summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/context/modules/mkiv/m-matrix.mkiv
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/tex/context/modules/mkiv/m-matrix.mkiv')
-rw-r--r--Master/texmf-dist/tex/context/modules/mkiv/m-matrix.mkiv400
1 files changed, 289 insertions, 111 deletions
diff --git a/Master/texmf-dist/tex/context/modules/mkiv/m-matrix.mkiv b/Master/texmf-dist/tex/context/modules/mkiv/m-matrix.mkiv
index f59363e94b0..9cac6967277 100644
--- a/Master/texmf-dist/tex/context/modules/mkiv/m-matrix.mkiv
+++ b/Master/texmf-dist/tex/context/modules/mkiv/m-matrix.mkiv
@@ -17,7 +17,7 @@
%D be made. Dalyoung does the clever bits, and Hans only cleanes up and
%D optimizes a bit.
-% \registerctxluafile{l-matrix}{1.001} % not yet
+% \registerctxluafile{l-matrix}{} % not yet
\startmodule[matrix]
@@ -70,10 +70,16 @@ end
-- todo: define a matrix at the tex end so that we have more control
+-- local fences = {
+-- parentheses = { left = "\\left(\\,", right = "\\,\\right)" },
+-- brackets = { left = "\\left[\\,", right = "\\,\\right]" },
+-- bars = { left = "\\left|\\,", right = "\\,\\right|" },
+-- }
+
local fences = {
- parentheses = { left = "\\left(\\,", right = "\\,\\right)" },
- brackets = { left = "\\left[\\,", right = "\\,\\right]" },
- bars = { left = "\\left|\\,", right = "\\,\\right|" },
+ parentheses = { "matrix:parentheses" },
+ brackets = { "matrix:brackets" },
+ bars = { "matrix:bars" },
}
-- one can add more fences
@@ -104,7 +110,10 @@ function matrix.typeset(m,options)
elseif tonumber(template) then
template = "%0." .. template .. "F"
end
- context.startmatrix(whatever)
+ context.startnamedmatrix(whatever)
+ if type(m[1]) ~= "table" then
+ m = { copy(m) }
+ end
for i=1, #m do
local mi = m[i]
for j=1,#mi do
@@ -118,31 +127,20 @@ function matrix.typeset(m,options)
end
context.NR()
end
- context.stopmatrix()
+ context.stopnamedmatrix()
elseif m then
context(m)
end
end
--- interchange two rows (i-th, j-th)
-
--- function matrix.swaprows(t,i,j)
--- if i <= #t and j <= #t then
--- t[i], t[j] = t[j], t[i]
--- return t
--- else
--- return "error: out of bound"
--- end
--- end
-
function matrix.swaprows(t,i,j)
local ti = t[i]
if not ti then
- return "error: no row i"
+ return "error: no row"
end
local tj = t[j]
if not tj then
- return "error: no row j"
+ return "error: no row"
end
t[i], t[j] = tj, ti
return t
@@ -150,28 +148,14 @@ end
-- interchange two columns (i-th, j-th)
--- function matrix.swapcolumns(t, i, j)
--- if i <= #t[1] and j <= #t[1] then
--- for k = 1, #t do
--- t[k][i], t[k][j] = t[k][j], t[k][i]
--- end
--- return t
--- else
--- return "error: out of bound"
--- end
--- end
-
function matrix.swapcolumns(t, i, j)
local t1 = t[1]
if not t1 then
return "error: no rows"
end
local n = #t1
- if i <= n then
- return "error: no row i"
- end
- if j <= n then
- return "error: no row j"
+ if i > n or j > n then
+ return "error: no column"
end
for k = 1, #t do
local tk = t[k]
@@ -315,7 +299,7 @@ local function determinant(m)
end
return s*d
else
- return "error: not a square matrix"
+ return "error: not a square matrix" -- not context(..)
