandi/mandi.sty
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/tex/latex/mandi/mandi.sty')
-rw-r--r--Master/texmf-dist/tex/latex/mandi/mandi.sty606
1 files changed, 362 insertions, 244 deletions
diff --git a/Master/texmf-dist/tex/latex/mandi/mandi.sty b/Master/texmf-dist/tex/latex/mandi/mandi.sty
index d5206ea8965..46db7c1f230 100644
--- a/Master/texmf-dist/tex/latex/mandi/mandi.sty
+++ b/Master/texmf-dist/tex/latex/mandi/mandi.sty
@@ -6,7 +6,7 @@
%%
%% mandi.dtx (with options: `package')
%%
-%% Copyright (C) 2011,2012 by Paul J. Heafner <heafnerj@gmail.com>
+%% Copyright (C) 2011, 2012, 2013 by Paul J. Heafner <heafnerj@gmail.com>
%% ---------------------------------------------------------------------------
%% This work may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License, either version 1.3 of this license or (at
@@ -20,21 +20,21 @@
%% The Current Maintainer of this work is Paul J. Heafner.
%%
%% This work consists of the files mandi.dtx
+%% README
%%
-%% and includes the derived files README
-%% mandi.ins
+%% and includes the derived files mandi.ins
%% mandi.sty
-%% mandi.pdf and
-%% vdemo.py.
+%% vdemo.py and
+%% mandi.pdf.
%% ---------------------------------------------------------------------------
%%
-\ProvidesPackage{mandi}[2013/04/10 2.1.0 Macros for intro physics and astronomy]
+\ProvidesPackage{mandi}[2013/06/14 2.2.0 Macros for physics and astronomy]
\NeedsTeXFormat{LaTeX2e}[1999/12/01]
\RequirePackage{amsmath}
\RequirePackage{amssymb}
+\RequirePackage{array}
\RequirePackage{bigints}
\RequirePackage{cancel}
-\RequirePackage[leftbars,color]{changebar}
\RequirePackage[dvipsnames]{xcolor}
\RequirePackage{environ}
\RequirePackage{etoolbox}
@@ -61,6 +61,7 @@
\definecolor{vpythoncolor}{rgb}{0.95,0.95,0.95}
\newcommand{\lstvpython}{\lstset{language=Python,numbers=left,numberstyle=\tiny,
backgroundcolor=\color{vpythoncolor},upquote=true,breaklines}}
+\newcolumntype{C}[1]{>{\centering}m{#1}}
\newboolean{@optitalicvectors}
\newboolean{@optdoubleabsbars}
\newboolean{@optbaseunits}
@@ -91,6 +92,7 @@
\newcommand{\coulomb}{\ensuremath{\mathrm{C}}}
\newcommand{\degree}{\ensuremath{^{\circ}}}
\newcommand{\electronvolt}{\ensuremath{\mathrm{eV}}}
+\newcommand{\eV}{\electronvolt}
\newcommand{\farad}{\ensuremath{\mathrm{F}}}
\newcommand{\henry}{\ensuremath{\mathrm{H}}}
\newcommand{\hertz}{\ensuremath{\mathrm{Hz}}}
@@ -122,6 +124,7 @@
\newcommand{\T}{\tesla}
\newcommand{\V}{\volt}
\newcommand{\W}{\watt}
+\newcommand{\Wb}{\weber}
\newcommand{\square}[1]{\ensuremath{\mathrm{#1}^{2}}} % prefix 2
\newcommand*{\cubic}[1]{\ensuremath{\mathrm{#1}^{3}}} % prefix 3
\newcommand*{\quartic}[1]{\ensuremath{\mathrm{#1}^{4}}} % prefix 4
@@ -207,8 +210,7 @@
\setbox\z@\hbox{%
\mathchardef\@tempa\mathcode`\[\relax
\def\@tempb##1"##2##3{\the\textfont"##3\char"}%
- \expandafter\@tempb\meaning\@tempa \relax
- }%
+ \expandafter\@tempb\meaning\@tempa \relax}%
\ht\Mathstrutbox@\ht\z@ \dp\Mathstrutbox@\dp\z@}
\begingroup
\catcode`(\active \xdef({\left\string(}
@@ -242,14 +244,31 @@
\newphysicsquantity{planeangle}{\m\usk\reciprocal\m}[\rad][\rad]
\newphysicsquantity{solidangle}{\m\squared\usk\reciprocalsquare\m}[\sr][\sr]
\newcommand{\indegrees}[1]{\ensuremath{\unit{#1}{\degree}}}
+\newcommand{\inFarenheit}[1]{\ensuremath{\unit{#1}{\degree\mathrm{F}}}}
+\newcommand{\inCelsius}[1]{\ensuremath{\unit{#1}{\degree\mathrm{C}}}}
\newcommand{\inarcminutes}[1]{\ensuremath{\unit{#1}{\arcminute}}}
\newcommand{\inarcseconds}[1]{\ensuremath{\unit{#1}{\arcsecond}}}
\newcommand{\ineV}[1]{\ensuremath{\unit{#1}{\electronvolt}}}
+\newcommand{\inMeVocs}[1]{\ensuremath{\unit{#1}{\mathrm{MeV}\per\msup{c}{2}}}}
+\newcommand{\inMeVoc}[1]{\ensuremath{\unit{#1}{\mathrm{MeV}\per c}}}
\newcommand{\inAU}[1]{\ensuremath{\unit{#1}{\mathrm{AU}}}}
+\newcommand{\inly}[1]{\ensuremath{\unit{#1}{\mathrm{ly}}}}
+\newcommand{\incyr}[1]{\ensuremath{\unit{#1}{c\usk\mathrm{year}}}}
+\newcommand{\inpc}[1]{\ensuremath{\unit{#1}{\mathrm{pc}}}}
+\newcommand{\insolarL}[1]{\ensuremath{\unit{#1}{\Lsolar}}}
+\newcommand{\insolarT}[1]{\ensuremath{\unit{#1}{\Tsolar}}}
+\newcommand{\insolarR}[1]{\ensuremath{\unit{#1}{\Rsolar}}}
+\newcommand{\insolarM}[1]{\ensuremath{\unit{#1}{\Msolar}}}
+\newcommand{\insolarF}[1]{\ensuremath{\unit{#1}{\Fsolar}}}
+\newcommand{\insolarf}[1]{\ensuremath{\unit{#1}{\fsolar}}}
+\newcommand{\insolarMag}[1]{\ensuremath{\unit{#1}{\Magsolar}}}
+\newcommand{\insolarmag}[1]{\ensuremath{\unit{#1}{\magsolar}}}
+\newcommand{\insolarD}[1]{\ensuremath{\unit{#1}{\Dsolar}}}
+\newcommand{\insolard}[1]{\ensuremath{\unit{#1}{\dsolar}}}
\newcommand{\velocityc}[1]{\ensuremath{#1c}}
\newphysicsquantity{velocity}{\m\usk\reciprocal\s}[\m\usk\reciprocal\s][\m\per\s]
\newphysicsquantity{acceleration}{\m\usk\s\reciprocalsquared}[\N\per\kg][\m\per\s\squared]
-\newcommand{\gamman}[1]{\ensuremath{#1}}
+\newcommand{\lorentz}[1]{\ensuremath{#1}}
\newphysicsquantity{momentum}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\kg\usk\m\per\s]
\newphysicsquantity{impulse}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\kg\usk\m\per\s]
\newphysicsquantity{force}{\m\usk\kg\usk\s\reciprocalsquared}[\N][\N]
@@ -264,20 +283,16 @@
[\kg\per\m\cubed]
\newphysicsquantity{youngsmodulus}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}
[\N\per\m\squared][\Pa]
-\newphysicsquantity{work}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J]
-[\N\usk\m]
-\newphysicsquantity{energy}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J]
-[\N\usk\m]
+\newphysicsquantity{work}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J][\N\usk\m]
+\newphysicsquantity{energy}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J][\N\usk\m]
\newphysicsquantity{power}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\W][\J\per\s]
\newphysicsquantity{angularvelocity}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s]
\newphysicsquantity{angularacceleration}{\rad\usk\s\reciprocalsquared}[\rad\per\s\squared]
[\rad\per\s\squared]
\newphysicsquantity{angularmomentum}{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s]
[\kg\usk\m\squared\per\s]
-\newphysicsquantity{momentofinertia}{\m\squared\usk\kg}[\J\usk\s\squared]
-[\kg\usk\m\squared]
-\newphysicsquantity{torque}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J\per\rad]
-[\N\usk\m]
+\newphysicsquantity{momentofinertia}{\m\squared\usk\kg}[\J\usk\s\squared][\kg\usk\m\squared]
+\newphysicsquantity{torque}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J\per\rad][\N\usk\m]
\newphysicsquantity{entropy}{\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\K}
[\J\per\K][\J\per\K]
