diff options
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3int.dtx')
-rw-r--r-- | Master/texmf-dist/source/latex/l3kernel/l3int.dtx | 250 |
1 files changed, 95 insertions, 155 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3int.dtx b/Master/texmf-dist/source/latex/l3kernel/l3int.dtx index dd98220454f..78d244e3845 100644 --- a/Master/texmf-dist/source/latex/l3kernel/l3int.dtx +++ b/Master/texmf-dist/source/latex/l3kernel/l3int.dtx @@ -37,7 +37,7 @@ \documentclass[full]{l3doc} %</driver> %<*driver|package> -\GetIdInfo$Id: l3int.dtx 5197 2014-07-11 06:42:47Z joseph $ +\GetIdInfo$Id: l3int.dtx 5372 2014-08-25 02:01:41Z bruno $ {L3 Integers} %</driver|package> %<*driver> @@ -713,14 +713,15 @@ % representation and leaves this in the input stream. % \end{function} % -% \begin{function}[EXP]{\int_from_roman:n} +% \begin{function}[updated = 2014-08-25, EXP]{\int_from_roman:n} % \begin{syntax} % \cs{int_from_roman:n} \Arg{roman numeral} % \end{syntax} % Converts the \meta{roman numeral} into the integer (base~$10$) % representation and leaves this in the input stream. The % \meta{roman numeral} may be in upper or lower case; if the numeral -% is not valid then the resulting value will be $-1$. +% contains letters besides |mdclxvi| or |MDCLXVI| then the resulting +% value will be $-1$. % \end{function} % % \begin{function}[EXP]{\int_from_base:nn} @@ -744,7 +745,7 @@ % % \begin{function}[added = 2011-11-22, updated = 2012-05-27]{\int_show:n} % \begin{syntax} -% \cs{int_show:n} \meta{integer expression} +% \cs{int_show:n} \Arg{integer expression} % \end{syntax} % Displays the result of evaluating the \meta{integer expression} % on the terminal. @@ -974,10 +975,12 @@ % corrected to the \enquote{real} version here. % \begin{macrocode} %<*initex> -\cs_set:Npn \int_eval:n #1 { \@@_value:w \@@_eval:w #1 \@@_eval_end: } +\cs_set:Npn \int_eval:n #1 + { \@@_value:w \@@_eval:w #1 \@@_eval_end: } %</initex> %<*package> -\cs_new:Npn \int_eval:n #1 { \@@_value:w \@@_eval:w #1 \@@_eval_end: } +\cs_new:Npn \int_eval:n #1 + { \@@_value:w \@@_eval:w #1 \@@_eval_end: } %</package> % \end{macrocode} % \end{macro} @@ -1211,8 +1214,10 @@ % \begin{macro}[pTF]{\int_if_exist:N, \int_if_exist:c} % Copies of the \texttt{cs} functions defined in \pkg{l3basics}. % \begin{macrocode} -\prg_new_eq_conditional:NNn \int_if_exist:N \cs_if_exist:N { TF , T , F , p } -\prg_new_eq_conditional:NNn \int_if_exist:c \cs_if_exist:c { TF , T , F , p } +\prg_new_eq_conditional:NNn \int_if_exist:N \cs_if_exist:N + { TF , T , F , p } +\prg_new_eq_conditional:NNn \int_if_exist:c \cs_if_exist:c + { TF , T , F , p } % \end{macrocode} % \end{macro} % @@ -2099,144 +2104,93 @@ % % \subsection{Converting from other formats to integers} % -% \begin{macro}[int]{\@@_get_sign:n} -% \begin{macro}[int]{\@@_get_digits:n} -% \begin{macro}[aux] -% {\@@_get_sign_and_digits:nNNN, \@@_get_sign_and_digits:oNNN} -% Finding a number and its sign requires dealing with an arbitrary -% list of |+| and |-| symbols. This is done by working through token -% by token until there is something