summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/l3kernel/l3seq.dtx
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3seq.dtx')
-rw-r--r--Master/texmf-dist/source/latex/l3kernel/l3seq.dtx1812
1 files changed, 1812 insertions, 0 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3seq.dtx b/Master/texmf-dist/source/latex/l3kernel/l3seq.dtx
new file mode 100644
index 00000000000..088165a02fc
--- /dev/null
+++ b/Master/texmf-dist/source/latex/l3kernel/l3seq.dtx
@@ -0,0 +1,1812 @@
+% \iffalse meta-comment
+%
+%% File: l3seq.dtx Copyright (C) 1990-2011 The LaTeX3 Project
+%%
+%% It may be distributed and/or modified under the conditions of the
+%% LaTeX Project Public License (LPPL), either version 1.3c of this
+%% license or (at your option) any later version. The latest version
+%% of this license is in the file
+%%
+%% http://www.latex-project.org/lppl.txt
+%%
+%% This file is part of the "expl3 bundle" (The Work in LPPL)
+%% and all files in that bundle must be distributed together.
+%%
+%% The released version of this bundle is available from CTAN.
+%%
+%% -----------------------------------------------------------------------
+%%
+%% The development version of the bundle can be found at
+%%
+%% http://www.latex-project.org/svnroot/experimental/trunk/
+%%
+%% for those people who are interested.
+%%
+%%%%%%%%%%%
+%% NOTE: %%
+%%%%%%%%%%%
+%%
+%% Snapshots taken from the repository represent work in progress and may
+%% not work or may contain conflicting material! We therefore ask
+%% people _not_ to put them into distributions, archives, etc. without
+%% prior consultation with the LaTeX3 Project.
+%%
+%% -----------------------------------------------------------------------
+%
+%<*driver|package>
+\RequirePackage{l3names}
+\GetIdInfo$Id: l3seq.dtx 2478 2011-06-19 21:34:23Z joseph $
+ {L3 Experimental sequences and stacks}
+%</driver|package>
+%<*driver>
+\documentclass[full]{l3doc}
+\begin{document}
+ \DocInput{\jobname.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+% \title{^^A
+% The \pkg{l3seq} package\\ Sequences and stacks^^A
+% \thanks{This file describes v\ExplFileVersion,
+% last revised \ExplFileDate.}^^A
+% }
+%
+% \author{^^A
+% The \LaTeX3 Project\thanks
+% {^^A
+% E-mail:
+% \href{mailto:latex-team@latex-project.org}
+% {latex-team@latex-project.org}^^A
+% }^^A
+% }
+%
+% \date{Released \ExplFileDate}
+%
+% \maketitle
+%
+% \begin{documentation}
+%
+% \LaTeX3 implements a \enquote{sequence} data type, which contain
+% an ordered list of entries which may contain any \meta{balanced text}.
+% It is possible to map functions to sequences such that the function
+% is applied to every item in the sequence.
+%
+% Sequences are also used to implement stack functions in \LaTeX3. This
+% is achieved using a number of dedicated stack functions.
+%
+% \section{Creating and initialising sequences}
+%
+% \begin{function}{\seq_new:N, \seq_new:c}
+% \begin{syntax}
+% \cs{seq_new:N} \meta{sequence}
+% \end{syntax}
+% Creates a new \meta{sequence} or raises an error if the name is
+% already taken. The declaration is global. The \meta{sequence} will
+% initially contain no items.
+% \end{function}
+%
+% \begin{function}{\seq_clear:N, \seq_clear:c}
+% \begin{syntax}
+% \cs{seq_clear:N} \meta{sequence}
+% \end{syntax}
+% Clears all items from the \meta{sequence} within the scope of
+% the current \TeX{} group.
+% \end{function}
+%
+% \begin{function}{\seq_gclear:N, \seq_gclear:c}
+% \begin{syntax}
+% \cs{seq_gclear:N} \meta{sequence}
+% \end{syntax}
+% Clears all entries from the \meta{sequence} globally.
+% \end{function}
+%
+% \begin{function}{\seq_clear_new:N, \seq_clear_new:c}
+% \begin{syntax}
+% \cs{seq_clear_new:N} \meta{sequence}
+% \end{syntax}
+% If the \meta{sequence} already exists, clears it within the scope
+% of the current \TeX{} group. If the \meta{sequence} is not defined,
+% it will be created (using \cs{seq_new:N}). Thus the sequence is
+% guaranteed to be available and clear within the current \TeX{}
+% group. The \meta{sequence} will exist globally, but the content
+% outside of the current \TeX{} group is not specified.
+% \end{function}
+%
+% \begin{function}{\seq_gclear_new:N, \seq_gclear_new:c}
+% \begin{syntax}
+% \cs{seq_gclear_new:N} \meta{sequence}
+% \end{syntax}
+% If the \meta{sequence} already exists, clears it globally. If the
+% \meta{sequence} is not defined, it will be created (using
+% \cs{seq_new:N}). Thus the sequence is guaranteed to be available
+% and globally clear.
+% \end{function}
+%
+% \begin{function}
+% {\seq_set_eq:NN, \seq_set_eq:cN, \seq_set_eq:Nc, \seq_set_eq:cc}
+% \begin{syntax}
+% \cs{seq_set_eq:NN} \meta{sequence1} \meta{sequence2}
+% \end{syntax}
+% Sets the content of \meta{sequence1} equal to that of
+% \meta{sequence2}. This assignment is restricted to the current
+% \TeX{} group level.
+% \end{function}
+%
+% \begin{function}
+% {\seq_gset_eq:NN, \seq_gset_eq:cN, \seq_gset_eq:Nc, \seq_gset_eq:cc}
+% \begin{syntax}
+% \cs{seq_gset_eq:NN} \meta{sequence1} \meta{sequence2}
+% \end{syntax}
+% Sets the content of \meta{sequence1} equal to that of
+% \meta{sequence2}. This assignment is global and so is not
+% limited by the current \TeX{} group level.
+% \end{function}
+%
+% \begin{function}{\seq_concat:NNN, \seq_concat:ccc}
+% \begin{syntax}
+% \cs{seq_concat:NNN} \meta{sequence1} \meta{sequence2} \meta{sequence3}
+% \end{syntax}
+% Concatenates the content of \meta{sequence2} and \meta{sequence3}
+% together and saves the result in \meta{sequence1}. The items in
+% \meta{sequence2} will be placed at the left side of the new sequence.
+% This operation is local to the current \TeX{} group and will
+% remove any existing content in \meta{sequence1}.
+% \end{function}
+%
+% \begin{function}{\seq_gconcat:NNN, \seq_gconcat:ccc}
+% \begin{syntax}
+% \cs{seq_gconcat:NNN} \meta{sequence1} \meta{sequence2} \meta{sequence3}
+% \end{syntax}
+% Concatenates the content of \meta{sequence2} and \meta{sequence3}
+% together and saves the result in \meta{sequence1}. The items in
+% \meta{sequence2} will be placed at the left side of the new sequence.
+% This operation is global and will remove any existing content in
+% \meta{sequence1}.
+% \end{function}
+%
+% \section{Appending data to sequences}
+%
+% \begin{function}{
+% \seq_put_left:Nn, \seq_put_left:NV, \seq_put_left:Nv,
+% \seq_put_left:No, \seq_put_left:Nx,
+% \seq_put_left:cn, \seq_put_left:cV, \seq_put_left:cv,
+% \seq_put_left:co, \seq_put_left:cx
+% }
+% \begin{syntax}
+% \cs{seq_put_left:Nn} \meta{sequence} \Arg{item}
+% \end{syntax}
+% Appends the \meta{item} to the left of the \meta{sequence}.
+% The assignment is restricted to the current \TeX{} group.
+% \end{function}
+%
+% \begin{function}{
+% \seq_gput_left:Nn, \seq_gput_left:NV, \seq_gput_left:Nv,
+% \seq_gput_left:No, \seq_gput_left:Nx,
+% \seq_gput_left:cn, \seq_gput_left:cV, \seq_gput_left:cv,
+% \seq_gput_left:co, \seq_gput_left:cx
+% }
+% \begin{syntax}
+% \cs{seq_gput_left:Nn} \meta{sequence} \Arg{item}
+% \end{syntax}
+% Appends the \meta{item} to the left of the \meta{sequence}.
+% The assignment is global.
+% \end{function}
+%
+% \begin{function}{
+% \seq_put_right:Nn, \seq_put_right:NV, \seq_put_right:Nv,
+% \seq_put_right:No, \seq_put_right:Nx,
+% \seq_put_right:cn, \seq_put_right:cV, \seq_put_right:cv,
+% \seq_put_right:co, \seq_put_right:cx
+% }
+% \begin{syntax}
+% \cs{seq_put_right:Nn} \meta{sequence} \Arg{item}
+% \end{syntax}
+% Appends the \meta{item} to the right of the \meta{sequence}.
+% The assignment is restricted to the current \TeX{} group.
+% \end{function}
+%
+% \begin{function}{
+% \seq_gput_right:Nn, \seq_gput_right:NV, \seq_gput_right:Nv,
+% \seq_gput_right:No, \seq_gput_right:Nx,
+% \seq_gput_right:cn, \seq_gput_right:cV, \seq_gput_right:cv,
+% \seq_gput_right:co, \seq_gput_right:cx
+% }
+% \begin{syntax}
+% \cs{seq_gput_right:Nn} \meta{sequence} \Arg{item}
+% \end{syntax}
+% Appends the \meta{item} to the right of the \meta{sequence}.
+% The assignment is global.
+% \end{function}
+%
+% \section{Recovering items from sequences}
+%
+% Items can be recovered from either the left or the right of sequences.
+% For implementation reasons, the actions at the left of the sequence are
+% faster than those acting on the right. These functions all assign the
+% recovered material locally, \emph{i.e.}~setting the
+% \meta{token list variable} used with \cs{tl_set:Nn} and \emph{never}
+% \cs{tl_gset:Nn}.