\newphysicsquantity{wavelength}{\m}[\m][\m]
@@ -285,15 +300,21 @@
\newphysicsquantity{frequency}{\reciprocal\s}[\hertz][\hertz]
\newphysicsquantity{angularfrequency}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s]
\newphysicsquantity{charge}{\A\usk\s}[\C][\C]
-\newphysicsquantity{permittivity}{\m\reciprocalcubed\usk\reciprocal\kg\usk\s
- \reciprocalquarted\usk\A\squared}[\F\per\m][\C\squared\per\N\usk\m\squared]
-\newphysicsquantity{permeability}{\m\usk\kg\usk\s\reciprocalsquared\usk\A
- \reciprocalsquared}[\henry\per\m][\T\usk\m\per\A]
+\newphysicsquantity{permittivity}
+{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\reciprocalquarted\usk\A\squared}
+[\F\per\m][\C\squared\per\N\usk\m\squared]
+\newphysicsquantity{permeability}
+{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m][\T\usk\m\per\A]
\newphysicsquantity{electricfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}
[\V\per\m][\N\per\C]
\newphysicsquantity{electricdipolemoment}{\m\usk\s\usk\A}[\C\usk\m][\C\usk\m]
+\newphysicsquantity{electricflux}{\m\cubed\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}
+[\V\usk\m][\N\usk\m\squared\per\C]
\newphysicsquantity{magneticfield}{\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\T]
-[\N\per\C\usk(\m\per\s)]
+[\N\per\C\usk(\m\per\s)] % also \Wb\per\m\squared
+\newphysicsquantity{magneticflux}
+{\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\volt\usk\s]
+[\T\usk\m\squared] % also \Wb and \J\per\A
\newphysicsquantity{cmagneticfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}
[\V\per\m][\N\per\C]
\newphysicsquantity{linearchargedensity}{\reciprocal\m\usk\s\usk\A}[\C\per\m][\C\per\m]
@@ -317,6 +338,8 @@
\newphysicsquantity{relativepermeability}{}[][]
\newphysicsquantity{energydensity}{\m\reciprocaled\usk\kg\usk\reciprocalsquare\s}
[\J\per\cubic\m][\J\per\cubic\m]
+\newphysicsquantity{energyflux}{\kg\usk\s\reciprocalcubed}
+[\W\per\m\squared][\W\per\m\squared]
\newphysicsquantity{electroncurrent}{\reciprocal\s}
[\ensuremath{\mathrm{e}}\per\s][\ensuremath{\mathrm{e}}\per\s]
\newphysicsquantity{conventionalcurrent}{\A}[\C\per\s][\A]
@@ -324,27 +347,30 @@
\newphysicsquantity{currentdensity}{\reciprocalsquare\m\usk\A}[\C\usk\s\per\square\m]
[\A\per\square\m]
\newphysicsquantity{capacitance}
-{\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}[\C\per\V][\F]
+{\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}[\F][\C\per\V]
+\newphysicsquantity{inductance}
+{\square\m\usk\kg\usk\reciprocalsquare\s\usk\reciprocalsquare\A}[\henry]
+[\volt\usk\s\per\A] % also \square\m\usk\kg\per\C\squared, \Wb\per\A
\newphysicsquantity{conductivity}
{\reciprocalcubic\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\siemens\per\m]
-[\A\per\V\usk\m]
+[(\A\per\square\m)\per(\V\per\m)]
\newphysicsquantity{resistivity}
-{\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\m\per\siemens]
-[\ohm\usk\m]
+{\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\ohm\usk\m]
+[(\V\per\m)\per(\A\per\square\m)]
\newphysicsquantity{resistance}
{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\V\per\A][\ohm]
\newphysicsquantity{conductance}
{\reciprocalsquare\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\A\per\V][\siemens]
+\newphysicsquantity{magneticcharge}{\m\usk\A}[\m\usk\A][\m\usk\A]
\newcommand{\lv}{\ensuremath{\left\langle}}
\newcommand{\rv}{\ensuremath{\right\rangle}}
\newcommand{\symvect}{\mivector}
\newcommand{\ncompsvect}{\mivector}
-\ExplSyntaxOn
+\ExplSyntaxOn % Written in LaTeX3
\NewDocumentCommand{\magvectncomps}{ m O{} }
{%
\sum_of_squares:nn { #1 }{ #2 }
}%
-
\cs_new:Npn \sum_of_squares:nn #1 #2
{%
\tl_if_empty:nTF { #2 }
@@ -410,16 +436,16 @@
\compDvect{#1}{z}\rv}}
\newcommand{\dervect}[2]{\ensuremath{\frac{\dvect{#1}}{\mathrm{d}{#2}}}}
\newcommand{\Dervect}[2]{\ensuremath{\frac{\Dvect{#1}}{\Delta{#2}}}}
-\newcommand{\compdervect}[3]{\ensuremath{\dbyd{\compvect{#1}{#3}}{#2}}}
-\newcommand{\compDervect}[3]{\ensuremath{\DbyD{\compvect{#1}{#3}}{#2}}}
+\newcommand{\compdervect}[3]{\ensuremath{\dbyd{\compvect{#1}{#2}}{#3}}}
+\newcommand{\compDervect}[3]{\ensuremath{\DbyD{\compvect{#1}{#2}}{#3}}}
\newcommand{\scompsdervect}[2]{\ensuremath{\lv
- \compdervect{#1}{#2}{x},
- \compdervect{#1}{#2}{y},
- \compdervect{#1}{#2}{z}\rv}}
+ \compdervect{#1}{x}{#2},
+ \compdervect{#1}{y}{#2},
+ \compdervect{#1}{z}{#2}\rv}}
\newcommand{\scompsDervect}[2]{\ensuremath{\lv
- \compDervect{#1}{#2}{x},
- \compDervect{#1}{#2}{y},
- \compDervect{#1}{#2}{z}\rv}}
+ \compDervect{#1}{x}{#2},
+ \compDervect{#1}{y}{#2},
+ \compDervect{#1}{z}{#2}\rv}}
\ifthenelse{\boolean{@optdoubleabsbars}}
{\newcommand{\magdervect}[2]{\ensuremath{\magof{\dervect{#1}{#2}}}}
\newcommand{\magDervect}[2]{\ensuremath{\magof{\Dervect{#1}{#2}}}}}
@@ -443,19 +469,19 @@
\newcommand{\compDerpos}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}}
\newcommand{\vectsub}[2]{\ensuremath{\ssub{\vect{#1}}{#2}}}
\ifthenelse{\boolean{@optitalicvectors}}
- {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{#1}{#2,\(#3\)}}}}
- {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{\mathrm{#1}}{#2,\(#3\)}}}}
+ {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{#1}{\(#2\),#3}}}}
+ {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\),#3}}}}
\newcommand{\scompsvectsub}[2]{\ensuremath{\lv
- \compvectsub{#1}{#2}{x},
- \compvectsub{#1}{#2}{y},
- \compvectsub{#1}{#2}{z}\rv}}
+ \compvectsub{#1}{x}{#2},
+ \compvectsub{#1}{y}{#2},
+ \compvectsub{#1}{z}{#2}\rv}}
\ifthenelse{\boolean{@optdoubleabsbars}}
{\newcommand{\magvectsub}[2]{\ensuremath{\magof{\vectsub{#1}{#2}}}}}
{\newcommand{\magvectsub}[2]{\ensuremath{\abs{\vectsub{#1}{#2}}}}}
\newcommand{\magvectsubscomps}[2]{\ensuremath{\sqrt{
- \msup{\compvectsub{#1}{#2}{x}}{2}+
- \msup{\compvectsub{#1}{#2}{y}}{2}+
- \msup{\compvectsub{#1}{#2}{z}}{2}}}}
+ \msup{\compvectsub{#1}{x}{#2}}{2}+
+ \msup{\compvectsub{#1}{y}{#2}}{2}+
+ \msup{\compvectsub{#1}{z}{#2}}{2}}}}
\ifthenelse{\boolean{@optitalicvectors}}
{\newcommand{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{#1}}{#2}}}}
{\newcommand{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{\mathrm{#1}}}{#2}}}}
@@ -464,13 +490,13 @@
\newcommand{\compdvectsub}[3]{\ensuremath{\mathrm{d}\compvectsub{#1}{#2}{#3}}}
\newcommand{\compDvectsub}[3]{\ensuremath{\Delta\compvectsub{#1}{#2}{#3}}}
\newcommand{\scompsdvectsub}[2]{\ensuremath{\lv
- \compdvectsub{#1}{#2}{x},
- \compdvectsub{#1}{#2}{y},
- \compdvectsub{#1}{#2}{z}\rv}}
+ \compdvectsub{#1}{x}{#2},
+ \compdvectsub{#1}{y}{#2},
+ \compdvectsub{#1}{z}{#2}\rv}}
\newcommand{\scompsDvectsub}[2]{\ensuremath{\lv
- \compDvectsub{#1}{#2}{x},
- \compDvectsub{#1}{#2}{y},
