summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/l3kernel/l3fp-basics.dtx
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3fp-basics.dtx')
-rw-r--r--Master/texmf-dist/source/latex/l3kernel/l3fp-basics.dtx128
1 files changed, 64 insertions, 64 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3fp-basics.dtx b/Master/texmf-dist/source/latex/l3kernel/l3fp-basics.dtx
index 60a4e2a60e4..20cf9ed759c 100644
--- a/Master/texmf-dist/source/latex/l3kernel/l3fp-basics.dtx
+++ b/Master/texmf-dist/source/latex/l3kernel/l3fp-basics.dtx
@@ -7,7 +7,7 @@
% license or (at your option) any later version. The latest version
% of this license is in the file
%
-% http://www.latex-project.org/lppl.txt
+% https://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
@@ -21,7 +21,7 @@
% for those people who are interested.
%
%<*driver>
-\documentclass[full]{l3doc}
+\documentclass[full,kernel]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
@@ -38,7 +38,7 @@
% {latex-team@latex-project.org}^^A
% }^^A
% }
-% \date{Released 2017/11/14}
+% \date{Released 2017/12/05}
%
% \maketitle
%
@@ -70,7 +70,7 @@
% Floating Point Arithmetic}, by David Goldberg, which can be found at
% \texttt{http://cr.yp.to/2005-590/goldberg.pdf}.
%
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
% {
% \@@_parse_word_abs:N ,
% \@@_parse_word_sign:N ,
@@ -117,7 +117,7 @@
%
% \subsubsection{Sign, exponent, and special numbers}
%
-% \begin{macro}[int, EXP]{\@@_-_o:ww}
+% \begin{macro}[EXP]{\@@_-_o:ww}
% The \cs{@@_+_o:ww} auxiliary has a hook: it takes one argument
% between the first \cs{s_@@} and \cs{@@_chk:w}, which is applied to
% the sign of the second operand. Positioning the hook there means
@@ -132,7 +132,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_+_o:ww}
+% \begin{macro}[EXP]{\@@_+_o:ww}
% This function is either called directly with an empty |#1| to
% compute an addition, or it is called by \cs{@@_-_o:ww} with
% \cs{@@_neg_sign:N} as |#1| to compute a subtraction, in which case
@@ -175,7 +175,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_add_return_ii_o:Nww}
+% \begin{macro}[EXP]{\@@_add_return_ii_o:Nww}
% Ignore the first operand, and return the second, but using the sign
% |#1| rather than |#4|. As usual, expand after the floating point.
% \begin{macrocode}
@@ -184,7 +184,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_add_zeros_o:Nww}
+% \begin{macro}[EXP]{\@@_add_zeros_o:Nww}
% Adding two zeros yields \cs{c_zero_fp}, except if both zeros were
% $-0$.
% \begin{macrocode}
@@ -201,7 +201,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_add_inf_o:Nww}
+% \begin{macro}[EXP]{\@@_add_inf_o:Nww}
% If both infinities have the same sign, just return that infinity,
% otherwise, it is an invalid operation. We find out if that invalid
% operation is an addition or a subtraction by testing whether the
@@ -226,7 +226,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_add_normal_o:Nww}
+% \begin{macro}[EXP]{\@@_add_normal_o:Nww}
% \begin{quote}
% \cs{@@_add_normal_o:Nww} \meta{sign_2}
% \cs{s_@@} \cs{@@_chk:w} |1| \meta{sign_1}
@@ -254,7 +254,7 @@
% In this subsection, we perform the addition of two positive normal
% numbers.