+%
+% \begin{function}{\seq_get_left:NN, \seq_get_left:cN}
+% \begin{syntax}
+% \cs{seq_get_left:NN} \meta{sequence} \meta{token list variable}
+% \end{syntax}
+% Stores the left-most item from a \meta{sequence} in the
+% \meta{token list variable} without removing it from the
+% \meta{sequence}. The \meta{token list variable} is assigned locally.
+% If \meta{sequence} is empty an error will be raised.
+% \end{function}
+%
+% \begin{function}{\seq_get_right:NN, \seq_get_right:cN}
+% \begin{syntax}
+% \cs{seq_get_right:NN} \meta{sequence} \meta{token list variable}
+% \end{syntax}
+% Stores the right-most item from a \meta{sequence} in the
+% \meta{token list variable} without removing it from the
+% \meta{sequence}. The \meta{token list variable} is assigned locally.
+% If \meta{sequence} is empty an error will be raised.
+% \end{function}
+%
+% \begin{function}{\seq_pop_left:NN, \seq_pop_left:cN}
+% \begin{syntax}
+% \cs{seq_pop_left:NN} \meta{sequence} \meta{token list variable}
+% \end{syntax}
+% Pops the left-most item from a \meta{sequence} into the
+% \meta{token list variable}, \emph{i.e.}~removes the item from the
+% sequence and stores it in the \meta{token list variable}.
+% Both of the variables are assigned locally. If \meta{sequence} is
+% empty an error will be raised.
+% \end{function}
+%
+% \begin{function}{\seq_gpop_left:NN, \seq_gpop_left:cN}
+% \begin{syntax}
+% \cs{seq_gpop_left:NN} \meta{sequence} \meta{token list variable}
+% \end{syntax}
+% Pops the left-most item from a \meta{sequence} into the
+% \meta{token list variable}, \emph{i.e.}~removes the item from the
+% sequence and stores it in the \meta{token list variable}.
+% The \meta{sequence} is modified globally, while the assignment of
+% the \meta{token list variable} is local.
+% If \meta{sequence} is empty an error will be raised.
+% \end{function}
+%
+% \begin{function}{\seq_pop_right:NN, \seq_pop_right:cN}
+% \begin{syntax}
+% \cs{seq_pop_right:NN} \meta{sequence} \meta{token list variable}
+% \end{syntax}
+% Pops the right-most item from a \meta{sequence} into the
+% \meta{token list variable}, \emph{i.e.}~removes the item from the
+% sequence and stores it in in the \meta{token list variable}.
+% Both of the variables are assigned locally. If \meta{sequence} is
+% empty an error will be raised.
+% \end{function}
+%
+% \begin{function}{\seq_gpop_right:NN, \seq_gpop_right:cN}
+% \begin{syntax}
+% \cs{seq_gpop_right:NN} \meta{sequence} \meta{token list variable}
+% \end{syntax}
+% Pops the right-most item from a \meta{sequence} into the
+% \meta{token list variable}, \emph{i.e.}~removes the item from the
+% sequence and stores it in the \meta{token list variable}.
+% The \meta{sequence} is modified globally, while the assignment of
+% the \meta{token list variable} is local.
+% If \meta{sequence} is empty an error will be raised.
+% \end{function}
+%
+% \section{Modifying sequences}
+%
+% While sequences are normally used as ordered lists, it may be
+% necessary to modify the content. The functions here may be used
+% to update sequences, while retaining the order of the unaffected
+% entries.
+%
+% \begin{function}{\seq_remove_duplicates:N, \seq_remove_duplicates:c}
+% \begin{syntax}
+% \cs{seq_remove_duplicates:N} \meta{sequence}
+% \end{syntax}
+% Removes duplicate items from the \meta{sequence}, leaving the
+% left most copy of each item in the \meta{sequence}. The \meta{item}
+% comparison takes place on a token basis, as for \cs{tl_if_eq:nn(TF)}.
+% The removal is local to the current \TeX{} group.
+% \begin{texnote}
+% This function iterates through every item in the \meta{sequence} and
+% does a comparison with the \meta{items} already checked. It is therefore
+% relatively slow with large sequences.
+% \end{texnote}
+% \end{function}
+%
+% \begin{function}{\seq_gremove_duplicates:N, \seq_gremove_duplicates:c}
+% \begin{syntax}
+% \cs{seq_gremove_duplicates:N} \meta{sequence}
+% \end{syntax}
+% Removes duplicate items from the \meta{sequence}, leaving the
+% left most copy of each item in the \meta{sequence}. The \meta{item}
+% comparison takes place on a token basis, as for \cs{tl_if_eq:nn(TF)}.
+% The removal is applied globally.
+% \begin{texnote}
+% This function iterates through every item in the \meta{sequence} and
+% does a comparison with the \meta{items} already checked. It is therefore
+% relatively slow with large sequences.
+% \end{texnote}
+% \end{function}
+%
+% \begin{function}{\seq_remove_all:Nn, \seq_remove_all:cn}
+% \begin{syntax}
+% \cs{seq_remove_all:Nn} \meta{sequence} \Arg{item}
+% \end{syntax}
+% Removes every occurrence of \meta{item} from the \meta{sequence}.
+% The \meta{item} comparison takes place on a token basis, as for
+% \cs{tl_if_eq:nn(TF)}. The removal is local to the current \TeX{} group.
+% \end{function}
+%
+% \begin{function}{\seq_gremove_all:Nn, \seq_gremove_all:cn}
+% \begin{syntax}
+% \cs{seq_gremove_all:Nn} \meta{sequence} \Arg{item}
+% \end{syntax}
+% Removes each occurrence of \meta{item} from the \meta{sequence}.
+% The \meta{item} comparison takes place on a token basis, as for
+% \cs{tl_if_eq:nn(TF)}. The removal is applied globally.
+% \end{function}
+%
+% \section{Sequence conditionals}
+%
+% \begin{function}[EXP,pTF]{\seq_if_empty:N, \seq_if_empty:c}
+% \begin{syntax}
+% \cs{seq_if_empty_p:N} \meta{sequence}
+% \cs{seq_if_empty:NTF} \meta{sequence} \Arg{true code} \Arg{false code}
+% \end{syntax}
+% Tests if the \meta{sequence} is empty (containing no items). The
+% branching versions then leave either \meta{true code} or
+% \meta{false code} in the input stream, as appropriate to the truth of
+% the test and the variant of the function chosen. The logical truth of
+% the test is left in the input stream by the predicate version.
+% \end{function}
+%
+% \begin{function}[TF]{
+% \seq_if_in:Nn, \seq_if_in:NV, \seq_if_in:Nv, \seq_if_in:No, \seq_if_in:Nx,
+% \seq_if_in:cn, \seq_if_in:cV, \seq_if_in:cv, \seq_if_in:co, \seq_if_in:cx
+% }
+% \begin{syntax}
+% \cs{seq_if_in:NnTF} \meta{sequence} \Arg{item}
+% ~~\Arg{true code} \Arg{false code}
+% \end{syntax}
+% Tests if the \meta{item} is present in the \meta{sequence}.
+% Either the \meta{true code} or \meta{false code} is left in the input
+% stream, as appropriate to the truth of the test and the variant of the
+% function
+% chosen.
+% \end{function}
+%
+% \section{Mapping to sequences}
+%
+% \begin{function}[EXP]{\seq_map_function:NN, \seq_map_function:cN}
+% \begin{syntax}
+% \cs{seq_map_function:NN} \meta{sequence} \meta{function}
+% \end{syntax}
+% Applies \meta{function} to every \meta{item} stored in the
+% \meta{sequence}. The \meta{function} will receive one argument for
+% each iteration. The \meta{items} are returned from left to right.
+% The function \cs{seq_map_inline:Nn} is in general more efficient
+% than \cs{seq_map_function:NN}.
+% One mapping may be nested inside another.
+% \end{function}
+%
+% \begin{function}{\seq_map_inline:Nn, \seq_map_inline:cn}
+% \begin{syntax}
+% \cs{seq_map_inline:Nn} \meta{sequence} \Arg{inline function}
+% \end{syntax}
+% Applies \meta{inline function} to every \meta{item} stored
+% within the \meta{sequence}. The \meta{inline function} should
+% consist of code which will receive the \meta{item} as |#1|.
+% One in line mapping can be nested inside another. The \meta{items}
+% are returned from left to right.
+% \end{function}
+%
+% \begin{function}{
+% \seq_map_variable:NNn, \seq_map_variable:Ncn,
+% \seq_map_variable:cNn, \seq_map_variable:ccn
+% }
+% \begin{syntax}
+% \cs{seq_map_variable:NNn} \meta{sequence}
+% ~~\meta{tl~var.} \Arg{function using tl~var.}
+% \end{syntax}
+% Stores each entry in the \meta{sequence} in turn in the
+% \meta{tl~var.}\ and applies the \meta{function using tl~var.}
+% The \meta{function} will usually consist of code making use of
+% the \meta{tl~var.}, but this is not enforced. One variable
+% mapping can be nested inside another. The \meta{items}
+% are returned from left to right.
+% \end{function}
+%
+% \begin{function}[EXP]{\seq_map_break:}
+% \begin{syntax}
+% \cs{seq_map_break:}
+% \end{syntax}
+% Used to terminate a \cs{seq_map_\ldots} function before all
+% entries in the \meta{sequence} have been processed. This will
+% normally take place within a conditional statement, for example
+% \begin{verbatim}
+% \seq_map_inline:Nn \l_my_seq
+% {
+% \str_if_eq:nnTF { #1 } { bingo }
+% { \seq_map_break: }
+% {
+% % Do something useful
+% }
+% }
+% \end{verbatim}
+% Use outside of a \cs{seq_map_\ldots} scenario will lead to low
+% level \TeX{} errors.