- \compDvectsub{#1}{#2}{z},\rv}}
+ \compDvectsub{#1}{x}{#2},
+ \compDvectsub{#1}{y}{#2},
+ \compDvectsub{#1}{z}{#2}\rv}}
\newcommand{\dermagvectsub}[3]{\ensuremath{\dbyd{\magvectsub{#1}{#2}}{#3}}}
\newcommand{\Dermagvectsub}[3]{\ensuremath{\DbyD{\magvectsub{#1}{#2}}{#3}}}
\newcommand{\dervectsub}[3]{\ensuremath{\dbyd{\vectsub{#1}{#2}}{#3}}}
@@ -480,41 +506,41 @@
\newcommand{\magDervectsub}[3]{\ensuremath{\magof{\Dervectsub{#1}{#2}{#3}}}}}
{\newcommand{\magdervectsub}[3]{\ensuremath{\abs{\dervectsub{#1}{#2}{#3}}}}
\newcommand{\magDervectsub}[3]{\ensuremath{\abs{\Dervectsub{#1}{#2}{#3}}}}}
-\newcommand{\compdervectsub}[4]{\ensuremath{\dbyd{\compvectsub{#1}{#2}{#4}}{#3}}}
-\newcommand{\compDervectsub}[4]{\ensuremath{\DbyD{\compvectsub{#1}{#2}{#4}}{#3}}}
+\newcommand{\compdervectsub}[4]{\ensuremath{\dbyd{\compvectsub{#1}{#2}{#3}}{#4}}}
+\newcommand{\compDervectsub}[4]{\ensuremath{\DbyD{\compvectsub{#1}{#2}{#3}}{#4}}}
\newcommand{\scompsdervectsub}[3]{\ensuremath{\lv
- \compdervectsub{#1}{#2}{#3}{x},
- \compdervectsub{#1}{#2}{#3}{y},
- \compdervectsub{#1}{#2}{#3}{z}\rv}}
+ \compdervectsub{#1}{x}{#2}{#3},
+ \compdervectsub{#1}{y}{#2}{#3},
+ \compdervectsub{#1}{z}{#2}{#3}\rv}}
\newcommand{\scompsDervectsub}[3]{\ensuremath{\lv
- \compDervectsub{#1}{#2}{#3}{x},
- \compDervectsub{#1}{#2}{#3}{y},
- \compDervectsub{#1}{#2}{#3}{z}\rv}}
-\newcommand{\comppossub}[2]{\ensuremath{\ssub{#2}{#1}}}
+ \compDervectsub{#1}{x}{#2}{#3},
+ \compDervectsub{#1}{y}{#2}{#3},
+ \compDervectsub{#1}{z}{#2}{#3}\rv}}
+\newcommand{\comppossub}[2]{\ensuremath{\ssub{#1}{#2}}}
\newcommand{\scompspossub}[1]{\ensuremath{\lv
- \comppossub{#1}{x},
- \comppossub{#1}{y},
- \comppossub{#1}{z}\rv}}
+ \comppossub{x}{#1},
+ \comppossub{y}{#1},
+ \comppossub{z}{#1}\rv}}
\newcommand{\compdpossub}[2]{\ensuremath{\mathrm{d}\comppossub{#1}{#2}}}
\newcommand{\compDpossub}[2]{\ensuremath{\Delta\comppossub{#1}{#2}}}
\newcommand{\scompsdpossub}[1]{\ensuremath{\lv
- \compdpossub{#1}{x},
- \compdpossub{#1}{y},
- \compdpossub{#1}{z}\rv}}
+ \compdpossub{x}{#1},
+ \compdpossub{y}{#1},
+ \compdpossub{z}{#1}\rv}}
\newcommand{\scompsDpossub}[1]{\ensuremath{\lv
- \compDpossub{#1}{x},
- \compDpossub{#1}{y},
- \compDpossub{#1}{z}\rv}}
-\newcommand{\compderpossub}[3]{\ensuremath{\dbyd{\comppossub{#1}{#3}}{#2}}}
-\newcommand{\compDerpossub}[3]{\ensuremath{\DbyD{\comppossub{#1}{#3}}{#2}}}
+ \compDpossub{x}{#1},
+ \compDpossub{y}{#1},
+ \compDpossub{z}{#1}\rv}}
+\newcommand{\compderpossub}[3]{\ensuremath{\dbyd{\comppossub{#1}{#2}}{#3}}}
+\newcommand{\compDerpossub}[3]{\ensuremath{\DbyD{\comppossub{#1}{#2}}{#3}}}
\newcommand{\scompsderpossub}[2]{\ensuremath{\lv
- \compderpossub{#1}{#2}{x},
- \compderpossub{#1}{#2}{y},
- \compderpossub{#1}{#2}{z}\rv}}
+ \compderpossub{x}{#1}{#2},
+ \compderpossub{y}{#1}{#2},
+ \compderpossub{z}{#1}{#2}\rv}}
\newcommand{\scompsDerpossub}[2]{\ensuremath{\lv
- \compDerpossub{#1}{#2}{x},
- \compDerpossub{#1}{#2}{y},
- \compDerpossub{#1}{#2}{z}\rv}}
+ \compDerpossub{x}{#1}{#2},
+ \compDerpossub{y}{#1}{#2},
+ \compDerpossub{z}{#1}{#2}\rv}}
\newcommand{\relpos}[1]{\ensuremath{\vectsub{r}{#1}}}
\newcommand{\relvel}[1]{\ensuremath{\vectsub{v}{#1}}}
\newcommand{\relmom}[1]{\ensuremath{\vectsub{p}{#1}}}
@@ -553,105 +579,110 @@
\newcommand{\vectsubdotsvectsub}[4]{\ensuremath{
\scompsvectsub{#1}{#2}\bullet\scompsvectsub{#3}{#4}}}
\newcommand{\vectsubdotevectsub}[4]{\ensuremath{
- \compvectsub{#1}{#2}{x}\compvectsub{#3}{#4}{x}+
- \compvectsub{#1}{#2}{y}\compvectsub{#3}{#4}{y}+
- \compvectsub{#1}{#2}{z}\compvectsub{#3}{#4}{z}}}
-\newcommand{\vectsubdotsdvectsub}[4]{\ensuremath{
+ \compvectsub{#1}{x}{#2}\compvectsub{#3}{x}{#4}+
+ \compvectsub{#1}{y}{#2}\compvectsub{#3}{y}{#4}+
+ \compvectsub{#1}{z}{#2}\compvectsub{#3}{z}{#4}}}
+\newcommand{\vectsubdotsdvectsub}[4]{\ensuremath{%
\scompsvectsub{#1}{#2}\bullet\scompsdvectsub{#3}{#4}}}
-\newcommand{\vectsubdotsDvectsub}[4]{\ensuremath{
+\newcommand{\vectsubdotsDvectsub}[4]{\ensuremath{%
\scompsvectsub{#1}{#2}\bullet\scompsDvectsub{#3}{#4}}}
\newcommand{\vectsubdotedvectsub}[4]{\ensuremath{
- \compvectsub{#1}{#2}{x}\compdvectsub{#3}{#4}{x}+
- \compvectsub{#1}{#2}{y}\compdvectsub{#3}{#4}{y}+
- \compvectsub{#1}{#2}{z}\compdvectsub{#3}{#4}{z}}}
+ \compvectsub{#1}{x}{#2}\compdvectsub{#3}{x}{#4}+
+ \compvectsub{#1}{y}{#2}\compdvectsub{#3}{y}{#4}+
+ \compvectsub{#1}{z}{#2}\compdvectsub{#3}{z}{#4}}}
\newcommand{\vectsubdoteDvectsub}[4]{\ensuremath{
- \compvectsub{#1}{#2}{x}\compDvectsub{#3}{#4}{x}+
- \compvectsub{#1}{#2}{y}\compDvectsub{#3}{#4}{y}+
- \compvectsub{#1}{#2}{z}\compDvectsub{#3}{#4}{z}}}
+ \compvectsub{#1}{x}{#2}\compDvectsub{#3}{x}{#4}+
+ \compvectsub{#1}{y}{#2}\compDvectsub{#3}{y}{#4}+
+ \compvectsub{#1}{z}{#2}\compDvectsub{#3}{z}{#4}}}
\newcommand{\vectsubdotsdvect}[3]{\ensuremath{
\scompsvectsub{#1}{#2}\bullet\scompsdvect{#3}}}
\newcommand{\vectsubdotsDvect}[3]{\ensuremath{
\scompsvectsub{#1}{#2}\bullet\scompsDvect{#3}}}
\newcommand{\vectsubdotedvect}[3]{\ensuremath{
- \compvectsub{#1}{#2}{x}\compdvect{#3}{x}+
- \compvectsub{#1}{#2}{y}\compdvect{#3}{y}+
- \compvectsub{#1}{#2}{z}\compdvect{#3}{z}}}
+ \compvectsub{#1}{x}{#2}\compdvect{x}{#3}+
+ \compvectsub{#1}{y}{#2}\compdvect{y}{#3}+
+ \compvectsub{#1}{z}{#2}\compdvect{z}{#3}}}
\newcommand{\vectsubdoteDvect}[3]{\ensuremath{
- \compvectsub{#1}{#2}{x}\compDvect{#3}{x}+
- \compvectsub{#1}{#2}{y}\compDvect{#3}{y}+
- \compvectsub{#1}{#2}{z}\compDvect{#3}{z}}}
+ \compvectsub{#1}{x}{#2}\compDvect{x}{#3}+
+ \compvectsub{#1}{y}{#2}\compDvect{y}{#3}+
+ \compvectsub{#1}{z}{#2}\compDvect{z}{#3}}}
\newcommand{\vectsubdotsdpos}[2]{\ensuremath{
\scompsvectsub{#1}{#2}\bullet\scompsdpos}}
\newcommand{\vectsubdotsDpos}[2]{\ensuremath{
\scompsvectsub{#1}{#2}\bullet\scompsDpos}}
\newcommand{\vectsubdotedpos}[2]{\ensuremath{
- \compvectsub{#1}{#2}{x}\compdpos{x}+
- \compvectsub{#1}{#2}{y}\compdpos{y}+
- \compvectsub{#1}{#2}{z}\compdpos{z}}}
+ \compvectsub{#1}{x}{#2}\compdpos{x}+
+ \compvectsub{#1}{y}{#2}\compdpos{y}+
+ \compvectsub{#1}{z}{#2}\compdpos{z}}}
\newcommand{\vectsubdoteDpos}[2]{\ensuremath{
- \compvectsub{#1}{#2}{x}\compDpos{x}+
- \compvectsub{#1}{#2}{y}\compDpos{y}+
- \compvectsub{#1}{#2}{z}\compDpos{z}}}
+ \compvectsub{#1}{x}{#2}\compDpos{x}+
+ \compvectsub{#1}{y}{#2}\compDpos{y}+
+ \compvectsub{#1}{z}{#2}\compDpos{z}}}
\newcommand{\dervectdotsvect}[3]{\ensuremath{
\scompsdervect{#1}{#2}\bullet\scompsvect{#3}}}
\newcommand{\Dervectdotsvect}[3]{\ensuremath{
\scompsDervect{#1}{#2}\bullet\scompsvect{#3}}}
\newcommand{\dervectdotevect}[3]{\ensuremath{
- \compdervect{#1}{#2}{x}\compvect{#3}{x}+
- \compdervect{#1}{#2}{y}\compvect{#3}{y}+
