diff options
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx')
-rw-r--r-- | Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx | 18 |
1 files changed, 9 insertions, 9 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx b/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx index 54509f57b54..85d8ce0c05f 100644 --- a/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx +++ b/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx @@ -36,7 +36,7 @@ % %<*driver> \documentclass[full]{l3doc} -\GetIdInfo$Id: l3fp-trig.dtx 6441 2016-03-24 10:11:59Z joseph $ +\GetIdInfo$Id: l3fp-trig.dtx 6723 2016-10-17 16:42:15Z bruno $ {L3 Floating-point trigonometric functions} \begin{document} \DocInput{\jobname.dtx} @@ -476,7 +476,7 @@ % control sequence name, and convert it to a token list when required: % strings take up less memory than their token list representation. % \begin{macrocode} -\cs_new_nopar:Npx \@@_trig_inverse_two_pi: +\cs_new:Npx \@@_trig_inverse_two_pi: { \exp_not:n { \exp_after:wN \use_none:n \token_to_str:N } \cs:w , , ! @@ -778,7 +778,7 @@ \exp_after:wN + \fi: } -\cs_new_nopar:Npn \@@_trig_large_auxix:Nw +\cs_new:Npn \@@_trig_large_auxix:Nw { \exp_after:wN \@@_use_i_until_s:nw \exp_after:wN \@@_trig_large_auxxi:w @@ -1004,7 +1004,7 @@ % $\operatorname{atan}(y, x)$ is argument reduction. The sign of~$y$ will give that % of the result. We distinguish eight regions where the point $(x, % \lvert y\rvert)$ can lie, of angular size roughly $\pi/8$, -% characterized by their ``octant'', between $0$ and~$7$ included. In +% characterized by their \enquote{octant}, between $0$ and~$7$ included. In % each region, we compute an arctangent as a Taylor series, then shift % this arctangent by the appropriate multiple of $\pi/4$ and sign to get % the result. Here is a list of octants, and how we compute the @@ -1053,12 +1053,12 @@ % ones: $\operatorname{atan}(y) = \operatorname{atan}(y, 1) = \operatorname{acot}(1, y)$ and % $\operatorname{acot}(x) = \operatorname{atan}(1, x) = \operatorname{acot}(x, 1)$. % \begin{macrocode} -\cs_new_nopar:Npn \@@_atan_o:Nw +\cs_new:Npn \@@_atan_o:Nw { \@@_atan_dispatch_o:NNnNw \@@_acotii_o:Nww \@@_atanii_o:Nww { atan } } -\cs_new_nopar:Npn \@@_acot_o:Nw +\cs_new:Npn \@@_acot_o:Nw { \@@_atan_dispatch_o:NNnNw \@@_atanii_o:Nww \@@_acotii_o:Nww { acot } @@ -1075,7 +1075,7 @@ { kernel } { fp-num-args } { #3() } { 1 } { 2 } \exp_after:wN \c_nan_fp \exp:w \fi: - \exp_after:wN \c_zero + \exp_after:wN \exp_end: } % \end{macrocode} % \end{macro} @@ -1200,7 +1200,7 @@ % This receives two positive numbers $a$ and~$b$ (equal to $\lvert % x\rvert$ and~$\lvert y\rvert$ in some order), each as an exponent % and $6$~blocks of $4$~digits, such that $0<a<b$. If $0.41421b<a$, -% the two numbers are ``near'', hence the point $(y,x)$ that we +% the two numbers are \enquote{near}, hence the point $(y,x)$ that we % started with is closer to the diagonals $\{\lvert y\rvert = \lvert % x\rvert\}$ than to the axes $\{xy = 0\}$. In that case, the octant % is~$1$ (possibly combined with the $7-$ and $3-$ inserted earlier) @@ -1360,7 +1360,7 @@ % 0$ or \nan{} is the same floating point number. The arcsine of % $\pm\infty$ raises an invalid operation exception. Otherwise, call % an auxiliary common with \cs{@@_acos_o:w}, feeding it information -% about what function is being performed (for ``invalid operation'' +% about what function is being performed (for \enquote{invalid operation} % exceptions). % \begin{macrocode} \cs_new:Npn \@@_asin_o:w #1 \s_@@ \@@_chk:w #2#3; @ |