end
end
@@ -387,7 +371,7 @@ matrix.rowEchelon = rowechelon
-- make matrices until its determinant is not 0
-function matrix.make(n,m,low,high)
+function matrix.make(m,n,low,high) -- m and n swapped
if not n then
n = 10
end
@@ -398,17 +382,16 @@ function matrix.make(n,m,low,high)
low = 0
end
if not high then
- high = 100
+ high = 10
end
- local t = { } -- make an empty n1 x n2 array
- local again = true
- for i=1,n do
+ local t = { }
+ for i=1,m do
t[i] = { }
end
while true do
- for i=1,n do
+ for i=1,m do
local ti = t[i]
- for j=1,m do
+ for j=1,n do
ti[j] = random(low,high)
end
end
@@ -483,14 +466,30 @@ end
local function solve(m,c)
local n = #m
if n ~= #c then
- return copy(m)
+ -- return "error: size mismatch"
+ return nil
end
local newm = copy(m)
local temp = copy(c)
+ local solution = copy(c)
for i=1,n do
insert(newm[i],temp[i])
end
- return rowechelon(newm,1)
+ newm = uppertri(newm, 0)
+ for k = n,1,-1 do
+ local val = 0
+ local new = newm[k]
+ for j = k+1, n do
+ val = val + new[j] * solution[j]
+ end
+ if new[k] == 0 then
+ -- return "error: no unique solution"
+ return nil
+ else
+ solution[k] = (new[n+1] - val)/new[k]
+ end
+ end
+ return solution
end
matrix.solve = solve
@@ -527,6 +526,9 @@ matrix.inverse = inverse
\continueifinputfile{m-matrix.mkiv}
+\usemodule[m-matrix]
+\usemodule[art-01]
+
\starttext
\startluacode
@@ -542,147 +544,323 @@ document.DemoMatrixA = {
document.DemoMatrixB = {
{ 0, 2, 4, -4, 1 },
{ 0, 0, 2, 3, 4 },
- { 2, 2, -6, 2, 4 },
+ { 2, 2, -6, 3, 4 },
{ 2, 0, -6, 9, 7 },
{ 2, 2, -6, 2, 4 },
- { 2, 2, -6, 2, 4 },
+}
+
+document.DemoMatrixC = {
+ { 3, 3, -1, 3 },
+ { -1, 4, 1, 3 },
+ { 5, 4, 0, 2 },
+ { 2, 4, 0, -1 },
}
\stopluacode
+\startbuffer[demo]
+\typebuffer
+\startalignment[middle]
+ \dontleavehmode\inlinebuffer
+\stopalignment
+\stopbuffer
+
+\setuphead[section][before={\testpage[5]\blank[2*big]}]
+
\startsubject[title={A symbolic matrix}]
+\startbuffer
\ctxmodulematrix{typeset(moduledata.matrix.symbolic("a", "m", "n"))}
\ctxmodulematrix{typeset(moduledata.matrix.symbolic("a", "m", "n", 4, 8))}
+\stopbuffer
+
+\getbuffer[demo]
+
+\stopsubject
+
+\startsubject[title={Generate a new $m \times n$ matrix}]
+
+\startbuffer
+\startluacode
+ moduledata.matrix.typeset(moduledata.matrix.make(4,3, 0,5))
+ context.qquad()
+ moduledata.matrix.typeset(moduledata.matrix.make(5,5,-1,5))
+\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
\stopsubject
\startsubject[title={Swap two rows (2 and 4)}]
+\startbuffer
\startluacode
-moduledata.matrix.typeset(document.DemoMatrixA)
-context.blank()
-moduledata.matrix.swap(document.DemoMatrixA, 2, 4)
-context.blank()
-moduledata.matrix.typeset(document.DemoMatrixA)
+ moduledata.matrix.typeset(document.DemoMatrixA)
+ context("$\\qquad \\Rightarrow \\qquad$")
+ moduledata.matrix.typeset(moduledata.matrix.swaprows(document.DemoMatrixA,2,4))
\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
\stopsubject
-\startsubject[title={Multiply $3 \times r_2$}]
+\startsubject[title={Swap two columns (2 and 4)}]
+\startbuffer
\startluacode
-moduledata.matrix.typeset(document.DemoMatrixA)
-context.blank()
-moduledata.matrix.typeset(moduledata.matrix.multiply(document.DemoMatrixA, 2, 3))
+ moduledata.matrix.typeset(document.DemoMatrixA)
+ context("$\\qquad \\Rightarrow \\qquad$")
+ moduledata.matrix.typeset(moduledata.matrix.swapcolumns(document.DemoMatrixA,2, 4))
\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
\stopsubject
-\startsubject[title={Row 2 + $4 \times r_3$}]
+\startsubject[title={Multiply 3 to row 2($3 \times r_2$)}]
+\startbuffer
\startluacode
-moduledata.matrix.typeset(document.DemoMatrixA)
-context.blank()