- \compdervect{#1}{#2}{z}\compvect{#3}{z}}}
+ \compdervect{#1}{x}{#2}\compvect{x}{#3}+
+ \compdervect{#1}{y}{#2}\compvect{y}{#3}+
+ \compdervect{#1}{z}{#2}\compvect{z}{#3}}}
\newcommand{\Dervectdotevect}[3]{\ensuremath{
- \compDervect{#1}{#2}{x}\compvect{#3}{x}+
- \compDervect{#1}{#2}{y}\compvect{#3}{y}+
- \compDervect{#1}{#2}{z}\compvect{#3}{z}}}
+ \compDervect{#1}{x}{#2}\compvect{x}{#3}+
+ \compDervect{#1}{y}{#2}\compvect{y}{#3}+
+ \compDervect{#1}{z}{#2}\compvect{z}{#3}}}
\newcommand{\vectdotsdervect}[3]{\ensuremath{
\scompsvect{#1}\bullet\scompsdervect{#2}{#3}}}
\newcommand{\vectdotsDervect}[3]{\ensuremath{
\scompsvect{#1}\bullet\scompsDervect{#2}{#3}}}
\newcommand{\vectdotedervect}[3]{\ensuremath{
- \compvect{#1}{x}\compdervect{#2}{#3}{x}+
- \compvect{#1}{y}\compdervect{#2}{#3}{y}+
- \compvect{#1}{z}\compdervect{#2}{#3}{z}}}
+ \compvect{#1}{x}\compdervect{#2}{x}{#3}+
+ \compvect{#1}{y}\compdervect{#2}{y}{#3}+
+ \compvect{#1}{z}\compdervect{#2}{z}{#3}}}
\newcommand{\vectdoteDervect}[3]{\ensuremath{
- \compvect{#1}{x}\compDervect{#2}{#3}{x}+
- \compvect{#1}{y}\compDervect{#2}{#3}{y}+
- \compvect{#1}{z}\compDervect{#2}{#3}{z}}}
+ \compvect{#1}{x}\compDervect{#2}{x}{#3}+
+ \compvect{#1}{y}\compDervect{#2}{y}{#3}+
+ \compvect{#1}{z}\compDervect{#2}{z}{#3}}}
\newcommand{\dervectdotspos}[2]{\ensuremath{
\scompsdervect{#1}{#2}\bullet\scompspos}}
\newcommand{\Dervectdotspos}[2]{\ensuremath{
\scompsDervect{#1}{#2}\bullet\scompspos}}
\newcommand{\dervectdotepos}[2]{\ensuremath{
- \compdervect{#1}{#2}{x}\comppos{x}+
- \compdervect{#1}{#2}{y}\comppos{y}+
- \compdervect{#1}{#2}{z}\comppos{z}}}
+ \compdervect{#1}{x}{#2}\comppos{x}+
+ \compdervect{#1}{y}{#2}\comppos{y}+
+ \compdervect{#1}{z}{#2}\comppos{z}}}
\newcommand{\Dervectdotepos}[2]{\ensuremath{
- \compDervect{#1}{#2}{x}\comppos{x}+
- \compDervect{#1}{#2}{y}\comppos{y}+
- \compDervect{#1}{#2}{z}\comppos{z}}}
+ \compDervect{#1}{x}{#2}\comppos{x}+
+ \compDervect{#1}{y}{#2}\comppos{y}+
+ \compDervect{#1}{z}{#2}\comppos{z}}}
\newcommand{\dervectdotsdvect}[3]{\ensuremath{
\scompsdervect{#1}{#2}\bullet\scompsdvect{#3}}}
\newcommand{\DervectdotsDvect}[3]{\ensuremath{
\scompsDervect{#1}{#2}\bullet\scompsDvect{#3}}}
\newcommand{\dervectdotedvect}[3]{\ensuremath{
- \compdervect{#1}{#2}{x}\compdvect{#3}{x}+
- \compdervect{#1}{#2}{y}\compdvect{#3}{y}+
- \compdervect{#1}{#2}{z}\compdvect{#3}{z}}}
+ \compdervect{#1}{x}{#2}\compdvect{#3}{x}+
+ \compdervect{#1}{y}{#2}\compdvect{#3}{y}+
+ \compdervect{#1}{z}{#2}\compdvect{#3}{z}}}
\newcommand{\DervectdoteDvect}[3]{\ensuremath{
- \compDervect{#1}{#2}{x}\compDvect{#3}{x}+
- \compDervect{#1}{#2}{y}\compDvect{#3}{y}+
- \compDervect{#1}{#2}{z}\compDvect{#3}{z}}}
+ \compDervect{#1}{x}{#2}\compDvect{#3}{x}+
+ \compDervect{#1}{y}{#2}\compDvect{#3}{y}+
+ \compDervect{#1}{z}{#2}\compDvect{#3}{z}}}
\newcommand{\dervectdotsdpos}[2]{\ensuremath{
\scompsdervect{#1}{#2}\bullet\scompsdpos}}
\newcommand{\DervectdotsDpos}[2]{\ensuremath{
\scompsDervect{#1}{#2}\bullet\scompsDpos}}
\newcommand{\dervectdotedpos}[2]{\ensuremath{
- \compdervect{#1}{#2}{x}\compdpos{x}+
- \compdervect{#1}{#2}{y}\compdpos{y}+
- \compdervect{#1}{#2}{z}\compdpos{z}}}
+ \compdervect{#1}{x}{#2}\compdpos{x}+
+ \compdervect{#1}{y}{#2}\compdpos{y}+
+ \compdervect{#1}{z}{#2}\compdpos{z}}}
\newcommand{\DervectdoteDpos}[2]{\ensuremath{
- \compDervect{#1}{#2}{x}\compDpos{x}+
- \compDervect{#1}{#2}{y}\compDpos{y}+
- \compDervect{#1}{#2}{z}\compDpos{z}}}
+ \compDervect{#1}{x}{#2}\compDpos{x}+
+ \compDervect{#1}{y}{#2}\compDpos{y}+
+ \compDervect{#1}{z}{#2}\compDpos{z}}}
+\newcommand{\vectcrossvect}[2]{\ensuremath{{#1}\times{#2}}}
+\newcommand{\ltriplecross}[3]{\ensuremath{({#1}\times{#2})\times{#3}}}
+\newcommand{\rtriplecross}[3]{\ensuremath{{#1}\times({#2}\times{#3})}}
+\newcommand{\ltriplescalar}[3]{\ensuremath{{#1}\times{#2}\bullet{#3}}}
+\newcommand{\rtriplescalar}[3]{\ensuremath{{#1}\bullet{#2}\times{#3}}}
\newcommand{\ezero}{\ensuremath{\msub{\mathbf{e}}{0}}}
\newcommand{\eone}{\ensuremath{\msub{\mathbf{e}}{1}}}
\newcommand{\etwo}{\ensuremath{\msub{\mathbf{e}}{2}}}
@@ -667,6 +698,10 @@
\newcommand{\uek}[1]{\ensuremath{\msub{\widehat{\mathbf{e}}}{#1}}}
\newcommand{\ue}{\uek}
\newcommand{\ezerozero}{\ek{00}}
+\newcommand{\ezeroone}{\ek{01}}
+\newcommand{\ezerotwo}{\ek{02}}
+\newcommand{\ezerothree}{\ek{03}}
+\newcommand{\ezerofour}{\ek{04}}
\newcommand{\eoneone}{\ek{11}}
\newcommand{\eonetwo}{\ek{12}}
\newcommand{\eonethree}{\ek{13}}
@@ -691,6 +726,10 @@
\newcommand{\euk}[1]{\ensuremath{\msup{\mathbf{e}}{#1}}}
\newcommand{\eu}{\euk}
\newcommand{\euzerozero}{\euk{00}}
+\newcommand{\euzeroone}{\euk{01}}
+\newcommand{\euzerotwo}{\euk{02}}
+\newcommand{\euzerothree}{\euk{03}}
+\newcommand{\euzerofour}{\euk{04}}
\newcommand{\euoneone}{\euk{11}}
\newcommand{\euonetwo}{\euk{12}}
\newcommand{\euonethree}{\euk{13}}
@@ -715,6 +754,10 @@
\newcommand{\gk}[1]{\ensuremath{\msub{\mathbf{\gamma}}{#1}}}
\newcommand{\g}{\gk}
\newcommand{\gzerozero}{\gk{00}}
+\newcommand{\gzeroone}{\gk{01}}
+\newcommand{\gzerotwo}{\gk{02}}
+\newcommand{\gzerothree}{\gk{03}}
+\newcommand{\gzerofour}{\gk{04}}
\newcommand{\goneone}{\gk{11}}
\newcommand{\gonetwo}{\gk{12}}
\newcommand{\gonethree}{\gk{13}}
@@ -739,6 +782,10 @@
\newcommand{\guk}[1]{\ensuremath{\msup{\mathbf{\gamma}}{#1}}}
\newcommand{\gu}{\guk}
\newcommand{\guzerozero}{\guk{00}}
+\newcommand{\guzeroone}{\guk{01}}
+\newcommand{\guzerotwo}{\guk{02}}
+\newcommand{\guzerothree}{\guk{03}}
+\newcommand{\guzerofour}{\guk{04}}
\newcommand{\guoneone}{\guk{11}}
\newcommand{\guonetwo}{\guk{12}}
\newcommand{\guonethree}{\guk{13}}
@@ -755,7 +802,7 @@
\newcommand{\gufourtwo}{\guk{42}}
\newcommand{\gufourthree}{\guk{43}}
\newcommand{\gufourfour}{\guk{44}}
-\ExplSyntaxOn
+\ExplSyntaxOn % Vectors formated as in M\&I, written in LaTeX3
\NewDocumentCommand{\mivector}{ O{,} m o }%
{%
\mi_vector:nn { #1 } { #2 }
@@ -772,7 +819,7 @@
}%
}%
\ExplSyntaxOff
-\ExplSyntaxOn
+\ExplSyntaxOn % Column and row vectors, written in LaTeX3
\seq_new:N \l__vector_arg_seq
\cs_new_protected:Npn \vector_main:nnnn #1 #2 #3 #4
{%
@@ -813,81 +860,119 @@
}%
}%
\newphysicsconstant{oofpez}{\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o}}}}
-{\scin[9]{9}}{\ensuremath{\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\\reciprocalsquared}}
+{\scin[8.9876]{9}}{\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\A\reciprocalsquared}
[\m\per\farad][\newton\usk\m\squared\per\coulomb\squared]
+\newcommand{\coulombconstant}{\oofpez}
\newphysicsconstant{oofpezcs}{\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o}
c^2\phantom{_o}}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
