summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx')
-rw-r--r--Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx84
1 files changed, 42 insertions, 42 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx b/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx
index 32b3340cabe..f5ffadf5220 100644
--- a/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx
+++ b/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx
@@ -1,13 +1,13 @@
% \iffalse meta-comment
%
-%% File: l3fp-trig.dtx Copyright (C) 2011-2014,2016,2017 The LaTeX3 Project
+%% File: l3fp-trig.dtx Copyright (C) 2011-2017 The LaTeX3 Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version. The latest version
% of this license is in the file
%
-% http://www.latex-project.org/lppl.txt
+% https://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
@@ -21,7 +21,7 @@
% for those people who are interested.
%
%<*driver>
-\documentclass[full]{l3doc}
+\documentclass[full,kernel]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
@@ -38,7 +38,7 @@
% {latex-team@latex-project.org}^^A
% }^^A
% }
-% \date{Released 2017/11/14}
+% \date{Released 2017/12/05}
%
% \maketitle
%
@@ -58,7 +58,7 @@
%<@@=fp>
% \end{macrocode}
%
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
% {
% \@@_parse_word_acos:N ,
% \@@_parse_word_acosd:N ,
@@ -105,7 +105,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
% {
% \@@_parse_word_acot:N , \@@_parse_word_acotd:N,
% \@@_parse_word_atan:N , \@@_parse_word_atand:N,
@@ -149,7 +149,7 @@
%
% \subsubsection{Filtering special cases}
%
-% \begin{macro}[int, EXP]{\@@_sin_o:w}
+% \begin{macro}[EXP]{\@@_sin_o:w}
% This function, and its analogs for \texttt{cos}, \texttt{csc},
% \texttt{sec}, \texttt{tan}, and \texttt{cot} instead of
% \texttt{sin}, are followed either by \cs{use_i:nn} and a float in
@@ -182,7 +182,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_cos_o:w}
+% \begin{macro}[EXP]{\@@_cos_o:w}
% The cosine of $\pm 0$ is $1$. The cosine of $\pm\infty$ raises an
% invalid operation exception. The cosine of \nan{} is itself.
% Otherwise, the \texttt{trig} function reduces the argument to at
@@ -209,7 +209,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_csc_o:w}
+% \begin{macro}[EXP]{\@@_csc_o:w}
% The cosecant of $\pm 0$ is $\pm \infty$ with the same sign, with a
% division by zero exception (see \cs{@@_cot_zero_o:Nfw} defined
% below), which requires the function name. The cosecant of
@@ -239,7 +239,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_sec_o:w}
+% \begin{macro}[EXP]{\@@_sec_o:w}
% The secant of $\pm 0$ is $1$. The secant of $\pm \infty$ raises an
% invalid operation exception. The secant of \nan{} is itself.
% Otherwise, the \texttt{trig} function reduces the argument and turns
@@ -265,7 +265,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_tan_o:w}
+% \begin{macro}[EXP]{\@@_tan_o:w}
% The tangent of $\pm 0$ or \nan{} is the same floating point number.
% The tangent of $\pm\infty$ raises an invalid operation exception.
% Once more, the \texttt{trig} function does the argument reduction
@@ -292,8 +292,8 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_cot_o:w}
-% \begin{macro}[aux, EXP]{\@@_cot_zero_o:Nfw}
+% \begin{macro}[EXP]{\@@_cot_o:w}
+% \begin{macro}[EXP]{\@@_cot_zero_o:Nfw}
% The cotangent of $\pm 0$ is $\pm \infty$ with the same sign, with a
% division by zero exception (see \cs{@@_cot_zero_o:Nfw}. The
% cotangent of $\pm\infty$ raises an invalid operation exception. The
@@ -333,7 +333,7 @@
%
% \subsubsection{Distinguishing small and large arguments}
%
-% \begin{macro}[aux, EXP]{\@@_trig:NNNNNwn}
+% \begin{macro}[EXP]{\@@_trig:NNNNNwn}
% The first argument is \cs{use_i:nn} if the operand is in radians and
% \cs{use_ii:nn} if it is in degrees. Arguments |#2| to~|#5| control
% what trigonometric function we compute, and |#6| to~|#8| are pieces
@@ -377,7 +377,7 @@
%
% \subsubsection{Small arguments}
%
-% \begin{macro}[aux, EXP]{\@@_trig_small:ww}
+% \begin{macro}[EXP]{\@@_trig_small:ww}
% This receives a small extended-precision number in radians and
% converts it to a fixed point number. Some trailing digits may be
% lost in the conversion, so we keep the original floating point
@@ -391,7 +391,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_trigd_small:ww}
+% \begin{macro}[EXP]{\@@_trigd_small:ww}
% Convert the extended-precision number to radians, then call
% \cs{@@_trig_small:ww} to massage it in the form appropriate for the
% \texttt{_series} auxiliary.