+% \begin{texnote}
+% When the mapping is broken, additional tokens may be inserted by the
+% internal macro \cs{seq_break_point:n} before further items are taken
+% from the input stream. This will depend on the design of the mapping
+% function.
+% \end{texnote}
+% \end{function}
+%
+% \begin{function}[EXP]{\seq_map_break:n}
+% \begin{syntax}
+% \cs{seq_map_break:n} \Arg{tokens}
+% \end{syntax}
+% Used to terminate a \cs{seq_map_\ldots} function before all
+% entries in the \meta{sequence} have been processed, inserting
+% the \meta{tokens} after the mapping has ended. This will
+% normally take place within a conditional statement, for example
+% \begin{verbatim}
+% \seq_map_inline:Nn \l_my_seq
+% {
+% \str_if_eq:nnTF { #1 } { bingo }
+% { \seq_map_break:n { <tokens> } }
+% {
+% % Do something useful
+% }
+% }
+% \end{verbatim}
+% Use outside of a \cs{seq_map_\ldots} scenario will lead to low
+% level \TeX{} errors.
+% \begin{texnote}
+% When the mapping is broken, additional tokens may be inserted by the
+% internal macro \cs{seq_break_point:n} before the \meta{tokens} are
+% inserted into the input stream.
+% This will depend on the design of the mapping function.
+% \end{texnote}
+% \end{function}
+%
+% \section{Sequences as stacks}
+%
+% Sequences can be used as stacks, where data is pushed to and popped
+% from the top of the sequence. (The left of a sequence is the top, for
+% performance reasons.) The stack functions for sequences are not
+% intended to be mixed with the general ordered data functions detailed
+% in the previous section: a sequence should either be used as an
+% ordered data type or as a stack, but not in both ways.
+%
+% \begin{function}{\seq_get:NN, \seq_get:cN}
+% \begin{syntax}
+% \cs{seq_get:NN} \meta{sequence} \meta{token list variable}
+% \end{syntax}
+% Reads the top item from a \meta{sequence} into the
+% \meta{token list variable} without removing it from the
+% \meta{sequence}. The \meta{token list variable} is assigned locally.
+% If \meta{sequence} is empty an error will be raised.
+% \end{function}
+%
+% \begin{function}{\seq_pop:NN, \seq_pop:cN}
+% \begin{syntax}
+% \cs{seq_pop:NN} \meta{sequence} \meta{token list variable}
+% \end{syntax}
+% Pops the top item from a \meta{sequence} into the
+% \meta{token list variable}. Both of the variables are assigned
+% locally. If \meta{sequence} is empty an error will be raised.
+% \end{function}
+%
+% \begin{function}{\seq_gpop:NN, \seq_gpop:cN}
+% \begin{syntax}
+% \cs{seq_gpop:NN} \meta{sequence} \meta{token list variable}
+% \end{syntax}
+% Pops the top item from a \meta{sequence} into the
+% \meta{token list variable}. The \meta{sequence} is modified globally,
+% while the \meta{token list variable} is assigned locally. If
+% \meta{sequence} is empty an error will be raised.
+% \end{function}
+%
+% \begin{function}
+% {
+% \seq_push:Nn, \seq_push:NV, \seq_push:Nv, \seq_push:No, \seq_push:Nx,
+% seq_push:cn, \seq_push:cV, \seq_push:cv, \seq_push:co, \seq_push:cx
+% }
+% \begin{syntax}
+% \cs{seq_push:Nn} \meta{sequence} \Arg{item}
+% \end{syntax}
+% Adds the \Arg{item} to the top of the \meta{sequence}.
+% The assignment is restricted to the current \TeX{} group.
+% \end{function}
+%
+% \begin{function}
+% {
+% \seq_gpush:Nn, \seq_gpush:NV, \seq_gpush:Nv,
+% \seq_gpush:No, \seq_gpush:Nx,
+% \seq_gpush:cn, \seq_gpush:cV, \seq_gpush:cv,
+% \seq_gpush:co, \seq_gpush:cx
+% }
+% \begin{syntax}
+% \cs{seq_gpush:Nn} \meta{sequence} \Arg{item}
+% \end{syntax}
+% Pushes the \meta{item} onto the end of the top of the
+% \meta{sequence}. The assignment is global.
+% \end{function}
+%
+% \section{Viewing sequences}
+%
+% \begin{function}{\seq_show:N, \seq_show:c}
+% \begin{syntax}
+% \cs{seq_show:N} \meta{sequence}
+% \end{syntax}
+% Displays the entries in the \meta{sequence} in the terminal.
+% \end{function}
+%
+% \section{Experimental sequence functions}
+%
+% This section contains functions which may or may not be retained, depending
+% on how useful they are found to be.
+%
+% \begin{function}[TF]{\seq_get_left:NN, \seq_get_left:cN}
+% \begin{syntax}
+% \cs{seq_get_left:NNTF} \meta{sequence} \meta{token list variable}
+% ~~\Arg{true code} \Arg{false code}
+% \end{syntax}
+% If the \meta{sequence} is empty, leaves the \meta{false code} in the
+% input stream and leaves the \meta{token list variable} unchanged. If the
+% \meta{sequence} is non-empty, stores the left-most item from a \meta{sequence}
+% in the \meta{token list variable} without removing it from a
+% \meta{sequence}. The \meta{true code} is then left in the input stream.
+% The \meta{token list variable} is assigned locally.
+% \end{function}
+%
+% \begin{function}[TF]{\seq_get_right:NN, \seq_get_right:cN}
+% \begin{syntax}
+% \cs{seq_get_right:NNTF} \meta{sequence} \meta{token list variable}
+% ~~\Arg{true code} \Arg{false code}
+% \end{syntax}
+% If the \meta{sequence} is empty, leaves the \meta{false code} in the
+% input stream and leaves the \meta{token list variable} unchanged. If the
+% \meta{sequence} is non-empty, stores the right-most item from a \meta{sequence}
+% in the \meta{token list variable} without removing it from a
+% \meta{sequence}. The \meta{true code} is then left in the input stream.
+% The \meta{token list variable} is assigned locally.
+% \end{function}
+%
+% \begin{function}[TF]{\seq_pop_left:NN, \seq_pop_left:cN}
+% \begin{syntax}
+% \cs{seq_pop_left:NNTF} \meta{sequence} \meta{token list variable}
+% ~~\Arg{true code} \Arg{false code}
+% \end{syntax}
+% If the \meta{sequence} is empty, leaves the \meta{false code} in the
+% input stream and leaves the \meta{token list variable} unchanged. If the
+% \meta{sequence} is non-empty, pops the left-most item from a \meta{sequence}
+% in the \meta{token list variable}, \emph{i.e.}~removes the item from a
+% \meta{sequence}. The \meta{true code} is then left in the input stream.
+% Both the \meta{sequence} and the \meta{token list variable} are assigned
+% locally.
+% \end{function}
+%
+% \begin{function}[TF]{\seq_gpop_left:NN, \seq_gpop_left:cN}
+% \begin{syntax}
+% \cs{seq_gpop_left:NNTF} \meta{sequence} \meta{token list variable}
+% ~~\Arg{true code} \Arg{false code}
+% \end{syntax}
+% If the \meta{sequence} is empty, leaves the \meta{false code} in the
+% input stream and leaves the \meta{token list variable} unchanged. If the
+% \meta{sequence} is non-empty, pops the left-most item from a \meta{sequence}
+% in the \meta{token list variable}, \emph{i.e.}~removes the item from a
+% \meta{sequence}. The \meta{true code} is then left in the input stream.
+% The \meta{sequence} is modified globally, while the \meta{token list variable}
+% is assigned locally.
+% \end{function}
+%
+% \begin{function}[TF]{\seq_pop_right:NN, \seq_pop_right:cN}
+% \begin{syntax}
+% \cs{seq_pop_right:NNTF} \meta{sequence} \meta{token list variable}
+% ~~\Arg{true code} \Arg{false code}
+% \end{syntax}
+% If the \meta{sequence} is empty, leaves the \meta{false code} in the
+% input stream and leaves the \meta{token list variable} unchanged. If the
+% \meta{sequence} is non-empty, pops the right-most item from a \meta{sequence}
+% in the \meta{token list variable}, \emph{i.e.}~removes the item from a
+% \meta{sequence}. The \meta{true code} is then left in the input stream.
+% Both the \meta{sequence} and the \meta{token list variable} are assigned
+% locally.
+% \end{function}
+%
+% \begin{function}[TF]{\seq_gpop_right:NN, \seq_gpop_right:cN}
+% \begin{syntax}
+% \cs{seq_gpop_right:NNTF} \meta{sequence} \meta{token list variable}
+% ~~\Arg{true code} \Arg{false code}
+% \end{syntax}
+% If the \meta{sequence} is empty, leaves the \meta{false code} in the
+% input stream and leaves the \meta{token list variable} unchanged. If the
+% \meta{sequence} is non-empty, pops the right-most item from a \meta{sequence}
+% in the \meta{token list variable}, \emph{i.e.}~removes the item from a
+% \meta{sequence}. The \meta{true code} is then left in the input stream.
+% The \meta{sequence} is modified globally, while the \meta{token list variable}
+% is assigned locally.
+% \end{function}
+%
+% \begin{function}[EXP]{\seq_length:N, \seq_length:c}
+% \begin{syntax}
+% \cs{seq_length:N} \meta{sequence}
+% \end{syntax}
+% Leaves the number of items in the \meta{sequence} in the input
+% stream as an \meta{integer denotation}. The total number of items
+% in a \meta{sequence} will include those which are empty and duplicates,
+% \emph{i.e.}~every item in a \meta{sequence} is unique.
+% \end{function}
+%
+% \begin{function}[EXP]{\seq_item:Nn, \seq_item:cn}
+% \begin{syntax}
+% \cs{seq_item:Nn} \meta{sequence} \Arg{integer expression}
+% \end{syntax}
+% Indexing items in the \meta{sequence} from $0$ at the top (left), this
+% function will evaluate the \meta{integer expression} and leave the
+% appropriate item from the sequence in the input stream. If the
+% \meta{integer expression} is negative, indexing occurs from the
+% bottom (right) of the sequence. When the \meta{integer expression}
+% is larger than the number of items in the \meta{sequence} (as
+% calculated by \cs{seq_length:N}) then the function will expand to
+% nothing.