[\T\usk\m\squared][\N\usk\s\squared\per\C\squared]
-\newphysicsconstant{epsz}{\ensuremath{\ssub{\epsilon}{o}}}{\scin[9]{-12}}
+\newcommand{\altcoulombconstant}{\oofpezcs}
+\newphysicsconstant{vacuumpermittivity}{\ensuremath{\ssub{\epsilon}{o}}}{\scin[8.8542]{-12}}
{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\quarted\usk\A\squared}[\F\per\m]
[\C\squared\per\N\usk\m\squared]
\newphysicsconstant{mzofp}{\ensuremath{\frac{\phantom{_oo}\ssub{\mu}{o}\phantom{_o}}
{4\pi}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
-[\henry\per\m]
-[\tesla\usk\m\per\A]
-\newphysicsconstant{muz}{\ensuremath{\ssub{\mu}{o}}}{\scin[4\pi]{-7}}
+[\henry\per\m][\tesla\usk\m\per\A]
+\newcommand{\biotsavartconstant}{\mzofp}
+\newphysicsconstant{vacuumpermeability}{\ensuremath{\ssub{\mu}{o}}}{\scin[4\pi]{-7}}
{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m]
[\T\usk\m\per\A]
-\newphysicsconstant{kboltz}{\ensuremath{\ssub{k}{B}}}{\scin[1.38]{-23}}
-{\kg\usk\m\squared\usk\reciprocalsquare\s\usk\reciprocal\K}[\joule\per\K][\J\per\K]
-\newcommand{\kboltznev}{\ensuremath{\scin[8.62]{-5}{\eV\per\K}}}
-\newphysicsconstant{stefan}{\ensuremath{\sigma}}{\scin[5.67]{-8}}
+\newphysicsconstant{boltzmann}{\ensuremath{\ssub{k}{B}}}{\scin[1.3806]{-23}}
+{\m\squared\usk\kg\usk\reciprocalsquare\s\usk\reciprocal\K}[\joule\per\K][\J\per\K]
+\newcommand{\boltzmannconstant}{\boltzmann}
+\newphysicsconstant{boltzmanninev}{\ensuremath{\ssub{k}{B}}}{\scin[8.6173]{-5}}
+{\eV\usk\reciprocal\K}[\eV\per\K][\eV\per\K]
+\newphysicsconstant{stefanboltzmann}{\ensuremath{\sigma}}{\scin[5.6704]{-8}}
{\kg\usk\s\reciprocalcubed\usk\K\reciprocalquarted}[\W\per\m\squared\usk\K^4]
[\W\per\m\squared\usk\K\quarted]
-\newphysicsconstant{planck}{\ensuremath{h}}{\scin[6.62]{-34}}
-{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\kg\usk\m\squared\per\s]
-\newcommand{\plancknev}{\ensuremath{\scin[4.136]{-15}{\eV\usk\s}}}
-\newphysicsconstant{planckbar}{\ensuremath{\hbar}}{\scin[1.05]{-34}}
-{\m\squared\usk\kg\usk\reciprocal\s}[\joule\usk\s][\kg\usk\m\squared\per\s]
-\newcommand{\planckbarnev}{\ensuremath{\scin[4.136]{-15}{\eV\usk\s}}}
-\newphysicsconstant{Navogadro}{\ensuremath{\ssub{N}{A}}}{\scin[6.022]{23}}
+\newcommand{\stefanboltzmannconstant}{\stefanboltzmann}
+\newphysicsconstant{planck}{\ensuremath{h}}{\scin[6.6261]{-34}}
+{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s]
+\newcommand{\planckconstant}{\planck}
+\newphysicsconstant{planckinev}{\ensuremath{h}}{\scin[4.1357]{-15}}
+{\eV\usk\s}[\eV\usk\s][\eV\usk\s]
+\newphysicsconstant{planckbar}{\ensuremath{\hbar}}{\scin[1.0546]{-34}}
+{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s]
+\newcommand{\reducedplanckconstant}{\planckbar}
+\newphysicsconstant{planckbarinev}{\ensuremath{\hbar}}{\scin[6.5821]{-16}}
+{\eV\usk\s}[\eV\usk\s][\eV\usk\s]
+\newphysicsconstant{planckc}{\ensuremath{hc}}{\scin[1.9864]{-25}}
+{\m\cubed\usk\kg\usk\reciprocalsquare\s}[\J\usk\m][\J\usk\m]
+\newcommand{\planckconstanttimesc}{\planckc}
+\newphysicsconstant{planckcinev}{\ensuremath{hc}}{\scin[1.9864]{-25}}
+{\eV\usk\ensuremath{\mathrm{n}\m}}[\eV\usk\ensuremath{\mathrm{n}\m}]
+[\eV\usk\ensuremath{\mathrm{n}\m}]
+\newphysicsconstant{rydberg}{\ensuremath{\msub{R}{\infty}}}{\scin[1.0974]{7}}
+{\reciprocal\m}[\reciprocal\m][\reciprocal\m]
+\newcommand{\rydbergconstant}{\rydberg}
+\newphysicsconstant{bohrradius}{\ensuremath{\msub{a}{0}}}{\scin[5.2918]{-11}}{\m}[\m][\m]
+\newphysicsconstant{finestructure}{\ensuremath{\alpha}}{\scin[7.2974]{-3}}{\relax}
+\newcommand{\finestructureconstant}{\finestructure}
+\newphysicsconstant{avogadro}{\ensuremath{\ssub{N}{A}}}{\scin[6.0221]{23}}
{\reciprocal\mol}[\reciprocal\mol][\reciprocal\mol]
-\newphysicsconstant{bigG}{\ensuremath{G}}{\scin[6.67]{-11}}
+\newcommand{\avogadroconstant}{\avogadro}
+\newphysicsconstant{universalgrav}{\ensuremath{G}}{\scin[6.6738]{-11}}
{\m\cubed\usk\reciprocal\kg\usk\s\reciprocalsquared}[\J\usk\m\per\kg\squared]
[\N\usk\m\squared\per\kg\squared]
-\newphysicsconstant{littleg}{\ensuremath{g}}{9.80}{\m\usk\s\reciprocalsquared}
+\newcommand{\universalgravitationalconstant}{\universalgrav}
+\newphysicsconstant{surfacegravfield}{\ensuremath{g}}{9.80}{\m\usk\s\reciprocalsquared}
[\N\per\kg][\m\per\s\squared]
-\newphysicsconstant{clight}{\ensuremath{c}}{\scin[3.00]{8}}{\m\usk\reciprocal\s}
-[\m\usk\reciprocal\s][\m\per\s]
-\newcommand{\clightnfn}{\ensuremath{\unit{1}{\mathrm{ft}\per\mathrm{n}\s}}}
+\newcommand{\earthssurfacegravitationalfield}{\surfacegravfield}
+\newphysicsconstant{clight}{\ensuremath{c}}{\scin[2.9979]{8}}{\m\usk\reciprocal\s}
+[\m\per\s][\m\per\s]
+\newcommand{\photonconstant}{\clight}
+\newphysicsconstant{clightinfeet}{\ensuremath{c}}{0.9836}
+{\ensuremath{\mathrm{ft}\usk\reciprocal\mathrm{n}\s}}
+[\ensuremath{\mathrm{ft}\per\mathrm{n}\s}][\ensuremath{\mathrm{ft}\per\mathrm{n}\s}]
\newphysicsconstant{Ratom}{\ensuremath{\ssub{r}{atom}}}{\scin{-10}}{\m}[\m][\m]
-\newphysicsconstant{Mproton}{\ensuremath{\ssub{m}{proton}}}{\scin[1.673]{-27}}
+\newcommand{\radiusofatom}{\Ratom}
+\newphysicsconstant{Mproton}{\ensuremath{\ssub{m}{proton}}}{\scin[1.6726]{-27}}
{\kg}[\kg][\kg]
-\newphysicsconstant{Mneutron}{\ensuremath{\ssub{m}{neutron}}}{\scin[1.675]{-27}}
+\newcommand{\massofproton}{\Mproton}
+\newphysicsconstant{Mneutron}{\ensuremath{\ssub{m}{neutron}}}{\scin[1.6749]{-27}}
{\kg}[\kg][\kg]
-\newphysicsconstant{Mhydrogen}{\ensuremath{\ssub{m}{hydrogen}}}{\scin[1.673]{-27}}
+\newcommand{\massofneutron}{\Mneutron}
+\newphysicsconstant{Mhydrogen}{\ensuremath{\ssub{m}{hydrogen}}}{\scin[1.6737]{-27}}
{\kg}[\kg][\kg]
-\newphysicsconstant{Melectron}{\ensuremath{\ssub{m}{electron}}}{\scin[9.109]{-31}}
+\newcommand{\massofhydrogen}{\Mhydrogen}
+\newphysicsconstant{Melectron}{\ensuremath{\ssub{m}{electron}}}{\scin[9.1094]{-31}}
{\kg}[\kg][\kg]
-\newphysicsconstant{echarge}{\ensuremath{e}}{\scin[1.602]{-19}}{\A\usk\s}[\C][\C]
+\newcommand{\massofelectron}{\Melectron}
+\newphysicsconstant{echarge}{\ensuremath{e}}{\scin[1.6022]{-19}}{\A\usk\s}[\C][\C]
+\newcommand{\elementarycharge}{\echarge}
\newphysicsconstant{Qelectron}{\ensuremath{\ssub{Q}{electron}}}{-\echargevalue}
{\A\usk\s}[\C][\C]
\newphysicsconstant{qelectron}{\ensuremath{\ssub{q}{electron}}}{-\echargevalue}
{\A\usk\s}[\C][\C]
+\newcommand{\chargeofelectron}{\Qelectron}
\newphysicsconstant{Qproton}{\ensuremath{\ssub{Q}{proton}}}{+\echargevalue}
{\A\usk\s}[\C][\C]
\newphysicsconstant{qproton}{\ensuremath{\ssub{q}{proton}}}{+\echargevalue}
{\A\usk\s}[\C][\C]
-\newphysicsconstant{MEarth}{\ensuremath{\ssub{M}{Earth}}}{\scin[6]{24}}{\kg}[\kg][\kg]