-moduledata.matrix.sumrow(document.DemoMatrixA, 2, 3, 4)
-context.blank()
-moduledata.matrix.typeset(document.DemoMatrixA,{ fences = "bars" } )
+ moduledata.matrix.typeset(document.DemoMatrixA)
+ context("$\\qquad \\Rightarrow \\qquad$")
+ moduledata.matrix.typeset(moduledata.matrix.multiply(document.DemoMatrixA,2,3))
\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
\stopsubject
-\startsubject[title={Transpose a matrix}]
+\startsubject[title={Add 4 times of row 3 to row 2($r_2 + 4 \times r_3$)}]
+\startbuffer
\startluacode
-moduledata.matrix.typeset(document.DemoMatrixA)
-context.blank()
-moduledata.matrix.typeset(moduledata.matrix.transpose(document.DemoMatrixA))
+ moduledata.matrix.typeset(document.DemoMatrixA)
+ context("$\\qquad \\Rightarrow \\qquad$")
+ moduledata.matrix.sumrow(document.DemoMatrixA,2,3,4)
+ moduledata.matrix.typeset(document.DemoMatrixA)
\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
+
+\stopsubject
+
+\startsubject[title={Transpose a matrix}]
+\startbuffer
+\startluacode
+ moduledata.matrix.typeset(document.DemoMatrixA)
+ context("$\\qquad \\Rightarrow \\qquad$")
+ moduledata.matrix.typeset(moduledata.matrix.transpose(document.DemoMatrixA))
+\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
\stopsubject
\startsubject[title={The inner product of two vectors}]
+\startbuffer
+\startluacode
+ context("$<1,2,3> \\cdot <3,1,2> \\ =\\ $ ")
+ context( moduledata.matrix.inner({ 1, 2, 3 }, { 3, 1, 2 }))
+\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
+
\startluacode
-context(moduledata.matrix.inner({ 1, 2, 3 }, { 3, 1, 2 }))
-context.blank()
+context("$<1,2,3> \\cdot <3,1,2, 4> \\ =\\ $ ")
context(moduledata.matrix.inner({ 1, 2, 3 }, { 3, 1, 2, 4 }))
\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
+
+\stopsubject
\startsubject[title={The product of two matrices}]
+\startbuffer
\startluacode
-moduledata.matrix.typeset(document.DemoMatrixA)
-context.blank()
-moduledata.matrix.typeset(moduledata.matrix.product(document.DemoMatrixA,document.DemoMatrixA))
+ context("$\\ $")
+ moduledata.matrix.typeset(document.DemoMatrixB)
+ context("$\\cdot$")
+ moduledata.matrix.typeset(document.DemoMatrixA)
+ context("$ = $")
+ moduledata.matrix.typeset(moduledata.matrix.product
+ (document.DemoMatrixB,document.DemoMatrixB))
\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
\stopsubject
\startsubject[title={An Upper Triangular Matrix}]
-\ctxmodulematrix{typeset(moduledata.matrix.uppertri(document.DemoMatrixB))}
+\startbuffer
+\startluacode
+ moduledata.matrix.typeset(document.DemoMatrixB)
+ context("$\\qquad \\Rightarrow \\qquad$")
+ moduledata.matrix.typeset(moduledata.matrix.uppertri(document.DemoMatrixB))
+\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
-\startsubject[title={A determinant}]
+\stopsubject
+\startsubject[title={Determinant: using triangulation}]
+
+\startbuffer
\startluacode
-local m = {
- { 1, 2, 4 },
- { 0, 0, 2 },
- { 2, 2, -6 },
-}
-context(moduledata.matrix.determinant(m, "determinant=yes" ))
+ local m = {
+ { 1, 2, 4 },
+ { 0, 0, 2 },
+ { 2, 2, -6 },
+ { 2, 2, -6 },
+ }
+ moduledata.matrix.typeset(m, {fences="bars"})
+ context("$\\qquad = \\qquad$")
+ moduledata.matrix.determinant(m)
\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
+
+\startbuffer
+\startluacode
+ moduledata.matrix.typeset(document.DemoMatrixC, { fences = "bars" })
+ context("$\\qquad = \\qquad$")
+ context(moduledata.matrix.determinant(document.DemoMatrixC))
+\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
\stopsubject
-\startsubject[title={Row echelon form}]
+\startsubject[title={Determinant: using Laplace Expansion}]
+\startbuffer
\startluacode