@@ -407,7 +407,7 @@
%
% \subsubsection{Argument reduction in degrees}
%
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]
% {
% \@@_trigd_large:ww, \@@_trigd_large_auxi:nnnnwNNNN,
% \@@_trigd_large_auxii:wNw, \@@_trigd_large_auxiii:www
@@ -513,7 +513,7 @@
% $0.6\cdot\text{ulp}$ in all cases.
%
% ^^A todo: if the exponent range is reduced, store 1/2pi as a simple tl
-% \begin{variable}[aux, EXP]{\@@_trig_inverse_two_pi:}
+% \begin{variable}[EXP]{\@@_trig_inverse_two_pi:}
% This macro expands to |,,!| or~|,!| followed by $10112$~decimals of
% $10^{-16}/(2\pi)$. The number of decimals we really need is the
% maximum exponent plus the number of digits we later need,~$52$,
@@ -688,7 +688,7 @@
% \end{macrocode}
% \end{variable}
%
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]
% {
% \@@_trig_large:ww,
% \@@_trig_large_auxi:wwwwww,
@@ -733,7 +733,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]
% {
% \@@_trig_large_auxv:www,
% \@@_trig_large_auxvi:wnnnnnnnn,
@@ -780,12 +780,12 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]
% {
% \@@_trig_large_auxvii:w,
% \@@_trig_large_auxviii:w,
% }
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
% {
% \@@_trig_large_auxix:Nw,
% \@@_trig_large_auxx:wNNNNN,
@@ -853,7 +853,7 @@
%
% \subsubsection{Computing the power series}
%
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
% {\@@_sin_series_o:NNwwww, \@@_sin_series_aux_o:NNnwww}
% Here we receive a conversion function \cs{@@_ep_to_float_o:wwN} or
% \cs{@@_ep_inv_to_float_o:wwN}, a \meta{sign} ($0$ or~$2$), a
@@ -941,7 +941,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
% {\@@_tan_series_o:NNwwww, \@@_tan_series_aux_o:Nnwww}
% Contrarily to \cs{@@_sin_series_o:NNwwww} which received a
% conversion auxiliary as~|#1|, here, |#1| is $0$ for tangent
@@ -1087,8 +1087,8 @@
%
% \subsubsection{Arctangent and arccotangent}
%
-% \begin{macro}[int, EXP]{\@@_atan_o:Nw, \@@_acot_o:Nw}
-% \begin{macro}[aux, EXP]{\@@_atan_dispatch_o:NNnNw}
+% \begin{macro}[EXP]{\@@_atan_o:Nw, \@@_acot_o:Nw}
+% \begin{macro}[EXP]{\@@_atan_dispatch_o:NNnNw}
% The parsing step manipulates \texttt{atan} and \texttt{acot} like
% \texttt{min} and \texttt{max}, reading in an array of operands, but
% also leaves \cs{use_i:nn} or \cs{use_ii:nn} depending on whether the
@@ -1126,7 +1126,7 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_atanii_o:Nww, \@@_acotii_o:Nww}
+% \begin{macro}[EXP]{\@@_atanii_o:Nww, \@@_acotii_o:Nww}
% If either operand is \texttt{nan}, we return it. If both are
% normal, we call \cs{@@_atan_normal_o:NNnwNnw}. If both are zero or
% both infinity, we call \cs{@@_atan_inf_o:NNNw} with argument~$2$,
@@ -1163,7 +1163,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_atan_inf_o:NNNw}
+% \begin{macro}[EXP]{\@@_atan_inf_o:NNNw}
% This auxiliary is called whenever one number is $\pm 0$ or
% $\pm\infty$ (and neither is \nan{}). Then the result only depends
% on the signs, and its value is a multiple of $\pi/4$. We use the
@@ -1189,7 +1189,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_atan_normal_o:NNnwNnw}
+% \begin{macro}[EXP]{\@@_atan_normal_o:NNnwNnw}
% Here we simply reorder the floating point data into a pair of signed
% extended-precision numbers, that is, a sign, an exponent ending with
% a comma, and a six-block mantissa ending with a semi-colon. This
@@ -1207,7 +1207,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_atan_test_o:NwwNwwN}
+% \begin{macro}[EXP]{\@@_atan_test_o:NwwNwwN}
% This receives: the sign~|#1| of~$y$, its exponent~|#2|, its $24$
% digits~|#3| in groups of~$4$, and similarly for~$x$. We prepare to
% call \cs{@@_atan_combine_o:NwwwwwN} which expects the sign~|#1|, the