+% \end{function}
+%
+% \begin{function}[EXP]{\seq_use:N, \seq_use:c}
+% \begin{syntax}
+% \cs{seq_use:N} \meta{sequence}
+% \end{syntax}
+% Places each \meta{item} in the \meta{sequence} in turn in the input stream.
+% This occurs in an expandable fashion, and is implemented as a mapping.
+% This means that the process may be prematurely terminated using
+% \cs{seq_map_break:} or \cs{seq_map_break:n}. The \meta{items} in the
+% \meta{sequence} will be used from left (top) to right (bottom).
+% \end{function}
+%
+% \begin{function}[EXP]
+% {
+% \seq_mapthread_function:NNN, \seq_mapthread_function:NcN,
+% \seq_mapthread_function:cNN, \seq_mapthread_function:ccN
+% }
+% \begin{syntax}
+% \cs{seq_mapthread_function:NNN} \meta{seq1} \meta{seq2} \meta{function}
+% \end{syntax}
+% Applies \meta{function} to every pair of items
+% \meta{seq1-item}--\meta{seq2-item} from the two sequences, returning
+% items from both sequences from left to right. The \meta{function} will
+% receive two \texttt{n}-type arguments for each iteration. The mapping
+% will terminate when
+% the end of either sequence is reached (\emph{i.e.}~whichever sequence has
+% fewer items determines how many iterations
+% occur).
+% \end{function}
+%
+% \begin{function}
+% {
+% \seq_set_from_clist:NN, \seq_set_from_clist:cN,
+% \seq_set_from_clist:Nc, \seq_set_from_clist:cc,
+% \seq_set_from_clist:Nn, \seq_set_from_clist:cn
+% }
+% \begin{syntax}
+% \cs{seq_set_from_clist:NN} \meta{sequence} \meta{comma-list}
+% \end{syntax}
+% Sets the \meta{sequence} within the current \TeX{} group to be equal
+% to the content of the \meta{comma-list}.
+% \end{function}
+%
+% \begin{function}
+% {
+% \seq_gset_from_clist:NN, \seq_gset_from_clist:cN,
+% \seq_gset_from_clist:Nc, \seq_gset_from_clist:cc,
+% \seq_gset_from_clist:Nn, \seq_gset_from_clist:cn
+% }
+% \begin{syntax}
+% \cs{seq_gset_from_clist:NN} \meta{sequence} \meta{comma-list}
+% \end{syntax}
+% Sets the \meta{sequence} globally to equal to the content of the
+% \meta{comma-list}.
+% \end{function}
+%
+% \section{Internal sequence functions}
+%
+% \begin{function}{\seq_if_empty_err_break:N}
+% \begin{syntax}
+% \cs{seq_if_empty_err_break:N} \meta{sequence}
+% \end{syntax}
+% Tests if the \meta{sequence} is empty, and if so issues an error
+% message before skipping over any tokens up to \cs{seq_break_point:n}.
+% This function is used to avoid more serious errors which would
+% otherwise occur if some internal functions were applied to an
+% empty \meta{sequence}.
+% \end{function}
+%
+% \begin{function}[EXP]{\seq_item:n}
+% \begin{syntax}
+% \cs{seq_item:n} \meta{item}
+% \end{syntax}
+% The internal token used to begin each sequence entry. If expanded
+% outside of a mapping or manipulation function, an error will be
+% raised. The definition should always be set globally.
+% \end{function}
+%
+% \begin{function}{\seq_push_item_def:n, \seq_push_item_def:x}
+% \begin{syntax}
+% \cs{seq_push_item_def:n} \Arg{code}
+% \end{syntax}
+% Saves the definition of \cs{seq_item:n} and redefines it to
+% accept one parameter and expand to \meta{code}. This function
+% should always be balanced by use of \cs{seq_pop_item_def:}.
+% \end{function}
+%
+% \begin{function}{\seq_pop_item_def:}
+% \begin{syntax}
+% \cs{seq_pop_item_def:}
+% \end{syntax}
+% Restores the definition of \cs{seq_item:n} most recently saved by
+% \cs{seq_push_item_def:n}. This function should always be used in
+% a balanced pair with \cs{seq_push_item_def:n}.
+% \end{function}
+%
+% \begin{function}[EXP]{\seq_break:}
+% \begin{syntax}
+% \cs{seq_break:}
+% \end{syntax}
+% Used to terminate sequence functions by gobbling all tokens
+% up to \cs{seq_break_point:n}. This function is a copy of
+% \cs{seq_map_break:}, but is used in situations which are
+% not mappings.
+% \end{function}
+%
+% \begin{function}[EXP]{\seq_break:n}
+% \begin{syntax}
+% \cs{seq_break:n} \Arg{tokens}
+% \end{syntax}
+% Used to terminate sequence functions by gobbling all tokens
+% up to \cs{seq_break_point:n}, then inserting the \meta{tokens}
+% before continuing reading the input stream. This function is a copy
+% of \cs{seq_map_break:n}, but is used in situations which are
+% not mappings.
+% \end{function}
+%
+% \begin{function}[EXP]{\seq_break_point:n}
+% \begin{syntax}
+% \cs{seq_break_point:n} \meta{tokens}
+% \end{syntax}
+% Used to mark the end of a recursion or mapping: the functions
+% \cs{seq_map_break:} and \cs{seq_map_break:n} use this to break out
+% of the loop. After the loop ends, the \meta{tokens} are inserted into
+% the input stream. This occurs even if the the break functions are
+% \emph{not} applied: \cs{seq_break_point:n} is functionally-equivalent
+% in these cases to \cs{use:n}.
+% \end{function}
+%
+% \end{documentation}
+%
+% \begin{implementation}
+%
+% \section{\pkg{l3seq} implementation}
+%
+% \TestFiles{m3seq002,m3seq003}
+%
+% \begin{macrocode}
+%<*initex|package>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*package>
+\ProvidesExplPackage
+ {\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}
+\package_check_loaded_expl:
+%</package>
+% \end{macrocode}
+%
+% A sequence is a control sequence whose top-level expansion is of
+% the form \enquote{\cs{seq_item:n} \marg{item$_0$}
+% \ldots \cs{seq_item:n} \marg{item$_{n-1}$}}. An earlier implementation
+% used the structure \enquote{\cs{seq_elt:w} \meta{item$_1$}
+% \cs{seq_elt_end:} \ldots \cs{seq_elt:w} \meta{item$_n$}
+% \cs{seq_elt_end:}}. This allows rapid searching using a delimited
+% function, but is not suitable for items containing |{|, |}| and |#|
+% tokens, and also leads to the loss of surrounding braces
+% around items.
+%
+% \begin{macro}[int]{\seq_item:n}
+% The delimiter is always defined, but when used incorrectly simply
+% removes its argument and hits an undefined control sequence to
+% raise an error.
+% \begin{macrocode}
+\cs_new:Npn \seq_item:n
+ {
+ \seq_use_error:
+ \use_none:n
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{variable}{\l_seq_tmpa_tl, \l_seq_tmpb_tl}
+% Scratch space for various internal uses.
+% \begin{macrocode}
+\tl_new:N \l_seq_tmpa_tl
+\tl_new:N \l_seq_tmpb_tl
+% \end{macrocode}
+% \end{variable}
+%
+% \subsection{Allocation and initialisation}
+%
+% \begin{macro}{\seq_new:N,\seq_new:c}
+% \UnitTested
+% Internally, sequences are just token lists.
+% \begin{macrocode}
+\cs_new_eq:NN \seq_new:N \tl_new:N
+\cs_new_eq:NN \seq_new:c \tl_new:c
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\seq_clear:N, \seq_clear:c}
+% \UnitTested
+% \begin{macro}{\seq_gclear:N, \seq_gclear:c}
+% \UnitTested
+% Clearing sequences is just the same as clearing token lists.
+% \begin{macrocode}
+\cs_new_eq:NN \seq_clear:N \tl_clear:N
+\cs_new_eq:NN \seq_clear:c \tl_clear:c
+\cs_new_eq:NN \seq_gclear:N \tl_gclear:N
+\cs_new_eq:NN \seq_gclear:c \tl_gclear:c
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\seq_clear_new:N, \seq_clear_new:c}
+% \UnitTested
+% \begin{macro}{\seq_gclear_new:N, \seq_gclear_new:c}
+% \UnitTested
+% Once again a copy from the token list functions.
+% \begin{macrocode}
+\cs_new_eq:NN \seq_clear_new:N \tl_clear_new:N
+\cs_new_eq:NN \seq_clear_new:c \tl_clear_new:c
+\cs_new_eq:NN \seq_gclear_new:N \tl_gclear_new:N
+\cs_new_eq:NN \seq_gclear_new:c \tl_gclear_new:c
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\seq_set_eq:NN, \seq_set_eq:cN, \seq_set_eq:Nc, \seq_set_eq:cc}
+% \UnitTested
+% \begin{macro}
+% {\seq_gset_eq:NN, \seq_gset_eq:cN, \seq_gset_eq:Nc, \seq_gset_eq:cc}
+% \UnitTested
+% Once again, these are simple copies from the token list functions.
+% \begin{macrocode}
+\cs_new_eq:NN \seq_set_eq:NN \tl_set_eq:NN
+\cs_new_eq:NN \seq_set_eq:Nc \tl_set_eq:Nc
+\cs_new_eq:NN \seq_set_eq:cN \tl_set_eq:cN
+\cs_new_eq:NN \seq_set_eq:cc \tl_set_eq:cc
+\cs_new_eq:NN \seq_gset_eq:NN \tl_gset_eq:NN
+\cs_new_eq:NN \seq_gset_eq:Nc \tl_gset_eq:Nc
+\cs_new_eq:NN \seq_gset_eq:cN \tl_gset_eq:cN
+\cs_new_eq:NN \seq_gset_eq:cc \tl_gset_eq:cc
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\seq_concat:NNN, \seq_concat:ccc}
+% \UnitTested
+% \begin{macro}{\seq_gconcat:NNN, \seq_gconcat:ccc}
+% \UnitTested
+% Concatenating sequences is easy.