%
-% \begin{macro}[aux, EXP]{\@@_add_npos_o:NnwNnw}
+% \begin{macro}[EXP]{\@@_add_npos_o:NnwNnw}
% \begin{quote}
% \cs{@@_add_npos_o:NnwNnw} \meta{sign_1} \meta{exp_1} \meta{body_1}
% |;| \cs{s_@@} \cs{@@_chk:w} |1| \meta{initial sign_2} \meta{exp_2}
@@ -288,8 +288,8 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, rEXP]{\@@_add_big_i_o:wNww}
-% \begin{macro}[aux, rEXP]{\@@_add_big_ii_o:wNww}
+% \begin{macro}[rEXP]{\@@_add_big_i_o:wNww}
+% \begin{macro}[rEXP]{\@@_add_big_ii_o:wNww}
% \begin{quote}
% \cs{@@_add_big_i_o:wNww} \meta{shift} |;| \meta{final sign}
% \meta{body_1} |;| \meta{body_2} |;|
@@ -318,8 +318,8 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_add_significand_o:NnnwnnnnN}
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]{\@@_add_significand_o:NnnwnnnnN}
+% \begin{macro}[rEXP]
% {\@@_add_significand_pack:NNNNNNN, \@@_add_significand_test_o:N}
% \begin{quote}\raggedright
% \cs{@@_add_significand_o:NnnwnnnnN}
@@ -363,7 +363,7 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_add_significand_no_carry_o:wwwNN}
+% \begin{macro}[rEXP]{\@@_add_significand_no_carry_o:wwwNN}
% \begin{quote}
% \cs{@@_add_significand_no_carry_o:wwwNN}
% \meta{8d} |;| \meta{6d} |;| \meta{2d} |;|
@@ -386,7 +386,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_add_significand_carry_o:wwwNN}
+% \begin{macro}[rEXP]{\@@_add_significand_carry_o:wwwNN}
% \begin{quote}
% \cs{@@_add_significand_carry_o:wwwNN}
% \meta{8d} |;| \meta{6d} |;| \meta{2d} |;|
@@ -414,8 +414,8 @@
%
% \subsubsection{Absolute subtraction}
%
-% \begin{macro}[aux, EXP]{\@@_sub_npos_o:NnwNnw}
-% \begin{macro}[aux, EXP]{\@@_sub_eq_o:Nnwnw, \@@_sub_npos_ii_o:Nnwnw}
+% \begin{macro}[EXP]{\@@_sub_npos_o:NnwNnw}
+% \begin{macro}[EXP]{\@@_sub_eq_o:Nnwnw, \@@_sub_npos_ii_o:Nnwnw}
% \begin{quote}
% \cs{@@_sub_npos_o:NnwNnw}
% \meta{sign_1} \meta{exp_1} \meta{body_1} |;|
@@ -450,7 +450,7 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_sub_npos_i_o:Nnwnw}
+% \begin{macro}[EXP]{\@@_sub_npos_i_o:Nnwnw}
% After the computation is done, \cs{@@_sanitize:Nw} checks for
% overflow/underflow. It expects the \meta{final sign} and the
% \meta{exponent} (delimited by |;|). Start an integer expression for
@@ -481,8 +481,8 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_sub_back_near_o:nnnnnnnnN}
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]{\@@_sub_back_near_o:nnnnnnnnN}
+% \begin{macro}[rEXP]
% {\@@_sub_back_near_pack:NNNNNNw, \@@_sub_back_near_after:wNNNNw}
% \begin{quote}
% \cs{@@_sub_back_near_o:nnnnnnnnN}
@@ -517,8 +517,8 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_sub_back_shift:wnnnn}
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]{\@@_sub_back_shift:wnnnn}
+% \begin{macro}[rEXP]
% {
% \@@_sub_back_shift_ii:ww,
% \@@_sub_back_shift_iii:NNNNNNNNw,
@@ -568,7 +568,7 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_sub_back_far_o:NnnwnnnnN}
+% \begin{macro}[rEXP]{\@@_sub_back_far_o:NnnwnnnnN}
% \begin{quote}\raggedright
% \cs{@@_sub_back_far_o:NnnwnnnnN}
% \meta{rounding} \Arg{Y'_1} \Arg{Y'_2} \meta{extra-digits} |;|
@@ -608,8 +608,8 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_sub_back_quite_far_o:wwNN}
-% \begin{macro}[aux, EXP]{\@@_sub_back_quite_far_ii:NN}
+% \begin{macro}[EXP]{\@@_sub_back_quite_far_o:wwNN}
+% \begin{macro}[EXP]{\@@_sub_back_quite_far_ii:NN}
% The easiest case is when $x-y$ is extremely close to a power of
% $10$, namely the first digit of $x$ is $1$, and all others vanish
% when subtracting $y$. Then the \meta{rounding} |#3| and the
@@ -639,7 +639,7 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_sub_back_not_far_o:wwwwNN}
+% \begin{macro}[rEXP]{\@@_sub_back_not_far_o:wwwwNN}
% In the present case, $x$ and $y$ have different exponents, but
% $y$~is large enough that $x-y$ has a smaller exponent than~$x$.
