summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/generic/pgfplots/pgfplots.scaling.code.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/tex/generic/pgfplots/pgfplots.scaling.code.tex')
-rw-r--r--Master/texmf-dist/tex/generic/pgfplots/pgfplots.scaling.code.tex178
1 files changed, 89 insertions, 89 deletions
diff --git a/Master/texmf-dist/tex/generic/pgfplots/pgfplots.scaling.code.tex b/Master/texmf-dist/tex/generic/pgfplots/pgfplots.scaling.code.tex
index 283650ac54d..e079bb6d46f 100644
--- a/Master/texmf-dist/tex/generic/pgfplots/pgfplots.scaling.code.tex
+++ b/Master/texmf-dist/tex/generic/pgfplots/pgfplots.scaling.code.tex
@@ -4,7 +4,7 @@
%
% Provides a user-friendly interface to create function plots (normal
% plots, semi-logplots and double-logplots).
-%
+%
% It is based on Till Tantau's PGF package.
%
% Copyright 2007-2012 by Christian Feuersänger.
@@ -13,21 +13,21 @@
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
-%
+%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
-%
+%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
%--------------------------------------------
-% PRECONDITION:
+% PRECONDITION:
% - final axis limits are given in transformed range
% - \pgfplots@set@default@size@options has been invoked before
-% POSTCONDITION:
+% POSTCONDITION:
% - the current x,y and z unit vectors are defined properly;
% - the fast-access registers are initialised for the axis limits,
% - the following macros are assigned:
@@ -190,18 +190,18 @@
}
% Takes azimuth (horizontal angle) '#1' and elongation (vertical
-% angle) '#2' (both in degrees) and computes
+% angle) '#2' (both in degrees) and computes
% x,y and z vectors which define the view in the direction
% defined by '#1' and '#2'.
%
% 'azimuth' means a rotation around the viewport's x axis. 'elongation' means
% a rotation around the original coordinate system's z axis.
%
-% The method works by computing
+% The method works by computing
% Az = [ cos(azimuth) -sin(azimuth) 0; ...
% sin(azimuth) cos(azimuth) 0; ...
% 0 0 1 ];
-%
+%
%
% Ax = [ 1 0 0; ...
% 0 cos(elevation) -sin(elevation) ;...
@@ -213,7 +213,7 @@
% sinaz cosaz cosel -sinel cosaz; ...
% 0 sinel cosel ];
%
-% Then, we use the rotated XZ plane as viewport, that means
+% Then, we use the rotated XZ plane as viewport, that means
% xvec = v * [1 0 0]' = <first column of v>
% zvec = v * [0 0 1]' = <third column of v>
% and we define the projection onto the twodimensional surface
@@ -230,7 +230,7 @@
%
% Furthermore, the 3D view vector which points into the direction of the view
% is
-% n = v * [0 1 0 ]' = <second column of v> = [-sinaz cosel, cosaz cosel, sinel]'
+% n = v * [0 1 0 ]' = <second column of v> = [-sinaz cosel, cosaz cosel, sinel]'
% because the normal view point was the XZ plane with y as its normal
% vector.
% The 3D vector n is returned by this routine as well - it is
@@ -241,7 +241,7 @@
% - #1 : azimuth ("yaw")
% - #2 : elevation ("pitch")
% OUTPUT:
-% - #3 : a macro which will be set to '1' if and only if
+% - #3 : a macro which will be set to '1' if and only if
% the viewport is the standard XY axis (i.e. azimuth=0, elevation=90).
% - [xyz] vectors,
% \pgfplots@view@dir@threedim will contain the three components
@@ -353,7 +353,7 @@
}%
% Takes the current plot box, defined by the actual PGF x,y and z unit
-% vectors, and re-scales it such that it fits into the
+% vectors, and re-scales it such that it fits into the
% width and height of the axis (as they have been provided by the
% user).