-local m = {
- { 1, 3, -2, 0, 2, 0, 0 },
- { 2, 6, -5, -2, 4, -3, -1 },
- { 0, 0, 5, 10, 0, 15, 5 },
- { 2, 6, 0, 8, 4, 18, 6 },
-}
+ moduledata.matrix.typeset(document.DemoMatrixC, { fences = "bars" })
+ context("$\\qquad = \\qquad$")
+ context(moduledata.matrix.laplace(document.DemoMatrixC))
+\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
+
+\stopsubject
+
+\startsubject[title={Example of Laplace Expansion using submatrix function}]
-moduledata.matrix.typeset(m)
-context.blank()
-moduledata.matrix.typeset(moduledata.matrix.rowechelon(m,1), { determinant = "yes" })
+\startbuffer
+\startluacode
+ local m = {
+ { 1, 5, 4, 2 },
+ { 5, 2, 0, 4 },
+ { 2, 2, 1, 1 },
+ { 1, 0, 0, 5 },
+ }
+ local options = {fences = "bars"}
+
+ moduledata.matrix.typeset(m,options)
+ context("\\par $=$")
+ for j = 1, #m[1] do
+ local mm = moduledata.matrix.submatrix(m, 1, j)
+ local factor = (-1)^(1+j) *(m[1][j])
+ context("\\ ($%d$) \\cdot ", factor)
+ moduledata.matrix.typeset(mm, options)
+ if j < #m[1] then
+ context("\\ $+$ ")
+ end
+ end
\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
\stopsubject
-\startsubject[title={Solving linear equation}]
+\startsubject[title={Row echelon form}]
+\startbuffer
\startluacode
-local m = {
- { 1, 3, -2, 0 },
- { 2, 0, 1, 2 },
- { 6, -5, -2, 4 },
- { -3, -1, 5, 10 },
-}
+ local m = {
+ { 1, 3, -2, 0, 2, 0, 0 },
+ { 2, 6, -5, -2, 4, -3, -1 },
+ { 0, 0, 5, 10, 0, 15, 5 },
+ { 2, 6, 0, 8, 4, 18, 6 },
+ }
+ moduledata.matrix.typeset(m)
+ context("$\\Rightarrow$")
+ moduledata.matrix.typeset(moduledata.matrix.rowechelon(m,1))
+\stopluacode
+
+\stopbuffer
-local c = { 5, 2, 6, 8 }
-
-moduledata.matrix.typeset(moduledata.matrix.solve(m,c))
-context.blank()
-moduledata.matrix.typeset(moduledata.matrix.solve(m,c), { template = 6 })
-context.blank()
-moduledata.matrix.typeset(moduledata.matrix.solve(m,c), { template = "no" })
-context.blank()
-moduledata.matrix.typeset(moduledata.matrix.solve(m,c), { template = "%0.3f" })
-context.blank()
-moduledata.matrix.typeset(moduledata.matrix.solve(m,c), { template = "%0.4F" })
+\getbuffer[demo]
+
+\stopsubject
+
+\startsubject[title={Solving linear equation}]
+
+\startbuffer
+\startluacode
+ local m = {
+ { 1, 3, -2, 0 },
+ { 2, 0, 1, 2 },
+ { 6, -5, -2, 4 },
+ { -3, -1, 5, 10 },
+ }
+
+ local c = { 5, 2, 6, 8 }
+
+ moduledata.matrix.typeset(moduledata.matrix.solve(m,c))
+ context.blank()
+ moduledata.matrix.typeset(moduledata.matrix.solve(m,c), { template = 6 })
+ context.blank()
+ moduledata.matrix.typeset(moduledata.matrix.solve(m,c), { template = "no" })
+ context.blank()
+ moduledata.matrix.typeset(moduledata.matrix.solve(m,c), { template = "%0.3f" })
+ context.blank()
+ moduledata.matrix.typeset(moduledata.matrix.solve(m,c), { template = "%0.4F" })
\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
\stopsubject
\startsubject[title={Inverse matrix}]
-\startcombination[2*1]
- {\ctxlua{moduledata.matrix.typeset { { 1, 1, 1 }, { 0, 2, 3 }, { 3, 2, 1 } }}} {}
- {\ctxlua{moduledata.matrix.typeset(moduledata.matrix.inverse { { 1, 1, 1 }, { 0, 2, 3 }, { 3, 2, 1 } })}} {}
-\stopcombination
+\startbuffer
+\startluacode
+ local m = {
+ { 1, 1, 1 },
+ { 0, 2, 3 },
+ { 3, 2, 1 },
+ }
+ context("$A =\\quad$")
+ moduledata.matrix.typeset(m)
+ context("$\\qquad A^{-1} = \\quad$")
+ moduledata.matrix.typeset(moduledata.matrix.inverse(m))
+ context("\\blank\\ ")
+ moduledata.matrix.typeset(m)
+ context("$\\cdot$")
+ moduledata.matrix.typeset(moduledata.matrix.inverse(m))
+ context("$ = $")
+ moduledata.matrix.typeset(moduledata.matrix.product(m, moduledata.matrix.inverse(m)))
+\stopluacode
+\stopbuffer
+
+\getbuffer[demo]
\stopsubject