% Decrement the exponent (with |-1|). Then proceed in a way
@@ -669,8 +669,8 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_sub_back_very_far_o:wwwwNN}
-% \begin{macro}[aux, EXP]{\@@_sub_back_very_far_ii_o:nnNwwNN}
+% \begin{macro}[EXP]{\@@_sub_back_very_far_o:wwwwNN}
+% \begin{macro}[EXP]{\@@_sub_back_very_far_ii_o:nnNwwNN}
% The case where $x-y$ and $x$ have the same exponent is a bit more
% tricky, mostly because it cannot reuse the same auxiliaries. Shift
% the $y$~significand by adding a leading~$0$. Then the logic is similar
@@ -710,7 +710,7 @@
%
% \subsubsection{Signs, and special numbers}
%
-% \begin{macro}[int, EXP]{\@@_*_o:ww}
+% \begin{macro}[EXP]{\@@_*_o:ww}
% We go through an auxiliary, which is common with \cs{@@_/_o:ww}.
% The first argument is the operation, used for the invalid operation
% exception. The second is inserted in a formula to dispatch cases
@@ -729,7 +729,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_mul_cases_o:nNnnww}
+% \begin{macro}[EXP]{\@@_mul_cases_o:nNnnww}
% Split into $10$ cases ($12$ for division).
% If both numbers are normal, go to case $0$
% (same sign) or case $1$ (opposite signs): in both cases, call
@@ -795,7 +795,7 @@
% In this subsection, we perform the multiplication
% of two positive normal numbers.
%
-% \begin{macro}[int, EXP]{\@@_mul_npos_o:Nww}
+% \begin{macro}[EXP]{\@@_mul_npos_o:Nww}
% \begin{quote}
% \cs{@@_mul_npos_o:Nww} \meta{final sign}
% \cs{s_@@} \cs{@@_chk:w} |1| \meta{sign_1} \Arg{exp_1} \meta{body_1} |;|
@@ -822,8 +822,8 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_mul_significand_o:nnnnNnnnn}
-% \begin{macro}[aux, EXP]
+% \begin{macro}[rEXP]{\@@_mul_significand_o:nnnnNnnnn}
+% \begin{macro}[EXP]
% {\@@_mul_significand_drop:NNNNNw, \@@_mul_significand_keep:NNNNNw}
% \begin{quote}
% \cs{@@_mul_significand_o:nnnnNnnnn}
@@ -873,7 +873,7 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_mul_significand_test_f:NNN}
+% \begin{macro}[rEXP]{\@@_mul_significand_test_f:NNN}
% \begin{quote}
% \cs{@@_mul_significand_test_f:NNN} \meta{sign} |1|
% \meta{digits 1--8} |;| \meta{digits 9--12} |;| \meta{digits 13--16} |;|
@@ -899,7 +899,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_mul_significand_large_f:NwwNNNN}
+% \begin{macro}[EXP]{\@@_mul_significand_large_f:NwwNNNN}
% In this branch, \meta{digit 1} is non-zero. The result is thus
% \meta{digits 1--16}, plus some rounding which depends on the digits
% $16$, $17$, and whether all subsequent digits are zero or not.
@@ -921,7 +921,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_mul_significand_small_f:NNwwwN}
+% \begin{macro}[rEXP]{\@@_mul_significand_small_f:NNwwwN}
% In this branch, \meta{digit 1} is zero. Our result is thus
% \meta{digits 2--17}, plus some rounding which depends on the digits
% $17$, $18$, and whether all subsequent digits are zero or not.
@@ -951,7 +951,7 @@
% Time is now ripe to tackle the hardest of the four elementary
% operations: division.