%
@@ -373,7 +373,7 @@
% that the bounding box of the final image has width #1 and height #2.
%
% The relative length of the input vectors is important for the 3D case: it
-% will be scaled as-is.
+% will be scaled as-is.
%
% PRECONDITION
% - the x, y and z unit vectors have been set to the proper
@@ -384,7 +384,7 @@
% to the data transformation.
% - the data transformation has ONLY been applied to the axis limits
% (not other axis inputs). It may be changed by this method.
-%
+%
% POSTCONDITION
% - the unit vectors have been re-scaled such that the final plot
% has the desired dimensions.
@@ -419,7 +419,7 @@
% to respect the limits.
%
% This method ignores width/height; its purpose is only to make sure
-% that [xmin,xmax] fits into the CURRENT plot box.
+% that [xmin,xmax] fits into the CURRENT plot box.
%
% In this context, each unit vector is supposed to be scaled such that
% width/height fit if xmin=0 and xmax=1.
@@ -427,12 +427,12 @@
% #1 [output] a macro name which will contain the INVERSE scale for x
% #2 [output] a macro name which will contain the INVERSE scale for y
% #3 [output] a macro name which will contain the INVERSE scale for z
-%
+%
\def\pgfplots@BB@for@plotbox@get@unit@scales@for@limits#1#2#3{%
\if1\b@pgfplots@plotbox@xisunit
% Consequently, we have to multiply with 1/(max-min):
% compute 1/(xmax - xmin) in float for more recent versions (see /pgfplots/compat/scaling).
- % I observed that it is much more accurate
+ % I observed that it is much more accurate
\pgfmathsubtract@{\pgfplots@xmax}{\pgfplots@xmin}%
\else
\def\pgfmathresult{1}%
@@ -491,7 +491,7 @@
%
% the result of this call will be used to scale to target
% dimensions. If we omit \pgftransformreset here, we might
- % accidentally UNDO the PGF transformation matrix (compare by
+ % accidentally UNDO the PGF transformation matrix (compare by
% writing \tikzpicture[scale=0.5] before the axis).
\pgftransformreset
%
@@ -526,7 +526,7 @@
\def\pgfplots@scaleaxes@to@BB@prepare@plotbox@limits@#1{%
\expandafter\ifx\csname pgfplots@#1\endcsname\pgfutil@empty
- % Ah - we have no unit vector in this direction.
+ % Ah - we have no unit vector in this direction.
\expandafter\def\csname pgfplots@plotbox@#1min\endcsname{0}%
\expandafter\def\csname pgfplots@plotbox@#1max\endcsname{1}%
\expandafter\def\csname b@pgfplots@plotbox@#1isunit\endcsname{1}%
@@ -578,7 +578,7 @@
%
\if3\pgfplots@scale@mode@choice
% scale mode=scale uniformly
- %
+ %
% We need to recompensate in case the previous method chose
% different unit scaling scalings:
\pgfplots@BB@for@plotbox@get@unit@scales@compensated@axis@limits
@@ -793,7 +793,7 @@
\fi
}%
-% Defines
+% Defines
% \pgfplots@target@unit@scale@xx
% \pgfplots@target@unit@scale@xy
% \pgfplots@target@unit@scale@yx
@@ -905,7 +905,7 @@
}%
\def\pgfplots@notify@final@scalings#1{%
- \pgfkeys{/pgfplots/scaling/.cd,
+ \pgfkeys{/pgfplots/scaling/.cd,
.unknown/.code={%
%\message{setting key '\pgfkeyscurrentkey' to {##1}^^J}
\pgfkeyssetvalue{\pgfkeyscurrentkey}{##1}%
@@ -960,7 +960,7 @@
%
% OUTPUT:
% \pgfplots@target@datascaletrafo@x@exponent and its variants for y and z
-% -> contains NEW datascaletrafo exponents
+% -> contains NEW datascaletrafo exponents
% \pgfplots@target@datascaletrafo@x@exponent@old and its variants for y and z
% -> contains OLD datascaletrafo exponents
% \pgfplots@target@unit@scale@inv@x and its variants for y and z
@@ -980,7 +980,7 @@
\expandafter\pgfplots@loc@TMPa\pgfmathresult
\pgf@xa=\csname pgfplots@target@limitrescale@#1\endcsname pt
\ifdim\pgf@xa>5pt %
- % We want to enlarge axis limits considerably!