+% \begin{macrocode}
+\cs_new_protected_nopar:Npn \seq_concat:NNN #1#2#3
+ { \tl_set:Nx #1 { \exp_not:o {#2} \exp_not:o {#3} } }
+\cs_new_protected_nopar:Npn \seq_gconcat:NNN #1#2#3
+ { \tl_gset:Nx #1 { \exp_not:o {#2} \exp_not:o {#3} } }
+\cs_generate_variant:Nn \seq_concat:NNN { ccc }
+\cs_generate_variant:Nn \seq_gconcat:NNN { ccc }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Appending data to either end}
+%
+% \begin{macro}{
+% \seq_put_left:Nn, \seq_put_left:NV, \seq_put_left:Nv,
+% \seq_put_left:No, \seq_put_left:Nx,
+% \seq_put_left:cn, \seq_put_left:cV, \seq_put_left:cv,
+% \seq_put_left:co, \seq_put_left:cx
+% }
+% \UnitTested
+% \begin{macro}{
+% \seq_put_right:Nn, \seq_put_right:NV, \seq_put_right:Nv,
+% \seq_put_right:No, \seq_put_right:Nx,
+% \seq_put_right:cn, \seq_put_right:cV, \seq_put_right:cv,
+% \seq_put_right:co, \seq_put_right:cx
+% }
+% \UnitTested
+% The code here is just a wrapper for adding to token lists.
+% \begin{macrocode}
+\cs_new_protected:Npn \seq_put_left:Nn #1#2
+ { \tl_put_left:Nn #1 { \seq_item:n {#2} } }
+\cs_new_protected:Npn \seq_put_right:Nn #1#2
+ { \tl_put_right:Nn #1 { \seq_item:n {#2} } }
+\cs_generate_variant:Nn \seq_put_left:Nn { NV , Nv , No , Nx }
+\cs_generate_variant:Nn \seq_put_left:Nn { c , cV , cv , co , cx }
+\cs_generate_variant:Nn \seq_put_right:Nn { NV , Nv , No , Nx }
+\cs_generate_variant:Nn \seq_put_right:Nn { c , cV , cv , co , cx }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{
+% \seq_gput_left:Nn, \seq_gput_left:NV, \seq_gput_left:Nv,
+% \seq_gput_left:No, \seq_gput_left:Nx,
+% \seq_gput_left:cn, \seq_gput_left:cV, \seq_gput_left:cv,
+% \seq_gput_left:co, \seq_gput_left:cx
+% }
+% \begin{macro}{
+% \seq_gput_right:Nn, \seq_gput_right:NV, \seq_gput_right:Nv,
+% \seq_gput_right:No, \seq_gput_right:Nx,
+% \seq_gput_right:cn, \seq_gput_right:cV,\seq_gput_right:cv,
+% \seq_gput_right:co, \seq_gput_right:cx
+% }
+% The same for global addition.
+% \begin{macrocode}
+\cs_new_protected:Npn \seq_gput_left:Nn #1#2
+ { \tl_gput_left:Nn #1 { \seq_item:n {#2} } }
+\cs_new_protected:Npn \seq_gput_right:Nn #1#2
+ { \tl_gput_right:Nn #1 { \seq_item:n {#2} } }
+\cs_generate_variant:Nn \seq_gput_left:Nn { NV , Nv , No , Nx }
+\cs_generate_variant:Nn \seq_gput_left:Nn { c , cV , cv , co , cx }
+\cs_generate_variant:Nn \seq_gput_right:Nn { NV , Nv , No , Nx }
+\cs_generate_variant:Nn \seq_gput_right:Nn { c , cV , cv , co , cx }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Modifying sequences}
+%
+% \begin{variable}{\l_seq_remove_seq}
+% An internal sequence for the removal routines.
+% \begin{macrocode}
+\seq_new:N \l_seq_remove_seq
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\seq_remove_duplicates:N, \seq_remove_duplicates:c}
+% \UnitTested
+% \begin{macro}{\seq_gremove_duplicates:N, \seq_gremove_duplicates:c}
+% \UnitTested
+% \begin{macro}[aux]{\seq_remove_duplicates_aux:NN}
+% Removing duplicates means making a new list then copying it.
+% \begin{macrocode}
+\cs_new_protected:Npn \seq_remove_duplicates:N
+ { \seq_remove_duplicates_aux:NN \seq_set_eq:NN }
+\cs_new_protected:Npn \seq_gremove_duplicates:N
+ { \seq_remove_duplicates_aux:NN \seq_gset_eq:NN }
+\cs_new_protected:Npn \seq_remove_duplicates_aux:NN #1#2
+ {
+ \seq_clear:N \l_seq_remove_seq
+ \seq_map_inline:Nn #2
+ {
+ \seq_if_in:NnF \l_seq_remove_seq {##1}
+ { \seq_put_right:Nn \l_seq_remove_seq {##1} }
+ }
+ #1 #2 \l_seq_remove_seq
+ }
+\cs_generate_variant:Nn \seq_remove_duplicates:N { c }
+\cs_generate_variant:Nn \seq_gremove_duplicates:N { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\seq_remove_all:Nn, \seq_remove_all:cn}
+% \UnitTested
+% \begin{macro}{\seq_gremove_all:Nn, \seq_gremove_all:cn}
+% \UnitTested
+% \begin{macro}[aux]{\seq_remove_all_aux:NNn}
+% The idea of the code here is to avoid a relatively expensive addition of
+% items one at a time to an intermediate sequence.
+% The approach taken is therefore similar to
+% that in \cs{seq_pop_right_aux_ii:NNN}, using a \enquote{flexible}
+% \texttt{x}-type expansion to do most of the work. As \cs{tl_if_eq:nnT}
+% is not expandable, a two-part strategy is needed. First, the
+% \texttt{x}-type expansion uses \cs{str_if_eq:nnT} to find potential
+% matches. If one is found, the expansion is halted and the necessary
+% set up takes place to use the \cs{tl_if_eq:NNT} test. The \texttt{x}-type
+% is started again, including all of the items copied already. This will
+% happen repeatedly until the entire sequence has been scanned. The code
+% is set up to avoid needing and intermediate scratch list: the lead-off
+% \texttt{x}-type expansion (|#1 #2 {#2}|) will ensure that nothing is
+% lost.
+% \begin{macrocode}
+\cs_new_protected:Npn \seq_remove_all:Nn
+ { \seq_remove_all_aux:NNn \tl_set:Nx }
+\cs_new_protected:Npn \seq_gremove_all:Nn
+ { \seq_remove_all_aux:NNn \tl_gset:Nx }
+\cs_new_protected:Npn \seq_remove_all_aux:NNn #1#2#3
+ {
+ \seq_push_item_def:n
+ {
+ \str_if_eq:nnT {##1} {#3}
+ {
+ \if_false: { \fi: }
+ \tl_set:Nn \l_seq_tmpb_tl {##1}
+ #1 #2
+ { \if_false: } \fi:
+ \exp_not:o {#2}
+ \tl_if_eq:NNT \l_seq_tmpa_tl \l_seq_tmpb_tl
+ { \use_none:nn }
+ }
+ \exp_not:n { \seq_item:n {##1} }
+ }
+ \tl_set:Nn \l_seq_tmpa_tl {#3}
+ #1 #2 {#2}
+ \seq_pop_item_def:
+ }
+\cs_generate_variant:Nn \seq_remove_all:Nn { c }
+\cs_generate_variant:Nn \seq_gremove_all:Nn { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Sequence conditionals}
+%
+% \begin{macro}[pTF]{\seq_if_empty:N, \seq_if_empty:c}
+% \UnitTested
+% Simple copies from the token list variable material.
+% \begin{macrocode}
+\prg_new_eq_conditional:NNn \seq_if_empty:N \tl_if_empty:N
+ { p , T , F , TF }
+\prg_new_eq_conditional:NNn \seq_if_empty:c \tl_if_empty:c
+ { p , T , F , TF }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}[TF]{
+% \seq_if_in:Nn, \seq_if_in:NV, \seq_if_in:Nv, \seq_if_in:No, \seq_if_in:Nx,
+% \seq_if_in:cn, \seq_if_in:cV, \seq_if_in:cv, \seq_if_in:co, \seq_if_in:cx
+% }
+% \UnitTested
+% \begin{macro}[aux]{\seq_if_in_aux:}
+% The approach here is to define \cs{seq_item:n} to compare its
+% argument with the test sequence. If the two items are equal, the
+% mapping is terminated and \cs{prg_return_true:} is inserted. On the
+% other hand, if there is no match then the loop will break returning
+% \cs{prg_return_false:}. In either case, \cs{seq_break_point:n}
+% ensures that the group ends before the logical value is returned.
+% Everything is inside a group so that \cs{seq_item:n} is preserved
+% in nested situations.