-\newphysicsconstant{MMoon}{\ensuremath{\ssub{M}{Moon}}}{\scin[7]{22}}{\kg}[\kg][\kg]
-\newphysicsconstant{MSun}{\ensuremath{\ssub{M}{Sun}}}{\scin[2]{30}}{\kg}[\kg][\kg]
-\newphysicsconstant{REarth}{\ensuremath{\ssub{R}{Earth}}}{\scin[6.4]{6}}{\m}[\m][\m]
-\newphysicsconstant{RMoon}{\ensuremath{\ssub{R}{Moon}}}{\scin[1.75]{6}}{\m}[\m][\m]
-\newphysicsconstant{RSun}{\ensuremath{\ssub{R}{Sun}}}{\scin[7]{8}}{\m}[\m][\m]
-\newphysicsconstant{ESdist}{\magvectsub{r}{ES}}{\scin[1.5]{11}}{\m}[\m][\m]
-\newphysicsconstant{SEdist}{\magvectsub{r}{SE}}{\scin[1.5]{11}}{\m}[\m][\m]
-\newphysicsconstant{EMdist}{\magvectsub{r}{EM}}{\scin[4]{8}}{\m}[\m][\m]
-\newphysicsconstant{MEdist}{\magvectsub{r}{ME}}{\scin[4]{8}}{\m}[\m][\m]
-\newcommand{\lightyear}{\ensuremath{\mathrm{ly}}}
-\newcommand{\Lightyear}{\ensuremath{\mathrm{LY}}}
-\newcommand{\cyear}{\ensuremath{c\usk\mathrm{year}}}
-\newcommand{\cyr}{\ensuremath{c\usk\mathrm{yr}}}
-\newcommand{\yyear}{\ensuremath{\mathrm{year}}}
-\newcommand{\yr}{\ensuremath{\mathrm{yr}}}
-\newcommand{\parsec}{\ensuremath{\mathrm{pc}}}
-\newphysicsconstant{LSun}{\ensuremath{\ssub{L}{Sun}}}{\scin[4]{26}}
+\newcommand{\chargeofproton}{\Qproton}
+\newphysicsconstant{MEarth}{\ensuremath{\ssub{M}{Earth}}}{\scin[5.9736]{24}}{\kg}[\kg][\kg]
+\newcommand{\massofEarth}{\MEarth}
+\newphysicsconstant{MMoon}{\ensuremath{\ssub{M}{Moon}}}{\scin[7.3459]{22}}{\kg}[\kg][\kg]
+\newcommand{\massofMoon}{\MMoon}
+\newphysicsconstant{MSun}{\ensuremath{\ssub{M}{Sun}}}{\scin[1.9891]{30}}{\kg}[\kg][\kg]
+\newcommand{\massofSun}{\MSun}
+\newphysicsconstant{REarth}{\ensuremath{\ssub{R}{Earth}}}{\scin[6.3675]{6}}{\m}[\m][\m]
+\newcommand{\radiusofEarth}{\REarth}
+\newphysicsconstant{RMoon}{\ensuremath{\ssub{R}{Moon}}}{\scin[1.7375]{6}}{\m}[\m][\m]
+\newcommand{\radiusofMoon}{\RMoon}
+\newphysicsconstant{RSun}{\ensuremath{\ssub{R}{Sun}}}{\scin[6.9634]{8}}{\m}[\m][\m]
+\newcommand{\radiusofSun}{\RSun}
+\newphysicsconstant{ESdist}{\magvectsub{r}{ES}}{\scin[1.4960]{11}}{\m}[\m][\m]
+\newphysicsconstant{SEdist}{\magvectsub{r}{SE}}{\scin[1.4960]{11}}{\m}[\m][\m]
+\newcommand{\EarthSundistance}{\ESdist}
+\newcommand{\SunEarthdistance}{\SEdist}
+\newphysicsconstant{EMdist}{\magvectsub{r}{EM}}{\scin[3.8440]{8}}{\m}[\m][\m]
+\newphysicsconstant{MEdist}{\magvectsub{r}{ME}}{\scin[3.8440]{8}}{\m}[\m][\m]
+\newcommand{\EarthMoondistance}{\ESdist}
+\newcommand{\MoonEarthdistance}{\SEdist}
+\newphysicsconstant{LSun}{\ensuremath{\ssub{L}{Sun}}}{\scin[3.8460]{26}}
{\m\squared\usk\kg\usk\s\reciprocalcubed}[\W][\J\per\s]
-\newphysicsconstant{TSun}{\ensuremath{\ssub{T}{Sun}}}{5800}{\K}[\K][\K]
+\newphysicsconstant{TSun}{\ensuremath{\ssub{T}{Sun}}}{5778}{\K}[\K][\K]
\newphysicsconstant{MagSun}{\ensuremath{\ssub{M}{Sun}}}{+4.83}{}[][]
\newphysicsconstant{magSun}{\ensuremath{\ssub{m}{Sun}}}{-26.74}{}[][]
\newcommand{\Lstar}[1][\(\star\)]{\ensuremath{\ssub{L}{#1}}}
@@ -900,8 +985,6 @@ c^2\phantom{_o}}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocal
\newcommand{\Msolar}{\ensuremath{\Mstar[\(\odot\)]}}
\newcommand{\Fstar}[1][\(\star\)]{\ensuremath{\ssub{F}{#1}}}
\newcommand{\fstar}[1][\(\star\)]{\ensuremath{\ssub{f}{#1}}}
-\newcommand{\FSun}{\ensuremath{\Fstar[Sun]}}
-\newcommand{\fSun}{\ensuremath{\fstar[Sun]}}
\newcommand{\Fsolar}{\ensuremath{\Fstar[\(\odot\)]}}
\newcommand{\fsolar}{\ensuremath{\fstar[\(\odot\)]}}
\newcommand{\Magstar}[1][\(\star\)]{\ensuremath{\ssub{M}{#1}}}
@@ -921,17 +1004,36 @@ c^2\phantom{_o}}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocal
\newcommand{\oneeighth}{\ensuremath{\frac{1}{8}}\xspace}
\newcommand{\oneninth}{\ensuremath{\frac{1}{9}}\xspace}
\newcommand{\onetenth}{\ensuremath{\frac{1}{10}}\xspace}
+\newcommand{\twooneths}{\ensuremath{\frac{2}{1}}\xspace}
+\newcommand{\twohalves}{\ensuremath{\frac{2}{2}}\xspace}
\newcommand{\twothirds}{\ensuremath{\frac{2}{3}}\xspace}
+\newcommand{\twofourths}{\ensuremath{\frac{2}{4}}\xspace}
\newcommand{\twofifths}{\ensuremath{\frac{2}{5}}\xspace}
+\newcommand{\twosixths}{\ensuremath{\frac{2}{6}}\xspace}
\newcommand{\twosevenths}{\ensuremath{\frac{2}{7}}\xspace}
+\newcommand{\twoeighths}{\ensuremath{\frac{2}{8}}\xspace}
\newcommand{\twoninths}{\ensuremath{\frac{2}{9}}\xspace}
+\newcommand{\twotenths}{\ensuremath{\frac{2}{10}}\xspace}
+\newcommand{\threeoneths}{\ensuremath{\frac{3}{1}}\xspace}
\newcommand{\threehalves}{\ensuremath{\frac{3}{2}}\xspace}
+\newcommand{\threethirds}{\ensuremath{\frac{3}{3}}\xspace}
\newcommand{\threefourths}{\ensuremath{\frac{3}{4}}\xspace}
\newcommand{\threefifths}{\ensuremath{\frac{3}{5}}\xspace}
+\newcommand{\threesixths}{\ensuremath{\frac{3}{6}}\xspace}
\newcommand{\threesevenths}{\ensuremath{\frac{3}{7}}\xspace}
\newcommand{\threeeighths}{\ensuremath{\frac{3}{8}}\xspace}
+\newcommand{\threeninths}{\ensuremath{\frac{3}{9}}\xspace}
\newcommand{\threetenths}{\ensuremath{\frac{3}{10}}\xspace}
+\newcommand{\fouroneths}{\ensuremath{\frac{4}{1}}\xspace}
+\newcommand{\fourhalves}{\ensuremath{\frac{4}{2}}\xspace}
\newcommand{\fourthirds}{\ensuremath{\frac{4}{3}}\xspace}
+\newcommand{\fourfourths}{\ensuremath{\frac{4}{4}}\xspace}
+\newcommand{\fourfifths}{\ensuremath{\frac{4}{5}}\xspace}
+\newcommand{\foursixths}{\ensuremath{\frac{4}{6}}\xspace}
+\newcommand{\foursevenths}{\ensuremath{\frac{4}{7}}\xspace}
+\newcommand{\foureighths}{\ensuremath{\frac{4}{8}}\xspace}
+\newcommand{\fourninths}{\ensuremath{\frac{4}{9}}\xspace}
+\newcommand{\fourtenths}{\ensuremath{\frac{4}{10}}\xspace}
\newcommand{\dx}[1]{\ensuremath{\,\mathrm{d}{#1}}}
\newcommand{\evalfromto}[3]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}^{#3}}}
\@ifpackageloaded{physymb}{%
@@ -1000,7 +1102,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\newcommand{\binomialseries}{\ensuremath{%
(1 + x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2 + \ldots}\xspace}
\@ifpackageloaded{physymb}{%
- \typeout{mandi: Package physymb detected. Its commands will be used.}
+ \typeout{mandi: Package physymb detected. Its commands will be used.}
}{%
\newcommand{\gradient}{\ensuremath{\nabla}}
\newcommand{\divergence}{\ensuremath{\nabla\bullet}}
@@ -1029,8 +1131,6 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\DeclareMathOperator{\sgn}{sgn}
}%
\DeclareMathOperator{\dex}{dex}
-\newcommand{\eV}{\electronvolt}
-\newcommand{\ev}{\electronvolt}
\newcommand{\logb}[1][\relax]{\ensuremath{\log_{_{#1}}}}
\ifthenelse{\boolean{@optitalicvectors}}
{\newcommand{\cB}{\ensuremath{c\mskip -5.00mu B}}}
@@ -1050,7 +1150,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\newcommand{\bquant}[1]{\ensuremath{\left[{#1}\right]}}
\newcommand{\changein}[1]{\ensuremath{\delta{#1}}}