+ % We want to enlarge axis limits considerably!
%
\pgfplots@scaling@adjust@datascaling@for@get@compensation{\pgf@xa}%
%
@@ -1004,8 +1004,8 @@
}%
}
-% Returns
-% \pgfplotsretval -> the absolute scaling
+% Returns
+% \pgfplotsretval -> the absolute scaling
% \pgfplotsretvalb -> the log10 of the scaling
\def\pgfplots@scaling@adjust@datascaling@for@get@compensation#1{
\ifdim#1<100pt %
@@ -1067,7 +1067,7 @@
% scale mode=none does not happen here
\or
% scale mode=stretch to fill
- %
+ %
% This is very simple:
%
% Compute individual scaling factors for X and Y
@@ -1077,7 +1077,7 @@
%
\pgfmathdivide@{\H}{\h}%
\let\scaley=\pgfmathresult
- %
+ %
% no changes to the axis limits - we only rescale units.
\def\pgfplots@target@limitrescale@x@{1}%
\def\pgfplots@target@limitrescale@y@{1}%
@@ -1094,7 +1094,7 @@
% scale -- but the axis limits can receive individual
% compensation scales. But it should "look reasonable well".
%
- % currently, we have
+ % currently, we have
% w = r_x e_xx + r_y e_yx + rz e_zx (with e_zx = 0 typically)
% h = r_x e_xy + r_y e_yy + rz e_zy
%
@@ -1103,7 +1103,7 @@
% they are either 1 (relative coords) or
% (xmax-xmin) (absolute coords).
%
- % Now, search for a set of real numbers
+ % Now, search for a set of real numbers
% Rx, Ry, Rz, s
% such that
% W = (Rx r_x) (s e_xx) + (Ry r_y) (s e_yx) + (Rz r_z) (s e_zx)
@@ -1124,7 +1124,7 @@
% bad: Rz will be less than 1, causing the limit to become
% smaller. This, in turn, will clip away parts of the image.
%
- %
+ %
%
% Another solution is to make it the other way: to keep the
% limit r_z, but to reduce the size and enlarge the other
@@ -1184,17 +1184,17 @@
% 1. if a choice requires to REDUCE the axis limits in order to
% fulfill all constraints, it is neglected (using maximal cost 16000).
% Reducing axis limits may clip away information.
-%
+%
% 2. if a choice requires to ENLARGE some axis limits, its cost is the
% sum of the individual scaling factors (even if they are are one -
% who cares).
%
% Note that this method *is* relevant and the optimization appears to
-% be necessary.
+% be necessary.
% Examples are
% unittest_scalemode_2d_standard_1.tex
% and perhaps
-% unittest_scalemode_2d_standard_0.tex
+% unittest_scalemode_2d_standard_0.tex
% and more involved 3d examples are also available.
%
% My first guess was that it is sufficient to decide the optimal
@@ -1202,7 +1202,7 @@
% height - but that proved to be insufficient: it leads to correct
% results, but wastes too much space (i.e. enlarges limits too much).
%
-% ATTENTION: the cost function INCLUDES RESULTS OF
+% ATTENTION: the cost function INCLUDES RESULTS OF
% \pgfplots@BB@for@plotbox@get@unit@scales@for@limits and its
% corrector
% \pgfplots@BB@for@plotbox@get@unit@scales@compensated@axis@limits.