@@ -1241,8 +1241,8 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_atan_div:wnwwnw, \@@_atan_near:wwwn}
-% \begin{macro}[aux, EXP]{\@@_atan_near_aux:wwn}
+% \begin{macro}[rEXP]{\@@_atan_div:wnwwnw, \@@_atan_near:wwwn}
+% \begin{macro}[EXP]{\@@_atan_near_aux:wwn}
% This receives two positive numbers $a$ and~$b$ (equal to $\lvert
% x\rvert$ and~$\lvert y\rvert$ in some order), each as an exponent
% and $6$~blocks of $4$~digits, such that $0<a<b$. If $0.41421b<a$,
@@ -1284,7 +1284,7 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_atan_auxi:ww, \@@_atan_auxii:w}
+% \begin{macro}[EXP]{\@@_atan_auxi:ww, \@@_atan_auxii:w}
% Convert~$z$ from a representation as an exponent and a fixed point
% number in $[0.01,1)$ to a fixed point number only, then set up the
% call to \cs{@@_atan_Taylor_loop:www}, followed by the fixed point
@@ -1304,7 +1304,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
% {\@@_atan_Taylor_loop:www, \@@_atan_Taylor_break:w}
% We compute the series of $(\operatorname{atan} z)/z$. A typical intermediate
% stage has $|#1|=2k-1$, $|#2| =
@@ -1335,7 +1335,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
% {\@@_atan_combine_o:NwwwwwN, \@@_atan_combine_aux:ww}
% This receives a \meta{sign}, an \meta{octant}, a fixed point value
% of $(\operatorname{atan} z)/z$, a fixed point number~$z$, and another
@@ -1399,7 +1399,7 @@
%
% \subsubsection{Arcsine and arccosine}
%
-% \begin{macro}[int, EXP]{\@@_asin_o:w}
+% \begin{macro}[EXP]{\@@_asin_o:w}
% Again, the first argument provided by \pkg{l3fp-parse} is
% \cs{use_i:nn} if we are to work in radians and \cs{use_ii:nn} for
% degrees. Then comes a floating point number. The arcsine of $\pm
@@ -1427,7 +1427,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_acos_o:w}
+% \begin{macro}[EXP]{\@@_acos_o:w}
% The arccosine of $\pm 0$ is $\pi / 2$ (in degrees,~$90$). The
% arccosine of $\pm\infty$ raises an invalid operation exception. The
% arccosine of \nan{} is itself. Otherwise, call an auxiliary common
@@ -1456,7 +1456,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_asin_normal_o:NfwNnnnnw}
+% \begin{macro}[EXP]{\@@_asin_normal_o:NfwNnnnnw}
% If the exponent~|#5| is at most $0$, the operand lies
% within $(-1,1)$ and the operation is permitted: call
% \cs{@@_asin_auxi_o:NnNww} with the appropriate arguments. If the
@@ -1485,7 +1485,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_asin_auxi_o:NnNww, \@@_asin_isqrt:wn}
+% \begin{macro}[EXP]{\@@_asin_auxi_o:NnNww, \@@_asin_isqrt:wn}
% We compute $x/\sqrt{1-x^2}$. This function is used by \texttt{asin}
% and \texttt{acos}, but also by \texttt{acsc} and \texttt{asec} after
% inverting the operand, thus it must manipulate extended-precision
@@ -1527,7 +1527,7 @@
%
% \subsubsection{Arccosecant and arcsecant}
%
-% \begin{macro}[int, EXP]{\@@_acsc_o:w}
+% \begin{macro}[EXP]{\@@_acsc_o:w}
% Cases are mostly labelled by~|#2|, except when |#2| is~$2$: then we
% use |#3#2|, which is $02=2$ when the number is $+\infty$ and
% $22$~when the number is $-\infty$. The arccosecant of $\pm 0$
@@ -1553,7 +1553,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_asec_o:w}
+% \begin{macro}[EXP]{\@@_asec_o:w}
% The arcsecant of $\pm 0$ raises an invalid operation exception. The
% arcsecant of $\pm\infty$ is $\pi / 2$ (in degrees,~$90$). The
% arcosecant of \nan{} is itself. Otherwise, do some more tests,
@@ -1581,7 +1581,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_acsc_normal_o:NfwNnw}
+% \begin{macro}[EXP]{\@@_acsc_normal_o:NfwNnw}
% If the exponent is non-positive, the operand is less than~$1$ in
% absolute value, which is always an invalid operation: complain.
% Otherwise, compute the inverse of the operand, and feed it to