\newcommand{\Changein}[1]{\ensuremath{\Delta{#1}}}
-\newcommandx{\scin}[3][1,3=\!\!,usedefault]{\ensuremath{
+\newcommandx{\scin}[3][1,3=\!\!,usedefault]{\ensuremath{%
\ifthenelse{\equal{#1}{}}
{\unit{\msup{10}{#2}}{#3}}
{\unit{\msup{{#1}\times 10}{#2}}{#3}}}}
@@ -1060,11 +1160,11 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\newcommand{\hms}[3]{\ensuremath{{#1}^{\hour}{#2}^{\mathrm{m}}{#3}^{\s}}}
\newcommand{\clockreading}{\hms}
\newcommand{\latitude}[1]{\ensuremath{\unit{#1}{\degree}}}
-\newcommand{\latitudeN}[1]{\ensuremath{\unit{#1}{\degree\; N}}}
-\newcommand{\latitudeS}[1]{\ensuremath{\unit{#1}{\degree\; S}}}
+\newcommand{\latitudeN}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{N}}}}
+\newcommand{\latitudeS}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{S}}}}
\newcommand{\longitude}[1]{\ensuremath{\unit{#1}{\degree}}}
-\newcommand{\longitudeE}[1]{\ensuremath{\unit{#1}{\degree\; E}}}
-\newcommand{\longitudeW}[1]{\ensuremath{\unit{#1}{\degree\; W}}}
+\newcommand{\longitudeE}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{E}}}}
+\newcommand{\longitudeW}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{W}}}}
\newcommand{\ssub}[2]{\ensuremath{{#1}_{_{_{\mbox{\tiny{#2}}}}}}}
\newcommand{\ssup}[2]{\ensuremath{{#1}^{^{^{\mbox{\tiny{#2}}}}}}}
\newcommand{\ssud}[3]{\ensuremath{{#1}^{^{^{\mbox{\tiny{#2}}}}}_{_{_{\mbox{\tiny{#3}}}}}}}
@@ -1072,6 +1172,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\newcommand{\msup}[2]{\ensuremath{#1^{^{\scriptstyle{#2}}}}}
\newcommand{\msud}[3]{\ensuremath{#1^{^{\scriptstyle{#2}}}_{_{_{\scriptstyle{#3}}}}}}
\newcommand{\levicivita}[1]{\ensuremath{\msub{\varepsilon}{#1}}}
+\newcommand{\kronecker}[1]{\ensuremath{\msub{\delta}{#1}}}
\newcommand{\xaxis}{\ensuremath{x\mbox{-axis }}}
\newcommand{\yaxis}{\ensuremath{y\mbox{-axis }}}
\newcommand{\zaxis}{\ensuremath{z\mbox{-axis }}}
@@ -1119,36 +1220,37 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\newcommand{\platerthan}{\pwordoperator{later}{than}\xspace}
\newcommand{\pforevery}{\pwordoperator{for}{every}\xspace}
\newcommand{\defines}{\ensuremath{\stackrel{\text{\tiny{def}}}{=}}\xspace}
-\newcommand{\inframe}[1][\relax]{\ensuremath{\xrightarrow[\tiny{\mathcal #1}]{}}\xspace}
+\newcommand{\inframe}[1][\relax]{\ensuremath{\xrightarrow[\text\tiny{\mathcal #1}]{}}\xspace}
\newcommand{\associates}{\ensuremath{\xrightarrow{\text{\tiny{assoc}}}}\xspace}
\newcommand{\becomes}{\ensuremath{\xrightarrow{\text{\tiny{becomes}}}}\xspace}
\newcommand{\rrelatedto}[1]{\ensuremath{\xLongrightarrow{\text{\tiny{#1}}}}}
\newcommand{\lrelatedto}[1]{\ensuremath{\xLongleftarrow[\text{\tiny{#1}}]{}}}
-\newcommand{\brelatedto}[2]{\ensuremath{
+\newcommand{\brelatedto}[2]{\ensuremath{%
\xLongleftrightarrow[\text{\tiny{#1}}]{\text{\tiny{#2}}}}}
-\newcommand{\momprinciple}{\ensuremath{
+\newcommand{\momentumprinciple}{\ensuremath{
\vectsub{p}{sys,f}=\vectsub{p}{sys,i}+\Fnetsys\Delta t}}
-\newcommand{\LHSmomprinciple}{\ensuremath{
+\newcommand{\LHSmomentumprinciple}{\ensuremath{%
\vectsub{p}{sys,f}}}
-\newcommand{\RHSmomprinciple}{\ensuremath{
+\newcommand{\RHSmomentumprinciple}{\ensuremath{%
\vectsub{p}{sys,i}+\Fnetsys\Delta t}}
\newcommand{\energyprinciple}{\ensuremath{\ssub{E}{sys,f}=\ssub{E}{sys,i}+
\ssub{W}{ext}+Q}}
\newcommand{\LHSenergyprinciple}{\ensuremath{\ssub{E}{sys,f}}}
\newcommand{\RHSenergyprinciple}{\ensuremath{\ssub{E}{sys,i}+\ssub{W}{ext}+Q}}
-\newcommand{\angularmomprinciple}{\ensuremath{\vectsub{L}{sys,A,f}=\vectsub{L}{sys,A,i}+
+\newcommand{\angularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,f}=
+ \vectsub{L}{sys,A,i}+\Tnetsys\Delta t}}
+\newcommand{\LHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,f}}}
+\newcommand{\RHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,i}+
\Tnetsys\Delta t}}
-\newcommand{\LHSangularmomprinciple}{\ensuremath{\vectsub{L}{sys,A,f}}}
-\newcommand{\RHSangularmomprinciple}{\ensuremath{\vectsub{L}{sys,A,i}+\Tnetsys\Delta t}}
-\newcommand{\gravinteraction}{\ensuremath{
- \bigGmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{\msup{\magvectsub{r}{12}}{2}}
+\newcommand{\gravitationalinteraction}{\ensuremath{%
+ \universalgravmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{\msup{\magvectsub{r}{12}}{2}}
\quant{-\dirvectsub{r}{12}}}}
-\newcommand{\elecinteraction}{\ensuremath{
+\newcommand{\electricinteraction}{\ensuremath{%
\oofpezmathsymbol\frac{\msub{Q}{1}\msub{Q}{2}}{\msup{\magvectsub{r}{12}}{2}}
\dirvectsub{r}{12}}}
-\newcommand{\Bfieldofparticle}{\ensuremath{
+\newcommand{\Bfieldofparticle}{\ensuremath{%
\mzofpmathsymbol\frac{Q\magvect{v}}{\msup{\magvect{r}}{2}}\dirvect{v}\times\dirvect{r}}}
-\newcommand{\Efieldofparticle}{\ensuremath{
+\newcommand{\Efieldofparticle}{\ensuremath{%
\oofpezmathsymbol\frac{Q}{\msup{\magvect{r}}{2}}\dirvect{r}}}
\newcommand{\Esys}{\ssub{E}{sys}}
\newcommandx{\Us}[1][1]{\ssub{\ssub{U}{s}}{#1}}
@@ -1195,10 +1297,10 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\newcommand{\Tnetext}{\ensuremath{\vectsub{T}{net,ext}}}
\newcommand{\Tnetsys}{\ensuremath{\vectsub{T}{net,sys}}}
\newcommand{\Tsub}[1]{\ensuremath{\vectsub{T}{#1}}}
-\newcommand{\vpythonline}{\lstinline[language=Python,numbers=left,numberstyle=\tiny,
+\newcommand{\vpythonline}{\lstinline[language=Python,numbers=left,numberstyle=\tiny,%
upquote=true,breaklines]}
\lstnewenvironment{vpythonblock}{\lstvpython}{}
-\newcommand{\vpythonfile}{\lstinputlisting[language=Python,numbers=left,
+\newcommand{\vpythonfile}{\lstinputlisting[language=Python,numbers=left,%
numberstyle=\tiny,upquote=true,breaklines]}
\newcommandx{\emptyanswer}[2][1=0.80,2=0.1,usedefault]
{\begin{minipage}{#1\textwidth}\hfill\vspace{#2\textheight}\end{minipage}}
@@ -1215,7 +1317,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\response@fbox{\usebox{\@tempboxa}}%
\end{center}%
}%
-\newenvironmentx{adjactivityanswer}[5][1=white,2=black,3=black,4=0.90,5=0.00,
+\newenvironmentx{adjactivityanswer}[5][1=white,2=black,3=black,4=0.90,5=0.00,%
usedefault]{%
\def\skipper{#5}%
\def\response@fbox{\fcolorbox{#2}{#1}}%
@@ -1230,7 +1332,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}%
}%
\newcommandx{\emptybox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.10,usedefault]
- {\begin{center}
+ {\begin{center}%
\fcolorbox{#3}{#2}{%
\begin{minipage}[c][#6\textheight][c]{#5\textwidth}\color{#4}%
{#1}%
@@ -1239,7 +1341,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}%
}%
\newcommandx{\adjemptybox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=,7=0.0,usedefault]
- {\begin{center}
+ {\begin{center}%
\fcolorbox{#3}{#2}{%
\begin{minipage}[c]{#5\textwidth}\color{#4}%