@@ -1210,16 +1210,16 @@
% More precisely, it relies on already computes limit compensation
% factors which do not depend on the target width/target height: both
% \pgfplots@BB@for@plotbox@get@unit@scales@compensated@axis@limits and
-% this implementation of 'scale uniformly strategy' can be used to compute
+% this implementation of 'scale uniformly strategy' can be used to compute
% the cost of a strategy.
-%
+%
\def\pgfplots@get@scale@horiz@and@vert@scaleuniformly@of@optimal@strategy{%
\begingroup
\def\mathclass{default}%
\pgfplotscoordmath{\mathclass}{max limit}%
\let\pgfplots@cost@for@choice@superhigh=\pgfmathresult%
%
- % private helpers to compute the cost.
+ % private helpers to compute the cost.
\def\pgfplots@scalestrategy@compute@cost{%
\begingroup
% ATTENTION: this call changes
@@ -1324,7 +1324,7 @@
\def\pgfplots@tostring@scaleuniformlystrategy#1{%
% scale uniformly strategy:
- \ifcase#1\relax
+ \ifcase#1\relax
auto
\or
units only
@@ -1419,7 +1419,7 @@
% Computes 'scale uniformly strategy=change horizontal limits'.
% This is a complicated solution, see the documentation in the
-% implementation for
+% implementation for
% 'scale mode=scale uniformly'
%
% #1 [output] a macro which will contain the (uniform) scale for the
@@ -1471,7 +1471,7 @@
%
% This is the (most stupid) nonlinear method which is at hand:
% fix point iteration.
- % choose R arbitrarily (R=1 seems adequate), solve for s.
+ % choose R arbitrarily (R=1 seems adequate), solve for s.
% Then, fix s and solve for R. Then, fix R and
% solve for s until convergence.
\c@pgf@countc=0
@@ -1500,7 +1500,7 @@
}%
% Computes 'scale uniformly strategy=change horizontal limits'.
-%
+%
% This is a simplified closed solution assuming that e_xy=0 and e_yx = 0
%
% #1 [output] a macro which will contain the (uniform) scale for the
@@ -1510,7 +1510,7 @@
% #4 [output] a macro which will contain a x axis limit compensation scale
\def\pgfplots@scaleuniformly@change@horizontal@limits@twodim#1#2#3#4{%
\begingroup
- % Assuming that we have a standard 2d axis, i.e.
+ % Assuming that we have a standard 2d axis, i.e.
% e_zx = e_zy = 0, e_xy = 0, and e_yx =0,
% we can immediately compute a solution.
%
@@ -1529,7 +1529,7 @@
% since this strategy changes horizontal limits (only), we have
% Ry := 1.
% We find
- % s : = H/h
+ % s : = H/h
% and
% Rx : = W/w /s .
%
@@ -1583,7 +1583,7 @@
% This is part of the implementation of 'scale mode=scale uniformly'.
%
-% Its purpose it to set up the initial scaling such that
+% Its purpose it to set up the initial scaling such that
% 1. each unit vector gets the same scale
% 2. the axis limits are resized (enlarged) to keep the plot box ratio
% (as far as possible)
@@ -1727,7 +1727,7 @@
% EXECUTABLE instructions which will modify the axis limits to fit the
% scaling.
%
-% PRECONDITION:
+% PRECONDITION:
% - \pgfplots@glob@TMPa contains the already computed
% scaling factor for 'scale uniformly'
% - \pgf@xb is the actual height and \pgf@yb is the desired height
@@ -1739,7 +1739,7 @@
% The strategy is as follows:
% 1. I want to fit the axis into width #1 (\pgf@ya) and
% height #1 (\pgf@yb).
- % 2. I want to MAINTAIN the unit vector ratio.
+ % 2. I want to MAINTAIN the unit vector ratio.
% 3. I want to MAINTAIN the unit vector directions.
%
% I already know the scaling factor to fit the width (it
@@ -1760,7 +1760,7 @@
%
% This strategy achieves this goal by
% modifying axis limits for an axis whose unit vector is
- % parallel to the canvas y axis, i.e. e_i = (0,*).