+% \begin{macrocode}
+\prg_new_protected_conditional:Npnn \seq_if_in:Nn #1#2
+ { T , F , TF }
+ {
+ \group_begin:
+ \tl_set:Nn \l_seq_tmpa_tl {#2}
+ \cs_set_protected:Npn \seq_item:n ##1
+ {
+ \tl_set:Nn \l_seq_tmpb_tl {##1}
+ \if_meaning:w \l_seq_tmpa_tl \l_seq_tmpb_tl
+ \exp_after:wN \seq_if_in_aux:
+ \fi:
+ }
+ #1
+ \seq_break:n { \prg_return_false: }
+ \seq_break_point:n { \group_end: }
+ }
+\cs_new_nopar:Npn \seq_if_in_aux: { \seq_break:n { \prg_return_true: } }
+\cs_generate_variant:Nn \seq_if_in:NnT { NV , Nv , No , Nx }
+\cs_generate_variant:Nn \seq_if_in:NnT { c , cV , cv , co , cx }
+\cs_generate_variant:Nn \seq_if_in:NnF { NV , Nv , No , Nx }
+\cs_generate_variant:Nn \seq_if_in:NnF { c , cV , cv , co , cx }
+\cs_generate_variant:Nn \seq_if_in:NnTF { NV , Nv , No , Nx }
+\cs_generate_variant:Nn \seq_if_in:NnTF { c , cV , cv , co , cx }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Recovering data from sequences}
+%
+% \begin{macro}{\seq_get_left:NN, \seq_get_left:cN}
+% \UnitTested
+% \begin{macro}[aux]{\seq_get_left_aux:NnwN}
+% Getting an item from the left of a sequence is pretty easy: just
+% trim off the first item after removing the \cs{seq_item:n} at
+% the start.
+% \begin{macrocode}
+\cs_new_protected_nopar:Npn \seq_get_left:NN #1#2
+ {
+ \seq_if_empty_err_break:N #1
+ \exp_after:wN \seq_get_left_aux:NnwN #1 \q_stop #2
+ \seq_break_point:n { }
+ }
+\cs_new_protected:Npn \seq_get_left_aux:NnwN \seq_item:n #1#2 \q_stop #3
+ { \tl_set:Nn #3 {#1} }
+\cs_generate_variant:Nn \seq_get_left:NN { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\seq_pop_left:NN, \seq_pop_left:cN}
+% \UnitTested
+% \begin{macro}{\seq_gpop_left:NN, \seq_gpop_left:cN}
+% \UnitTested
+% \begin{macro}[aux]{\seq_pop_left_aux:NNN}
+% \begin{macro}[aux]{\seq_pop_left_aux:NnwNNN}
+% The approach to popping an item is pretty similar to that to get
+% an item, with the only difference being that the sequence itself has
+% to be redefined. This makes it more sensible to use an auxiliary
+% function for the local and global cases.
+% \begin{macrocode}
+\cs_new_protected_nopar:Npn \seq_pop_left:NN
+ { \seq_pop_left_aux:NNN \tl_set:Nn }
+\cs_new_protected_nopar:Npn \seq_gpop_left:NN
+ { \seq_pop_left_aux:NNN \tl_gset:Nn }
+\cs_new_protected_nopar:Npn \seq_pop_left_aux:NNN #1#2#3
+ {
+ \seq_if_empty_err_break:N #2
+ \exp_after:wN \seq_pop_left_aux:NnwNNN #2 \q_stop #1#2#3
+ \seq_break_point:n { }
+ }
+\cs_new_protected:Npn \seq_pop_left_aux:NnwNNN \seq_item:n #1#2 \q_stop #3#4#5
+ {
+ #3 #4 {#2}
+ \tl_set:Nn #5 {#1}
+ }
+\cs_generate_variant:Nn \seq_pop_left:NN { c }
+\cs_generate_variant:Nn \seq_gpop_left:NN { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\seq_get_right:NN, \seq_get_right:cN}
+% \UnitTested
+% \begin{macro}[aux]{\seq_get_right_aux:NN}
+% \begin{macro}[aux]{\seq_get_right_loop:nn}
+% The idea here is to remove the very first \cs{seq_item:n} from the
+% sequence, leaving a token list starting with the first braced entry.
+% Two arguments at a time are then grabbed: apart from the right-hand end of
+% the sequence, this will be a brace group followed by \cs{seq_item:n}. The
+% set up code means that these all disappear. At the end of the sequence,
+% the assignment is placed in front of the very last entry in the sequence,
+% before a tidying-up step takes place to remove the loop and reset the
+% meaning of \cs{seq_item:n}.
+% \begin{macrocode}
+\cs_new_protected_nopar:Npn \seq_get_right:NN #1#2
+ {
+ \seq_if_empty_err_break:N #1
+ \seq_get_right_aux:NN #1#2
+ \seq_break_point:n { }
+ }
+\cs_new_protected_nopar:Npn \seq_get_right_aux:NN #1#2
+ {
+ \seq_push_item_def:n { }
+ \exp_after:wN \exp_after:wN \exp_after:wN \seq_get_right_loop:nn
+ \exp_after:wN \use_none:n #1
+ { \tl_set:Nn #2 }
+ { }
+ {
+ \seq_pop_item_def:
+ \seq_break:
+ }
+}
+\cs_new:Npn \seq_get_right_loop:nn #1#2
+ {
+ #2 {#1}
+ \seq_get_right_loop:nn
+ }
+\cs_generate_variant:Nn \seq_get_right:NN { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\seq_pop_right:NN, \seq_pop_right:cN}
+% \UnitTested
+% \begin{macro}{\seq_gpop_right:NN, \seq_gpop_right:cN}
+% \UnitTested
+% \begin{macro}[aux]{\seq_pop_right_aux:NNN, \seq_pop_right_aux_ii:NNN}
+% The approach to popping from the right is a bit more involved, but does
+% use some of the same ideas as getting from the right. What is needed is a
+% \enquote{flexible length} way to set a token list variable. This is
+% supplied by the |{ \if_false:} \fi:| \ldots
+% |\if_false: { \fi: }| construct. Using an \texttt{x}-type
+% expansion and a \enquote{non-expanding} definition for \cs{seq_item:n},
+% the left-most $n - 1$ entries in a sequence of $n$ items will be stored
+% back in the sequence. That needs a loop of unknown length, hence using the
+% strange \cs{if_false:} way of including brackets. When the last item
+% of the sequence is reached, the closing bracket for the assignment is
+% inserted, and |\tl_set:Nn #3| is inserted in front of the final entry.
+% This therefore does the pop assignment, then a final loop clears up the
+% code.
+% \begin{macrocode}
+\cs_new_protected_nopar:Npn \seq_pop_right:NN
+ { \seq_pop_right_aux:NNN \tl_set:Nx }
+\cs_new_protected_nopar:Npn \seq_gpop_right:NN
+ { \seq_pop_right_aux:NNN \tl_gset:Nx }
+\cs_new_protected_nopar:Npn \seq_pop_right_aux:NNN #1#2#3
+ {
+ \seq_if_empty_err_break:N #2
+ \seq_pop_right_aux_ii:NNN #1 #2 #3
+ \seq_break_point:n { }
+ }
+\cs_new_protected_nopar:Npn \seq_pop_right_aux_ii:NNN #1#2#3
+ {
+ \seq_push_item_def:n { \exp_not:n { \seq_item:n {##1} } }
+ #1 #2 { \if_false: } \fi:
+ \exp_after:wN \exp_after:wN \exp_after:wN \seq_get_right_loop:nn
+ \exp_after:wN \use_none:n #2
+ {
+ \if_false: { \fi: }
+ \tl_set:Nn #3
+ }
+ { }
+ {
+ \seq_pop_item_def:
+ \seq_break:
+ }
+ }
+\cs_generate_variant:Nn \seq_pop_right:NN { c }
+\cs_generate_variant:Nn \seq_gpop_right:NN { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Mapping to sequences}
+%
+% \begin{macro}[int]{\seq_break:}
+% \begin{macro}[int]{\seq_break:n}
+% To break a function, the special token \cs{seq_break_point:n} is
+% used to find the end of the code. Any ending code is then inserted
+% before the return value of \cs{seq_map_break:n} is inserted.
+% \begin{macrocode}
+\cs_new:Npn \seq_break: #1 \seq_break_point:n #2 {#2}
+\cs_new:Npn \seq_break:n #1#2 \seq_break_point:n #3 { #3 #1 }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\seq_map_break:}
+% \UnitTested
+% \begin{macro}{\seq_map_break:n}
+% \UnitTested
+% Semantically-logical copies of the break functions for use inside
+% mappings.
+% \begin{macrocode}
+\cs_new_eq:NN \seq_map_break: \seq_break:
+\cs_new_eq:NN \seq_map_break:n \seq_break:n
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[int]{\seq_break_point:n}
+% Normally, the marker token will not be executed, but if it is then
+% the end code is simply inserted.
+% \begin{macrocode}
+\cs_new_eq:NN \seq_break_point:n \use:n
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}[int]{\seq_if_empty_err_break:N}
+% A function to check that sequences really have some content. This
+% is optimised for speed, hence the direct primitive use.
+% \begin{macrocode}
+\cs_new_protected_nopar:Npn \seq_if_empty_err_break:N #1
+ {
+ \if_meaning:w #1 \c_empty_tl
+ \msg_kernel_error:nnx { seq } { empty-sequence } { \token_to_str:N #1 }
+ \exp_after:wN \seq_break:
+ \fi:
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\seq_map_function:NN, \seq_map_function:cN}
+% \UnitTested
+% \begin{macro}[aux]{\seq_map_function_aux:NNn}
+% The idea here is to apply the code of |#2| to each item in the
+% sequence without altering the definition of \cs{seq_item:n}. This
+% is done as by noting that every odd token in the sequence must be
+% \cs{seq_item:n}, which can be gobbled by \cs{use_none:n}. At the end of
+% the loop, |#2| is instead |? \seq_map_break:|, which therefore breaks the
+% loop without needing to do a (relatively-expensive) quark test.
+% \begin{macrocode}
+\cs_new:Npn \seq_map_function:NN #1#2
+ {
+ \exp_after:wN \seq_map_function_aux:NNn \exp_after:wN #2 #1
+ { ? \seq_map_break: } { }
+ \seq_break_point:n { }
+ }
+\cs_new:Npn \seq_map_function_aux:NNn #1#2#3
+ {
+ \use_none:n #2
+ #1 {#3}
+ \seq_map_function_aux:NNn #1
+ }
+\cs_generate_variant:Nn \seq_map_function:NN { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{variable}{\g_seq_nesting_depth_int}
+% A counter to keep track of nested functions: defined in \pkg{l3int}.