else at the start of the input. -% The sign of the input is tracked by the first Boolean used by the -% auxiliary function. -% \begin{macrocode} -\cs_new:Npn \@@_get_sign:n #1 - { - \@@_get_sign_and_digits:nNNN {#1} - \c_true_bool \c_true_bool \c_false_bool - } -\cs_new:Npn \@@_get_digits:n #1 - { - \@@_get_sign_and_digits:nNNN {#1} - \c_true_bool \c_false_bool \c_true_bool - } -% \end{macrocode} -% The auxiliary loops through, finding sign tokens and removing them. -% The sign itself is carried through as a flag. +% \begin{macro}[aux,rEXP]{\@@_pass_signs:wn, \@@_pass_signs_end:wn} +% Called as \cs{@@_pass_signs:wn} \meta{signs and digits} \cs{q_stop} +% \Arg{code}, this function leaves in the input stream any sign it +% finds, then inserts the \meta{code} before the first non-sign token +% (and removes \cs{q_stop}). More precisely, it deletes any~|+| and +% passes any~|-| to the input stream, hence should be called in an +% integer expression. % \begin{macrocode} -\cs_new:Npn \@@_get_sign_and_digits:nNNN #1#2#3#4 +\cs_new:Npn \@@_pass_signs:wn #1 { - \exp_args:Nf \tl_if_head_eq_charcode:nNTF {#1} - - { - \bool_if:NTF #2 - { - \@@_get_sign_and_digits:oNNN - { \use_none:n #1 } \c_false_bool #3#4 - } - { - \@@_get_sign_and_digits:oNNN - { \use_none:n #1 } \c_true_bool #3#4 - } - } - { - \exp_args:Nf \tl_if_head_eq_charcode:nNTF {#1} + - { \@@_get_sign_and_digits:oNNN { \use_none:n #1 } #2#3#4 } - { - \bool_if:NT #3 { \bool_if:NF #2 - } - \bool_if:NT #4 {#1} - } - } + \if:w + \if:w - \exp_not:N #1 + \fi: \exp_not:N #1 + \exp_after:wN \@@_pass_signs:wn + \else: + \exp_after:wN \@@_pass_signs_end:wn + \exp_after:wN #1 + \fi: } -\cs_generate_variant:Nn \@@_get_sign_and_digits:nNNN { o } +\cs_new:Npn \@@_pass_signs_end:wn #1 \q_stop #2 { #2 #1 } % \end{macrocode} % \end{macro} -% \end{macro} -% \end{macro} % % \begin{macro}{\int_from_alph:n} % \UnitTested -% \begin{macro}[aux]{\@@_from_alph:n} -% \begin{macro}[aux]{\@@_from_alph:nN} -% \begin{macro}[aux]{\@@_from_alph:N} -% The aim here is to iterate through the input, converting one letter at -% a time to a number. The same approach is also used for base -% conversion, but this needs a different final auxiliary. +% \begin{macro}[aux]{\@@_from_alph:nN, \@@_from_alph:N} +% First take care of signs then loop through the input using the +% \texttt{recursion} quarks. The \cs{@@_from_alph:nN} auxiliary +% collects in its first argument the value obtained so far, and the +% auxiliary \cs{@@_from_alph:N} converts one letter to an expression +% which evaluates to the correct number. % \begin{macrocode} \cs_new:Npn \int_from_alph:n #1 { \int_eval:n { - \@@_get_sign:n {#1} - \exp_args:Nf \@@_from_alph:n { \@@_get_digits:n {#1} } + \@@_pass_signs:wn #1 + \q_stop { \@@_from_alph:nN { 0 } } + \q_recursion_tail \q_recursion_stop } } -\cs_new:Npn \@@_from_alph:n #1 - { \@@_from_alph:nN { 0 } #1 \q_nil } \cs_new:Npn \@@_from_alph:nN #1#2 { - \quark_if_nil:NTF #2 - {#1} - { - \exp_args:Nf \@@_from_alph:nN - { \int_eval:n { #1 * 26 + \@@_from_alph:N #2 } } - } + \quark_if_recursion_tail_stop_do:Nn #2 {#1} + \exp_args:Nf \@@_from_alph:nN + { \int_eval:n { #1 * 26 + \@@_from_alph:N #2 } } } \cs_new:Npn \@@_from_alph:N #1 - { \int_eval:n { `#1 - \int_compare:nNnTF { `#1 } < { 91 } { 64 } { 96 } } } + { `#1 - \int_compare:nNnTF { `#1 } < { 91 } { 64 } { 96 } } % \end{macrocode} % \end{macro} % \end{macro} -% \end{macro} -% \end{macro} % % \begin{macro}{\int_from_base:nn} % \UnitTested -% \begin{macro}[aux]{\@@_from_base:nn} -% \begin{macro}[aux]{\@@_from_base:nnN} -% \begin{macro}[aux]{\@@_from_base:N} -% Conversion to base ten means stripping off the sign then iterating -% through the input one token at a time. The total number is then added -% up as the code loops. +% \begin{macro}[aux]{\@@_from_base:nnN, \@@_from_base:N} +% Leave the signs into the integer expression, then loop through +% characters, collecting the value found so far in the first argument +% of \cs{@@_from_base:nnN}. To convert a single character, +% \cs{@@_from_base:N} checks first for digits, then distinguishes +% lower from upper case letters, turning them into the appropriate +% number. Note that this auxiliary does not use \cs{int_eval:n}, +% hence is not safe for general use. % \begin{macrocode} \cs_new:Npn \int_from_base:nn #1#2 { \int_eval:n { - \@@_get_sign:n {#1} - \exp_args:Nf \@@_from_base:nn - { \@@_get_digits:n {#1} } {#2} + \@@_pass_signs:wn #1 + \q_stop { \@@_from_base:nnN { 0 } {#2} } + \q_recursion_tail \q_recursion_stop } } -\cs_new:Npn \@@_from_base:nn #1#2 - { \@@_from_base:nnN { 0 } { #2 } #1 \q_nil } \cs_new:Npn \@@_from_base:nnN #1#2#3 { - \quark_if_nil:NTF #3 - {#1} - { - \exp_args:Nf \@@_from_base:nnN - { \int_eval:n { #1 * #2 + \@@_from_base:N #3 } } - {#2} - } + \quark_if_recursion_tail_stop_do:Nn #3 {#1} + \exp_args:Nf \@@_from_base:nnN + { \int_eval:n { #1 * #2 + \@@_from_base:N #3 } } + {#2} } -% \end{macrocode} -% The conversion here will take lower or upper case letters and turn -% them into the appropriate number, hence the two-part nature of the -% function. -% \begin{macrocode} \cs_new:Npn \@@_from_base:N #1 { \int_compare:nNnTF { `#1 } < { 58 } {#1} - { - \int_eval:n - { `#1 - \int_compare:nNnTF { `#1 } < { 91 } { 55 } { 87 } } - } + { `#1 - \int_compare:nNnTF { `#1 } < { 91 } { 55 } { 87 } } } % \end{macrocode} % \end{macro} % \end{macro} -% \end{macro} -% \end{macro} % % \begin{macro}{\int_from_bin:n, \int_from_hex:n, \int_from_oct:n} % \UnitTested @@ -2285,63 +2239,53 @@ % \UnitTested % \TestMissing{boundary cases / wrong input?} % \begin{macro}[aux]{\@@_from_roman:NN} -% \begin{macro}[aux]{\@@_from_roman_end:w} -% \begin{macro}[aux]{\@@_from_roman_clean_up:w} +% \begin{macro}[aux]{\@@_from_roman_error:w} % The method here is to iterate through the input, finding the % appropriate value for each letter and building up a sum. This is -% then evaluated by \TeX{}. +% then evaluated by \TeX{}. If any unknown letter is found, skip to +% the closing parenthesis and insert |*0-1| afterwards, to replace the +% value by $-1$. % \begin{macrocode} \cs_new:Npn \int_from_roman:n #1 { - \tl_if_blank:nF {#1} + \int_eval:n { - \exp_after:wN \@@_from_roman_end:w - \@@_value:w \@@_eval:w - \@@_from_roman:NN #1 Q \q_stop + ( + \c_zero + \exp_after:wN \@@_from_roman:NN \tl_to_str:n {#1} + \q_recursion_tail \q_recursion_tail \q_recursion_stop + ) } } \cs_new:Npn \@@_from_roman:NN #1#2 { - \str_if_eq:nnTF {#1} { Q } - {#1#2} + \quark_if_recursion_tail_stop:N #1 + \int_if_exist:cF { c_@@_from_roman_ #1 _int } + { \@@_from_roman_error:w } + \quark_if_recursion_tail_stop_do:Nn #2 + { + \use:c { c_@@_from_roman_ #1 _int } } + \int_if_exist:cF { c_@@_from_roman_ #2 _int } + { \@@_from_roman_error:w } + \int_compare:nNnTF + { \use:c { c_@@_from_roman_ #1 _int } } + < + { \use:c { c_@@_from_roman_ #2 _int } } { - \str_if_eq:nnTF {#2} { Q } - { - \int_if_exist:cF { c_@@_from_roman_ #1 _int } - { \@@_from_roman_clean_up:w } - + - \use:c { c_@@_from_roman_ #1 _int } - #2 - } - { - \int_if_exist:cF { c_@@_from_roman_ #1 _int } - { \@@_from_roman_clean_up:w } - \int_if_exist:cF { c_@@_from_roman_ #2 _int } - { \@@_from_roman_clean_up:w } - \int_compare:nNnTF - { \use:c { c_@@_from_roman_ #1 _int } } - < - { \use:c { c_@@_from_roman_ #2 _int } } - { - + \use:c { c_@@_from_roman_ #2 _int } - - \use:c { c_@@_from_roman_ #1 _int } - \@@_from_roman:NN - } - { - + \use:c { c_@@_from_roman_ #1 _int } - \@@_from_roman:NN #2 - } - } + + \use:c { c_@@_from_roman_ #2 _int } + - \use:c { c_@@_from_roman_ #1 _int } + \@@_from_roman:NN + } + { + + \use:c { c_@@_from_roman_ #1 _int } + \@@_from_roman:NN #2 } } -\cs_new:Npn \@@_from_roman_end:w #1 Q #2 \q_stop - { \tl_if_empty:nTF {#2} {#1} {#2} } -\cs_new:Npn \@@_from_roman_clean_up:w #1 Q { + 0 Q -1 } +\cs_new:Npn \@@_from_roman_error:w #1 \q_recursion_stop #2 + { #2 * \c_zero - \c_one } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} -% \end{macro} % % \subsection{Viewing integer} % @@ -2370,22 +2314,15 @@ % This is needed early, and so is in \pkg{l3basics} % \end{variable} % -% \begin{variable}{\c_zero} -% Again, one in \pkg{l3basics} for obvious reasons. -% \end{variable} -% -% \begin{variable}{\c_six, \c_seven} -% \begin{variable}{\c_twelve} -% \begin{variable}{\c_sixteen} -% Once again, in \pkg{l3basics}. -% \end{variable} -% \end{variable} +% \begin{variable}{\c_zero, \c_sixteen} +% Again, in \pkg{l3basics} % \end{variable} % % \begin{variable} % { -% \c_one, \c_two, \c_three, \c_four, \c_five, \c_eight, \c_nine, \c_ten, -% \c_eleven, \c_thirteen, \c_fourteen, \c_fifteen, +% \c_one, \c_two, \c_three, \c_four, \c_five, \c_six, \c_seven, \c_eight, +% \c_nine, \c_ten, \c_eleven, \c_twelve, \c_thirteen, \c_fourteen, +% \c_fifteen % } % Low-number values not previously defined. % \begin{macrocode} @@ -2394,10 +2331,13 @@ \int_const:Nn \c_three { 3 } \int_const:Nn \c_four { 4 } \int_const:Nn \c_five { 5 } +\int_const:Nn \c_six { 6 } +\int_const:Nn \c_seven { 7 } \int_const:Nn \c_eight { 8 } \int_const:Nn \c_nine { 9 } \int_const:Nn \c_ten { 10 } \int_const:Nn \c_eleven { 11 } +\int_const:Nn \c_twelve { 12 } \int_const:Nn \c_thirteen { 13 } \int_const:Nn \c_fourteen { 14 } \int_const:Nn \c_fifteen { 15 } |