+ % parallel to the canvas y axis, i.e. e_i = (0,*).
%
% That means I have to introduce a SECOND scale s_z which
% applies only to the Z unit vector (since e_z = (0,*) ).
@@ -1771,13 +1771,13 @@
% =>
% s_z = ( H- s*r_x e_xy - s*r_y e_yy) / ( s * r_z * e_zy).
%
- % Remember that
+ % Remember that
% s = \scalex
% H = \H
% h = r_x * e_xy + r_y * e_yy + r_z * e_zy = \h
% =>
% s_z = ( H- s*( h - r_z * e_zy) ) / ( s * r_z * e_zy).
- %
+ %
\begingroup
\pgfplots@BB@for@plotbox@getunitheight{\pgf@xc}{#1}%
%
@@ -1925,7 +1925,7 @@
% \node[draw,fill=white] at (axis cs:0,0,0) {};
% },
% }
-%
+%
% \def\v{30}
% \foreach \h in {30,120,210,300} {
% \message{VIEW={\h}{\v}^^J}
@@ -1934,9 +1934,9 @@
% \addplot3[surf] {x};
% \end{axis}
% \end{tikzpicture}
-%
+%
% }
-%
+%
% \def\v{-30}
% \foreach \h in {30,120,210,300} {
% \message{VIEW={\h}{\v}^^J}
@@ -1945,16 +1945,16 @@
% \addplot3[surf] {x};
% \end{axis}
% \end{tikzpicture}
-%
+%
% }
-%--------------------------------------------------
+%--------------------------------------------------
% The precise formulas can be found below in the source code.
%
% You can override this function by the /pgfplots/view dir key.
\def\pgfplotsgetnormalforcurrentview{%
\pgfkeysgetvalue{/pgfplots/view dir}\pgfplots@loc@TMPc
\ifx\pgfplots@loc@TMPc\pgfutil@empty
- \begingroup
+ \begingroup
% temporarily undo the effects of reversed axes -- we *really*
% need a right-handed-coordinate system here:
\if r\pgfkeysvalueof{/pgfplots/x dir/value}%
@@ -1972,7 +1972,7 @@
% FIRST: check for special cases.
\let\pgfplots@view@dir@threedim=\pgfutil@empty%
% Special case:
- % e_xx = e_xy = 0
+ % e_xx = e_xy = 0
%
% i.e.:
%
@@ -1981,7 +1981,7 @@
% z | |
% |---|
% y->
- %
+ %
% In this case, N must be the x axis.
\ifdim\pgf@xx=0pt %
\ifdim\pgf@xy=0pt %
@@ -1989,7 +1989,7 @@
\fi
\fi
% Special case:
- % e_yx = e_yy = 0
+ % e_yx = e_yy = 0
%
% i.e.:
%
@@ -1998,7 +1998,7 @@
% z | |
% |---|
% x->
- %
+ %
% In this case, N must be the y axis.
\ifdim\pgf@yx=0pt %
\ifdim\pgf@yy=0pt %
@@ -2008,8 +2008,8 @@
% Special case:
% e_xy = e_yy = 0 (i.e. one row)
%
- % that is hard to draw, use view={30}{0} to see it.
- %
+ % that is hard to draw, use view={30}{0} to see it.
+ %
% In this case, N_z must be 0 and we have a different system.
\ifdim\pgf@xy=0pt %
\ifdim\pgf@yy=0pt %
@@ -2218,7 +2218,7 @@
% The axes 'x' and 'y' vectors will be scaled such that the total
% size is (\axisdefaultwidth, \axisdefaultheight).
%
- % If the user specifies ONE of width OR height,
+ % If the user specifies ONE of width OR height,
% the plot will be resized; keeping the aspect ratio.