+% \end{variable}
+%
+% \begin{macro}[int]{\seq_push_item_def:n, \seq_push_item_def:x}
+% \begin{macro}[aux]{\seq_push_item_def_aux:}
+% \begin{macro}[int]{\seq_pop_item_def:}
+% The definition of \cs{seq_item:n} needs to be saved and restored at
+% various points within the mapping and manipulation code. That is handled
+% here: as always, this approach uses global assignments.
+% \begin{macrocode}
+\cs_new_protected:Npn \seq_push_item_def:n
+ {
+ \seq_push_item_def_aux:
+ \cs_gset:Npn \seq_item:n ##1
+ }
+\cs_new_protected:Npn \seq_push_item_def:x
+ {
+ \seq_push_item_def_aux:
+ \cs_gset:Npx \seq_item:n ##1
+ }
+\cs_new_protected:Npn \seq_push_item_def_aux:
+ {
+ \cs_gset_eq:cN { seq_item_ \int_use:N \g_seq_nesting_depth_int :n }
+ \seq_item:n
+ \int_gincr:N \g_seq_nesting_depth_int
+ }
+\cs_new_protected_nopar:Npn \seq_pop_item_def:
+ {
+ \int_gdecr:N \g_seq_nesting_depth_int
+ \cs_gset_eq:Nc \seq_item:n
+ { seq_item_ \int_use:N \g_seq_nesting_depth_int :n }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\seq_map_inline:Nn, \seq_map_inline:cn}
+% \UnitTested
+% The idea here is that \cs{seq_item:n} is already \enquote{applied} to
+% each item in a sequence, and so an in-line mapping is just a case of
+% redefining \cs{seq_item:n}.
+% \begin{macrocode}
+\cs_new_protected:Npn \seq_map_inline:Nn #1#2
+ {
+ \seq_push_item_def:n {#2}
+ #1
+ \seq_break_point:n { \seq_pop_item_def: }
+ }
+\cs_generate_variant:Nn \seq_map_inline:Nn { c }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}
+% {
+% \seq_map_variable:NNn,\seq_map_variable:Ncn,
+% \seq_map_variable:cNn,\seq_map_variable:ccn
+% }
+% \UnitTested
+% This is just a specialised version of the in-line mapping function,
+% using an \texttt{x}-type expansion for the code set up so that the
+% number of |#| tokens required is as expected.
+% \begin{macrocode}
+\cs_new_protected:Npn \seq_map_variable:NNn #1#2#3
+ {
+ \seq_push_item_def:x
+ {
+ \tl_set:Nn \exp_not:N #2 {##1}
+ \exp_not:n {#3}
+ }
+ #1
+ \seq_break_point:n { \seq_pop_item_def: }
+ }
+\cs_generate_variant:Nn \seq_map_variable:NNn { Nc }
+\cs_generate_variant:Nn \seq_map_variable:NNn { c , cc }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsection{Sequence stacks}
+%
+% The same functions as for sequences, but with the correct naming.
+%
+% \begin{macro}{
+% \seq_push:Nn, \seq_push:NV, \seq_push:Nv, \seq_push:No, \seq_push:Nx,
+% \seq_push:cn, \seq_push:cV, \seq_push:cV, \seq_push:co, \seq_push:cx
+% }
+% \UnitTested
+% \begin{macro}{
+% \seq_gpush:Nn, \seq_gpush:NV, \seq_gpush:Nv, \seq_gpush:No, \seq_gpush:Nx,
+% \seq_gpush:cn, \seq_gpush:cV, \seq_gpush:cv, \seq_gpush:co, \seq_gpush:cx
+% }
+% \UnitTested
+% Pushing to a sequence is the same as adding on the left.
+% \begin{macrocode}
+\cs_new_eq:NN \seq_push:Nn \seq_put_left:Nn
+\cs_new_eq:NN \seq_push:NV \seq_put_left:NV
+\cs_new_eq:NN \seq_push:Nv \seq_put_left:Nv
+\cs_new_eq:NN \seq_push:No \seq_put_left:No
+\cs_new_eq:NN \seq_push:Nx \seq_put_left:Nx
+\cs_new_eq:NN \seq_push:cn \seq_put_left:cn
+\cs_new_eq:NN \seq_push:cV \seq_put_left:cV
+\cs_new_eq:NN \seq_push:cv \seq_put_left:cv
+\cs_new_eq:NN \seq_push:co \seq_put_left:co
+\cs_new_eq:NN \seq_push:cx \seq_put_left:cx
+\cs_new_eq:NN \seq_gpush:Nn \seq_gput_left:Nn
+\cs_new_eq:NN \seq_gpush:NV \seq_gput_left:NV
+\cs_new_eq:NN \seq_gpush:Nv \seq_gput_left:Nv
+\cs_new_eq:NN \seq_gpush:No \seq_gput_left:No
+\cs_new_eq:NN \seq_gpush:Nx \seq_gput_left:Nx
+\cs_new_eq:NN \seq_gpush:cn \seq_gput_left:cn
+\cs_new_eq:NN \seq_gpush:cV \seq_gput_left:cV
+\cs_new_eq:NN \seq_gpush:cv \seq_gput_left:cv
+\cs_new_eq:NN \seq_gpush:co \seq_gput_left:co
+\cs_new_eq:NN \seq_gpush:cx \seq_gput_left:cx
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\seq_get:NN, \seq_get:cN}
+% \UnitTested
+% \begin{macro}{\seq_pop:NN, \seq_pop:cN}
+% \UnitTested
+% \begin{macro}{\seq_gpop:NN, \seq_gpop:cN}
+% \UnitTested
+% In most cases, getting items from the stack does not need to specify
+% that this is from the left. So alias are provided.
+% \begin{macrocode}
+\cs_new_eq:NN \seq_get:NN \seq_get_left:NN
+\cs_new_eq:NN \seq_get:cN \seq_get_left:cN
+\cs_new_eq:NN \seq_pop:NN \seq_pop_left:NN
+\cs_new_eq:NN \seq_pop:cN \seq_pop_left:cN
+\cs_new_eq:NN \seq_gpop:NN \seq_gpop_left:NN
+\cs_new_eq:NN \seq_gpop:cN \seq_gpop_left:cN
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Viewing sequences}
+%
+% \begin{variable}{\l_seq_show_tl}
+% Used to store the material for display.
+% \begin{macrocode}
+\tl_new:N \l_seq_show_tl
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\seq_show:N, \seq_show:c}
+% \UnitTested
+% \begin{macro}[aux]{\seq_show_aux:n}
+% \begin{macro}[aux]{\seq_show_aux:w}
+% The aim of the mapping here is to create a token list containing the
+% formatted sequence. The very first item needs the new line and \verb*|> |
+% removing, which is achieved using a \texttt{w}-type auxiliary. To avoid
+% a low-level \TeX{} error if there is an empty sequence, a simple test is
+% used to keep the output \enquote{clean}.
+% \begin{macrocode}
+\cs_new_protected_nopar:Npn \seq_show:N #1
+ {
+ \seq_if_empty:NTF #1
+ {
+ \iow_term:x { Sequence~\token_to_str:N #1 \c_space_tl is~empty }
+ \tl_show:n { }
+ }
+ {
+ \iow_term:x
+ {
+ Sequence~\token_to_str:N #1 \c_space_tl
+ contains~the~items~(without~outer~braces):
+ }
+ \tl_set:Nx \l_seq_show_tl
+ { \seq_map_function:NN #1 \seq_show_aux:n }
+ \etex_showtokens:D \exp_after:wN \exp_after:wN \exp_after:wN
+ { \exp_after:wN \seq_show_aux:w \l_seq_show_tl }
+ }
+ }
+\cs_new:Npn \seq_show_aux:n #1
+ {
+ \iow_newline: > \c_space_tl \c_space_tl
+ \iow_char:N \{ \exp_not:n {#1} \iow_char:N \}
+ }
+\cs_new:Npn \seq_show_aux:w #1 > ~ { }
+\cs_generate_variant:Nn \seq_show:N { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Experimental functions}
+%
+% \begin{macro}[aux]{\seq_if_empty_break_return_false:N}
+% The name says it all: of the sequence is empty, returns logical
+% \texttt{false}.
+% \begin{macrocode}
+\cs_new_nopar:Npn \seq_if_empty_break_return_false:N #1
+ {
+ \if_meaning:w #1 \c_empty_tl
+ \prg_return_false:
+ \exp_after:wN \seq_break:
+ \fi:
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}[TF]{\seq_get_left:NN, \seq_get_left:cN}
+% \begin{macro}[TF]{\seq_get_right:NN, \seq_get_right:cN}
+% Getting from the left or right with a check on the results.
+% \begin{macrocode}
+\prg_new_protected_conditional:Npnn \seq_get_left:NN #1 #2 { T , F , TF }
+ {
+ \seq_if_empty_break_return_false:N #1
+ \exp_after:wN \seq_get_left_aux:Nw #1 \q_stop #2
+ \prg_return_true:
+ \seq_break:
+ \seq_break_point:n { }
+ }
+\prg_new_protected_conditional:Npnn \seq_get_right:NN #1#2 { T , F , TF }
+ {
+ \seq_if_empty_break_return_false:N #1
+ \seq_get_right_aux:NN #1#2
+ \prg_return_true: \seq_break:
+ \seq_break_point:n { }
+ }
+\cs_generate_variant:Nn \seq_get_left:NNT { c }
+\cs_generate_variant:Nn \seq_get_left:NNF { c }
+\cs_generate_variant:Nn \seq_get_left:NNTF { c }
+\cs_generate_variant:Nn \seq_get_right:NNT { c }
+\cs_generate_variant:Nn \seq_get_right:NNF { c }
+\cs_generate_variant:Nn \seq_get_right:NNTF { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[TF]{\seq_pop_left:NN, \seq_pop_left:cN}
+% \begin{macro}[TF]{\seq_gpop_left:NN, \seq_gpop_left:cN}
+% \begin{macro}[TF]{\seq_pop_right:NN, \seq_pop_right:cN}
+% \begin{macro}[TF]{\seq_gpop_right:NN, \seq_gpop_right:cN}
+% More or less the same for popping.
