summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx')
-rw-r--r--Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx18
1 files changed, 9 insertions, 9 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx b/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx
index 54509f57b54..85d8ce0c05f 100644
--- a/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx
+++ b/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx
@@ -36,7 +36,7 @@
%
%<*driver>
\documentclass[full]{l3doc}
-\GetIdInfo$Id: l3fp-trig.dtx 6441 2016-03-24 10:11:59Z joseph $
+\GetIdInfo$Id: l3fp-trig.dtx 6723 2016-10-17 16:42:15Z bruno $
{L3 Floating-point trigonometric functions}
\begin{document}
\DocInput{\jobname.dtx}
@@ -476,7 +476,7 @@
% control sequence name, and convert it to a token list when required:
% strings take up less memory than their token list representation.
% \begin{macrocode}
-\cs_new_nopar:Npx \@@_trig_inverse_two_pi:
+\cs_new:Npx \@@_trig_inverse_two_pi:
{
\exp_not:n { \exp_after:wN \use_none:n \token_to_str:N }
\cs:w , , !
@@ -778,7 +778,7 @@
\exp_after:wN +
\fi:
}
-\cs_new_nopar:Npn \@@_trig_large_auxix:Nw
+\cs_new:Npn \@@_trig_large_auxix:Nw
{
\exp_after:wN \@@_use_i_until_s:nw
\exp_after:wN \@@_trig_large_auxxi:w
@@ -1004,7 +1004,7 @@
% $\operatorname{atan}(y, x)$ is argument reduction. The sign of~$y$ will give that
% of the result. We distinguish eight regions where the point $(x,
% \lvert y\rvert)$ can lie, of angular size roughly $\pi/8$,
-% characterized by their ``octant'', between $0$ and~$7$ included. In
+% characterized by their \enquote{octant}, between $0$ and~$7$ included. In
% each region, we compute an arctangent as a Taylor series, then shift
% this arctangent by the appropriate multiple of $\pi/4$ and sign to get
% the result. Here is a list of octants, and how we compute the
@@ -1053,12 +1053,12 @@
% ones: $\operatorname{atan}(y) = \operatorname{atan}(y, 1) = \operatorname{acot}(1, y)$ and
% $\operatorname{acot}(x) = \operatorname{atan}(1, x) = \operatorname{acot}(x, 1)$.
% \begin{macrocode}
-\cs_new_nopar:Npn \@@_atan_o:Nw
+\cs_new:Npn \@@_atan_o:Nw
{
\@@_atan_dispatch_o:NNnNw
\@@_acotii_o:Nww \@@_atanii_o:Nww { atan }
}
-\cs_new_nopar:Npn \@@_acot_o:Nw
+\cs_new:Npn \@@_acot_o:Nw
{
\@@_atan_dispatch_o:NNnNw
\@@_atanii_o:Nww \@@_acotii_o:Nww { acot }
@@ -1075,7 +1075,7 @@
{ kernel } { fp-num-args } { #3() } { 1 } { 2 }
\exp_after:wN \c_nan_fp \exp:w
\fi:
- \exp_after:wN \c_zero
+ \exp_after:wN \exp_end:
}
% \end{macrocode}
% \end{macro}
@@ -1200,7 +1200,7 @@
% This receives two positive numbers $a$ and~$b$ (equal to $\lvert
% x\rvert$ and~$\lvert y\rvert$ in some order), each as an exponent
% and $6$~blocks of $4$~digits, such that $0<a<b$. If $0.41421b<a$,
-% the two numbers are ``near'', hence the point $(y,x)$ that we
+% the two numbers are \enquote{near}, hence the point $(y,x)$ that we
% started with is closer to the diagonals $\{\lvert y\rvert = \lvert
% x\rvert\}$ than to the axes $\{xy = 0\}$. In that case, the octant
% is~$1$ (possibly combined with the $7-$ and $3-$ inserted earlier)
@@ -1360,7 +1360,7 @@
% 0$ or \nan{} is the same floating point number. The arcsine of
% $\pm\infty$ raises an invalid operation exception. Otherwise, call
% an auxiliary common with \cs{@@_acos_o:w}, feeding it information
-% about what function is being performed (for ``invalid operation''
+% about what function is being performed (for \enquote{invalid operation}
% exceptions).
% \begin{macrocode}
\cs_new:Npn \@@_asin_o:w #1 \s_@@ \@@_chk:w #2#3; @