%
\let\pgfplots@default@aspect@ratio=\pgfutil@empty
@@ -2248,7 +2248,7 @@
% H := 'height' option non-empty
%
% W H
- % 0 0 -> \axisdefaultwidth
+ % 0 0 -> \axisdefaultwidth
% 0 1 -> determine width out of H and the default aspect ratio
% 1 X -> ok, use the user parameter.
% -> KEEP ASPECT RATIO if just one W, or H is given!
@@ -2488,7 +2488,7 @@
\pgfplots@apply@unit@ratio@find@reference%
\fi
%
- % FIXME : I could spent some attention here to save work:
+ % FIXME : I could spent some attention here to save work:
% both, unit ratios and the resulting scales are computed at
% least twice (once in \pgfplots@apply@unit@ratio@find@reference and once in the
% following).
@@ -2553,7 +2553,7 @@
% This macro determines the reference axis for unit vector rescaling.
% The reference axis remains unscaled (it gets scaling factor 1 if you
% want it this way).
-%
+%
% The other axes are scaled such that the desired unit vector ratios
% are fulfilled.
%
@@ -2627,7 +2627,7 @@
% That is the case if s_a <= 1 && s_b <= 1.
% We check
% (1 - s_a >= 0 ) && ( 1 - s_b >= 0 )
- % instead, since I need the value
+ % instead, since I need the value
% max( 1-s_a, 1-s_b )
% anyway.
\def\pgfplots@ref@is@feasible{1}%
@@ -2671,16 +2671,16 @@
\else
% 2D is much simpler: find the scale s which fulfills s <= 1.
% One of them MUST fulfill it.
- %
+ %
% try 'x' axis as reference:
\def\pgfplots@apply@unit@ratio@reference{x}%
%
% renormalize:
\expandafter\pgfplots@apply@unit@ratio@prepareratios\pgfplots@unit@vector@ratio\pgfplots@EOI
%
- % compute scaling factor:
+ % compute scaling factor:
\pgfplots@getscale@unit@vector@reltoreference y\pgfplots@unit@ratio@y%
- %
+ %
%\message{^^Junit vector ratio 2D searching reference: checking \pgfplots@apply@unit@ratio@reference. feasable=\pgfmathresult < 1: \ifdim\pgfmathresult pt <\pgfplots@ONE YES-> use x\else NO->use y\fi^^J}%
% and check (1). The condition (2) is irrelevant; it is met
% anyway.
@@ -2823,21 +2823,21 @@
% PRECONDITION:
% - the #1 unit vector has been rescaled by a factor s.
% For example, e_xnew := e_x * 0.5 .
-%
+%
% POSTCONDITION:
-% - the axis limits are enlarged by a factor 1/s such that
+% - the axis limits are enlarged by a factor 1/s such that
% 1/s (#1max - #1min) * e_xnew = (#1max- #1min) * e_x.
%
% In other words, the unit vector rescale is componensated by
% modifying the axis limits: we want to add an absolute component 'd'
% to the range:
-% 1/s (xmax - xmin ) = xmax - xmin +d
+% 1/s (xmax - xmin ) = xmax - xmin +d
% =>
% d = (1/s - 1) * (xmax - xmin)
%
% The only remaining thing to do is to distribute 'd' to 'xmax' and
% 'xmin'. Typically, 50% to each will be fine, I guess...
-%
+%
% #1: either x, y or z. It denotes the direction which has been
% modified.
% #2: the INVERSE of the scaling factor, #2 = 1/s .
@@ -2881,7 +2881,7 @@
\xdef\pgfplots@glob@TMPb{\pgf@sys@tonumber{\pgf@xa}}%
\xdef\pgfplots@glob@TMPc{\pgfplots@glob@TMPb}%
\else
- % unit rescale keep size=unless limits declared:
+ % unit rescale keep size=unless limits declared:
% do not scale - all limits are declared
% explicitly
\xdef\pgfplots@glob@TMPb{0.0}%
@@ -2905,7 +2905,7 @@
% #1: an axis which should be scaled
% #2: the desired final ratio ||e_#1||/||e_ref||
\def\pgfplots@getscale@unit@vector@reltoreference#1#2{%
- %
+ %
% If the datascaling transformation is active (which is almost
% everytime the case here), we have a transformation
% T^{-1}(x)= 10^scale * x
@@ -2927,13 +2927,13 @@
% We are given e_ref and e_#1 and the desired aspect ratio
% between e_ref and E_#1, which is available as #2.