\vspace{#7\textheight}%
@@ -1250,7 +1352,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}%
}%
\newcommandx{\answerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.1,usedefault]
- {\ifthenelse{\equal{#1}{}}
+ {\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
\emptyanswer[#5][#6]}%
@@ -1258,8 +1360,8 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}}%
{\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
-\newcommandx{\adjanswerbox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.1,7=0.0,
- usedefault]
+\newcommandx{\adjanswerbox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.1,7=0.0,%
+ usedefault]%
{\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
@@ -1268,9 +1370,9 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}}%
{\adjemptybox[#1][#2][#3][#4][#5][#6][#7]}%
}%
-\newcommandx{\smallanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.10,
- usedefault]
- {\ifthenelse{\equal{#1}{}}
+\newcommandx{\smallanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.10,%
+ usedefault]%
+ {\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
\emptyanswer[#5][#6]}%
@@ -1278,9 +1380,9 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}}%
{\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
-\newcommandx{\mediumanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.20,
+\newcommandx{\mediumanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.20,%
usedefault]{%
- \ifthenelse{\equal{#1}{}}
+ \ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
\emptyanswer[#5][#6]%
@@ -1288,12 +1390,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\vspace{\baselineskip}%
\end{center}%
}%
- {\emptybox[#1][#2][#3][#4][#5][#6]
+ {\emptybox[#1][#2][#3][#4][#5][#6]%
}%
}%
-\newcommandx{\largeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.25,
+\newcommandx{\largeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.25,%
usedefault]{%
- \ifthenelse{\equal{#1}{}}
+ \ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
\emptyanswer[#5][#6]%
@@ -1301,12 +1403,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\vspace{\baselineskip}%
\end{center}%
}%
- {\emptybox[#1][#2][#3][#4][#5][#6]
+ {\emptybox[#1][#2][#3][#4][#5][#6]%
}%
}%
-\newcommandx{\largeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.33,
+\newcommandx{\largeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.33,%
usedefault]{%
- \ifthenelse{\equal{#1}{}}
+ \ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
\emptyanswer[#5][#6]%
@@ -1314,10 +1416,10 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\vspace{\baselineskip}%
\end{center}%
}%
- {\emptybox[#1][#2][#3][#4][#5][#6]
+ {\emptybox[#1][#2][#3][#4][#5][#6]%
}%
}%
-\newcommandx{\hugeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.50,
+\newcommandx{\hugeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.50,%
usedefault]{%
\ifthenelse{\equal{#1}{}}
{\begin{center}%
@@ -1327,12 +1429,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\vspace{\baselineskip}%
\end{center}%
}%
- {\emptybox[#1][#2][#3][#4][#5][#6]
+ {\emptybox[#1][#2][#3][#4][#5][#6]%
}%
}%
-\newcommandx{\hugeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.75,
+\newcommandx{\hugeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.75,%
usedefault]{%
- \ifthenelse{\equal{#1}{}}
+ \ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
\emptyanswer[#5][#6]%
@@ -1340,12 +1442,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\vspace{\baselineskip}%
\end{center}%
}%
- {\emptybox[#1][#2][#3][#4][#5][#6]
+ {\emptybox[#1][#2][#3][#4][#5][#6]%
}%
}%
-\newcommandx{\fullpageanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=1.00,
+\newcommandx{\fullpageanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=1.00,%
usedefault]{%
- \ifthenelse{\equal{#1}{}}
+ \ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
\emptyanswer[#5][#6]}%
@@ -1391,9 +1493,9 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\NewEnviron{miderivation}{%
\begin{mdframed}[style=miderivationstyle]
\setcounter{equation}{0}
- \begin{align}
+ \begin{align*}
\BODY
- \end{align}
+ \end{align*}
\end{mdframed}
}%
\mdfdefinestyle{bwinstructornotestyle}{%
@@ -1434,9 +1536,9 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\NewEnviron{bwderivation}{%
\begin{mdframed}[style=bwderivationstyle]
\setcounter{equation}{0}
- \begin{align}
+ \begin{align*}
\BODY
- \end{align}
+ \end{align*}
\end{mdframed}
}%
\newcommand{\checkpoint}{%
@@ -1450,29 +1552,45 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}%
\end{figure}}
\newcommand{\sneakyone}[1]{\ensuremath{\cancelto{1}{\frac{#1}{#1}}}}
-\newcommand{\chkphysicsquantity}[1]{%
- \cs{#1}
+\newcommand{\chkquantity}[1]{%
+ \begin{center}
+ \begin{tabular}{C{3cm} C{3cm} C{3cm} C{3cm}}
+ name & baseunit & drvdunit & tradunit \tabularnewline
+ \cs{#1} & \csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname &
+ \csname #1onlytradunit\endcsname
+ \end{tabular}
+ \end{center}
+}%
+\newcommand{\chkconstant}[1]{%
+ \begin{center}
+ \begin{tabular}{C{3cm} C{1cm} C{2cm} C{3cm} C{3cm} C{3cm}}
+ name & symbol & value & baseunit & drvdunit & tradunit \tabularnewline
+ \cs{#1} & \csname #1mathsymbol\endcsname & \csname #1value\endcsname &
+ \csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname &
+ \csname #1onlytradunit\endcsname
+ \end{tabular}
+ \end{center}
}%
\newcommandx{\vecto}[2][2,usedefault]{\ensuremath{%
\ifthenelse{\equal{#2}{}}%
- {\vec{\mathrm #1}}%
- {\ssub{\vec{\mathrm #1}}{#2}}}}%
-\newcommandx{\compvecto}[3][2,usedefault]{\ensuremath{%
- \ifthenelse{\equal{#2}{}}%
- {\ssub{\mathrm #1}{\(#3\)}}%
- {\ssub{\mathrm #1}{#2,\(#3\)}}}}%
+ {\vec{#1}}%
+ {\ssub{\vec{#1}}{#2}}}}%
+\newcommandx{\compvecto}[3][3,usedefault]{\ensuremath{%
+ \ifthenelse{\equal{#3}{}}%
+ {\ssub{#1}{\(#2\)}}%
+ {\ssub{#1}{\(#2\),#3}}}}%
\newcommandx{\scompsvecto}[2][2,usedefault]{\ensuremath{%
\ifthenelse{\equal{#2}{}}%
{\lv\compvecto{#1}{x},\compvecto{#1}{y},\compvecto{#1}{z}\rv}%
- {\lv\compvecto{#1}[#2]{x},\compvecto{#1}[#2]{y},\compvecto{#1}[#2]{z}\rv}}}%
-\newcommandx{\compposo}[2][1,usedefault]{\ensuremath{%
+ {\lv\compvecto{#1}{x}[#2],\compvecto{#1}{y}[#2],\compvecto{#1}{z}[#2]\rv}}}%
+\newcommandx{\compposo}[2][2,usedefault]{\ensuremath{%
\ifthenelse{\equal{#1}{}}%
- {#2}%
- {\ssub{#2}{#1}}}}%
+ {#1}%
+ {\ssub{#1}{#2}}}}%
\newcommandx{\scompsposo}[1][1,usedefault]{\ensuremath{%
\ifthenelse{\equal{#1}{}}%
{\lv\compposo{x},\compposo{y},\compposo{z}\rv}%
- {\lv\compposo[#1]{x},\compposo[#1]{y},\compposo[#1]{z}\rv}}}%
+ {\lv\compposo{x}[#1],\compposo{y}[#1],\compposo{z}[#1]\rv}}}%
\endinput
%%
%% End of file `mandi.sty'.