+% \begin{macrocode}
+\prg_new_protected_conditional:Npnn \seq_pop_left:NN #1#2 { T , F , TF }
+ {
+ \seq_if_empty_break_return_false:N #1
+ \exp_after:wN \seq_pop_left_aux:NnwNNN #1 \q_stop \tl_set:Nn #1#2
+ \prg_return_true: \seq_break:
+ \seq_break_point:n { }
+ }
+\prg_new_protected_conditional:Npnn \seq_gpop_left:NN #1#2 { T , F , TF }
+ {
+ \seq_if_empty_break_return_false:N #1
+ \exp_after:wN \seq_pop_left_aux:NnwNNN #1 \q_stop \tl_gset:Nn #1#2
+ \prg_return_true: \seq_break:
+ \seq_break_point:n { }
+ }
+\prg_new_protected_conditional:Npnn \seq_pop_right:NN #1#2 { T , F , TF }
+ {
+ \seq_if_empty_break_return_false:N #1
+ \seq_pop_right_aux_ii:NNN \tl_set:Nx #1 #2
+ \prg_return_true: \seq_break:
+ \seq_break_point:n { }
+ }
+\prg_new_protected_conditional:Npnn \seq_gpop_right:NN #1#2 { T , F , TF }
+ {
+ \seq_if_empty_break_return_false:N #1
+ \seq_pop_right_aux_ii:NNN \tl_gset:Nx #1 #2
+ \prg_return_true: \seq_break:
+ \seq_break_point:n { }
+ }
+\cs_generate_variant:Nn \seq_pop_left:NNT { c }
+\cs_generate_variant:Nn \seq_pop_left:NNF { c }
+\cs_generate_variant:Nn \seq_pop_left:NNTF { c }
+\cs_generate_variant:Nn \seq_gpop_left:NNT { c }
+\cs_generate_variant:Nn \seq_gpop_left:NNF { c }
+\cs_generate_variant:Nn \seq_gpop_left:NNTF { c }
+\cs_generate_variant:Nn \seq_pop_right:NNT { c }
+\cs_generate_variant:Nn \seq_pop_right:NNF { c }
+\cs_generate_variant:Nn \seq_pop_right:NNTF { c }
+\cs_generate_variant:Nn \seq_gpop_right:NNT { c }
+\cs_generate_variant:Nn \seq_gpop_right:NNF { c }
+\cs_generate_variant:Nn \seq_gpop_right:NNTF { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\seq_length:N, \seq_length:c}
+% \begin{macro}[aux]{\seq_length_aux:n}
+% Counting the items in a sequence is done using the same approach as for
+% other length functions: turn each entry into a \texttt{+1} then use
+% integer evaluation to actually do the mathematics.
+% \begin{macrocode}
+\cs_new:Npn \seq_length:N #1
+ {
+ \int_eval:n
+ {
+ 0
+ \seq_map_function:NN #1 \seq_length_aux:n
+ }
+ }
+\cs_new:Npn \seq_length_aux:n #1 { +1 }
+\cs_generate_variant:Nn \seq_length:N { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\seq_item:Nn, \seq_item:cn}
+% \begin{macro}[aux]{\seq_item_aux:nnn}
+% The idea here is to find the offset of the item from the left, then use
+% a loop to grab the correct item. If the resulting offset is too large,
+% then the stop code |{ ? \seq_break } { }| will be used by the auxiliary,
+% terminating the loop and returning nothing at all.
+% \begin{macrocode}
+\cs_new_nopar:Npn \seq_item:Nn #1#2
+ {
+ \exp_last_unbraced:Nfo \seq_item_aux:nnn
+ {
+ \int_eval:n
+ {
+ \int_compare:nNnT {#2} < \c_zero
+ { \seq_length:N #1 + }
+ #2
+ }
+ }
+ #1
+ { ? \seq_break: }
+ { }
+ \seq_break_point:n { }
+ }
+\cs_new_nopar:Npn \seq_item_aux:nnn #1#2#3
+ {
+ \use_none:n #2
+ \int_compare:nNnTF {#1} = \c_zero
+ { \seq_break:n {#3} }
+ { \exp_args:Nf \seq_item_aux:nnn { #1 - 1 } }
+ }
+\cs_generate_variant:Nn \seq_item:Nn { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\seq_use:N, \seq_use:c}
+% A simple short cut for a mapping.
+% \begin{macrocode}
+\cs_new_nopar:Npn \seq_use:N #1 { \seq_map_function:NN #1 \use:n }
+\cs_generate_variant:Nn \seq_use:N { c }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}
+% {
+% \seq_mapthread_function:NNN, \seq_mapthread_function:NcN,
+% \seq_mapthread_function:cNN, \seq_mapthread_function:ccN
+% }
+% \begin{macro}[aux]{\seq_mapthread_function_aux:NN}
+% \begin{macro}[aux]{\seq_mapthread_function_aux:Nnnwnn}
+% The idea here is to first expand both of the sequences, adding the usual
+% |{ ? \seq_break: } { }| to the end of each on. This is most conveniently
+% done in two steps using an auxiliary function. The mapping then throws
+% away the first token of |#2| and |#5|, which for items in the sequences
+% will both be \cs{seq_item:n}. The function to be mapped will then be
+% applied to the two entries. When the code hits the end of one of the
+% sequences, the break material will stop the entire loop and tidy up. This
+% avoids needing to find the length of the two sequences, or worrying about
+% which is longer.
+% \begin{macrocode}
+\cs_new_nopar:Npn \seq_mapthread_function:NNN #1#2#3
+ {
+ \exp_after:wN \seq_mapthread_function_aux:NN
+ \exp_after:wN #3
+ \exp_after:wN #1
+ #2
+ { ? \seq_break: } { }
+ \seq_break_point:n { }
+ }
+\cs_new_nopar:Npn \seq_mapthread_function_aux:NN #1#2
+ {
+ \exp_after:wN \seq_mapthread_function_aux:Nnnwnn
+ \exp_after:wN #1
+ #2
+ { ? \seq_break: } { }
+ \q_stop
+ }
+\cs_new:Npn \seq_mapthread_function_aux:Nnnwnn #1#2#3#4 \q_stop #5#6
+ {
+ \use_none:n #2
+ \use_none:n #5
+ #1 {#3} {#6}
+ \seq_mapthread_function_aux:Nnnwnn #1 #4 \q_stop
+ }
+\cs_generate_variant:Nn \seq_mapthread_function:NNN { Nc }
+\cs_generate_variant:Nn \seq_mapthread_function:NNN { c , cc }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}
+% {
+% \seq_set_from_clist:NN, \seq_set_from_clist:cN,
+% \seq_set_from_clist:Nc, \seq_set_from_clist:cc,
+% \seq_set_from_clist:Nn, \seq_set_from_clist:cn
+% }
+% \begin{macro}
+% {
+% \seq_gset_from_clist:NN, \seq_gset_from_clist:cN,
+% \seq_gset_from_clist:Nc, \seq_gset_from_clist:cc,
+% \seq_gset_from_clist:Nn, \seq_gset_from_clist:cn
+% }
+% \begin{macro}[aux]{\seq_wrap_item:n}
+% Setting a sequence from a comma-separated list is done using a simple
+% mapping.
+% \begin{macrocode}
+\cs_new_protected:Npn \seq_set_from_clist:NN #1#2
+ {
+ \tl_set:Nx #1
+ { \clist_map_function:NN #2 \seq_wrap_item:n }
+ }
+\cs_new_protected:Npn \seq_set_from_clist:Nn #1#2
+ {
+ \tl_set:Nx #1
+ { \clist_map_function:nN {#2} \seq_wrap_item:n }
+ }
+\cs_new_protected:Npn \seq_gset_from_clist:NN #1#2
+ {
+ \tl_gset:Nx #1
+ { \clist_map_function:NN #2 \seq_wrap_item:n }
+ }
+\cs_new_protected:Npn \seq_gset_from_clist:Nn #1#2
+ {
+ \tl_gset:Nx #1
+ { \clist_map_function:nN {#2} \seq_wrap_item:n }
+ }
+\cs_new:Npn \seq_wrap_item:n #1 { \exp_not:n { \seq_item:n {#1} } }
+\cs_generate_variant:Nn \seq_set_from_clist:NN { Nc }
+\cs_generate_variant:Nn \seq_set_from_clist:NN { c , cc }
+\cs_generate_variant:Nn \seq_set_from_clist:Nn { c }
+\cs_generate_variant:Nn \seq_gset_from_clist:NN { Nc }
+\cs_generate_variant:Nn \seq_gset_from_clist:NN { c , cc }
+\cs_generate_variant:Nn \seq_gset_from_clist:Nn { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Deprecated interfaces}
+%
+% A few functions which are no longer documented: these were moved
+% here on or before 2011-04-20, and will be removed entirely by
+% 2011-07-20.
+%
+% \begin{macro}{\seq_top:NN, \seq_top:cN}
+% These are old stack functions.
+% \begin{macrocode}
+\cs_new_eq:NN \seq_top:NN \seq_get_left:NN
+\cs_new_eq:NN \seq_top:cN \seq_get_left:cN
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\seq_display:N, \seq_display:c}
+% An older name for \cs{seq_show:N}.
+% \begin{macrocode}
+\cs_new_eq:NN \seq_display:N \seq_show:N
+\cs_new_eq:NN \seq_display:c \seq_show:c
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macrocode}
+%</initex|package>
+% \end{macrocode}
+%
+% \end{implementation}
+%
+% \PrintIndex \ No newline at end of file