%
- % So: T^{-1} E_#1 := s* T^{-1} e_#1 where
- % s = #2 * ||T^{-1} e_ref|| / || T^{-1} e_#1 ||
+ % So: T^{-1} E_#1 := s* T^{-1} e_#1 where
+ % s = #2 * ||T^{-1} e_ref|| / || T^{-1} e_#1 ||
% = |10^{scale_ref}| / |10^{scale_#1}| * #2 * || e_ref|| / ||e_#1||.
- %
+ %
% Then, E_#1 = T ( T^{-1} E_#1 ) = s * e_#1.
%
- % -> compute 's'!
+ % -> compute 's'!
%
% Part 1: compute
% #2 * ||e_ref|| / ||e_#1||.
@@ -2958,7 +2958,7 @@
{\pgfmathresult}%
{#2}%
\global\let\pgfplots@glob@TMPa=\pgfmathresult
- %
+ %
% also compute 1/s, required as temporary value:
%\pgfmathmultiply@
% {\csname pgfplots@\pgfplots@apply@unit@ratio@reference @inverseveclength\endcsname}
@@ -3004,7 +3004,7 @@
}
% helper for \pgfplots@check@and@apply@datatrafo@for.
-%
+%
\def\pgfplots@compute@number@order@for@trafo@isfloat#1\tocount#2{%
\pgfmathfloatparsenumber{#1}%
\expandafter\pgfmathfloat@decompose@E\pgfmathresult\relax#2\relax
@@ -3035,7 +3035,7 @@
% - the scaling transformation is set up,
\def\pgfplots@set@optimal@datatrafo@for@#1{%
\pgfplots@if{pgfplots@apply@datatrafo@#1}{%
- % initialise data scale transformation
+ % initialise data scale transformation
% T(x) = 10^{q-m} * x
%
\ifpgfplots@disabledatascaling
@@ -3148,16 +3148,16 @@
% Now, I introduce a loop which shall avoid cancellation of
% significant digits.
%
- % Harmless Example:
- % if we have data shift = -3 and
+ % Harmless Example:
+ % if we have data shift = -3 and
% max = 2e6, min = 1e6, then max-min = 1e6; T(max)-T(min) = 1e3 which is ok.
% In this case, the loop won't change anything.
%
% Critical Example:
% if we have data shift = -3 and
- % max = 1980, min = 1930 then
+ % max = 1980, min = 1930 then
% T(max) = 1.98 and T(min) = 1.93
- % and thus T(max)-T(min) = 0.05 .
+ % and thus T(max)-T(min) = 0.05 .
% Considering that this is the axis range
% in which tick labels and plot points need to be computed, we
% only have two or three digits left! That happens because the
@@ -3201,7 +3201,7 @@
% \fi
% \pgfplots@loop@CONTINUEfalse
% \fi
- %--------------------------------------------------
+ %--------------------------------------------------
\pgfutil@repeat
\xdef\pgfplots@glob@TMPa{\the\data@EXPONENT}%
\xdef\pgfplots@glob@TMPb{\pgfplots@min@fixed}%
@@ -3239,7 +3239,7 @@
%
% The strategy to fix the transformation is as follows:
% 1. we assume that axis limits will be enlarged in order to
- % satisfy 'scale uniformly'.
+ % satisfy 'scale uniformly'.
% 2. we assume that the LARGEST axis limit dominates the
% others.
% 3. if one of the axes does not have datascaling (i.e. is