%
-% \begin{macro}[int, EXP]{\@@_/_o:ww}
+% \begin{macro}[EXP]{\@@_/_o:ww}
% Filtering special floating point is very similar to what we did for
% multiplications, with a few variations. Invalid operation
% exceptions display |/| rather than |*|. In the formula for
@@ -981,7 +981,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_div_npos_o:Nww}
+% \begin{macro}[EXP]{\@@_div_npos_o:Nww}
% \begin{quote}
% \cs{@@_div_npos_o:Nww} \meta{final sign}
% \cs{s_@@} \cs{@@_chk:w} |1| \meta{sign_A} \Arg{exp A}
@@ -1185,7 +1185,7 @@
%
% \subsubsection{Implementing the significand division}
%
-% \begin{macro}[aux, rEXP]{\@@_div_significand_i_o:wnnw}
+% \begin{macro}[rEXP]{\@@_div_significand_i_o:wnnw}
% \begin{quote}
% \cs{@@_div_significand_i_o:wnnw} \meta{y} |;|
% \Arg{A_1} \Arg{A_2} \Arg{A_3} \Arg{A_4}
@@ -1215,8 +1215,8 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, rEXP]{\@@_div_significand_calc:wwnnnnnnn}
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]{\@@_div_significand_calc:wwnnnnnnn}
+% \begin{macro}[rEXP]
% {
% \@@_div_significand_calc_i:wwnnnnnnn,
% \@@_div_significand_calc_ii:wwnnnnnnn,
@@ -1320,7 +1320,7 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_div_significand_ii:wwn}
+% \begin{macro}[EXP]{\@@_div_significand_ii:wwn}
% \begin{quote}
% \cs{@@_div_significand_ii:wwn} \meta{y} |;|
% \meta{B_1} |;| \Arg{B_2} \Arg{B_3} \Arg{B_4}
@@ -1346,7 +1346,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_div_significand_iii:wwnnnnn}
+% \begin{macro}[rEXP]{\@@_div_significand_iii:wwnnnnn}
% \begin{quote}
% \cs{@@_div_significand_iii:wwnnnnn} \meta{y} |;|
% \meta{E_1} |;| \Arg{E_2} \Arg{E_3} \Arg{E_4}
@@ -1368,7 +1368,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]
% {
% \@@_div_significand_iv:wwnnnnnnn,
% \@@_div_significand_v:NNw,
@@ -1439,7 +1439,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_div_significand_pack:NNN}
+% \begin{macro}[EXP]{\@@_div_significand_pack:NNN}
% At this stage, we are in the following situation: \TeX{} is in the
% process of expanding several integer expressions, thus functions at
% the bottom expand before those above.
@@ -1461,7 +1461,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_div_significand_test_o:w}
+% \begin{macro}[rEXP]{\@@_div_significand_test_o:w}
% \begin{quote}
% \cs{@@_div_significand_test_o:w} |1| |0| \meta{5d} |;|
% ~~\meta{4d} |;| \meta{4d} |;| \meta{5d} |;| \meta{sign}
@@ -1487,7 +1487,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_div_significand_small_o:wwwNNNNwN}
+% \begin{macro}[EXP]{\@@_div_significand_small_o:wwwNNNNwN}
% \begin{quote}
% \cs{@@_div_significand_small_o:wwwNNNNwN} |0| \meta{4d} |;|
% ~~\meta{4d} |;| \meta{4d} |;| \meta{5d} |;| \meta{final sign}
@@ -1509,7 +1509,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_div_significand_large_o:wwwNNNNwN}
+% \begin{macro}[rEXP]{\@@_div_significand_large_o:wwwNNNNwN}
% \begin{quote}
% \cs{@@_div_significand_large_o:wwwNNNNwN} \meta{5d} |;|
% ~~\meta{4d} |;| \meta{4d} |;| \meta{5d} |;| \meta{sign}
@@ -1538,7 +1538,7 @@
%
% \subsection{Square root}
%
-% \begin{macro}[int, EXP]{\@@_sqrt_o:w}
+% \begin{macro}[EXP]{\@@_sqrt_o:w}
% Zeros are unchanged: $\sqrt{-0} = -0$ and $\sqrt{+0} = +0$.
% Negative numbers (other than $-0$) have no real square root.
% Positive infinity, and \texttt{nan}, are unchanged. Finally, for
@@ -1557,8 +1557,8 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_sqrt_npos_o:w}
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[EXP]{\@@_sqrt_npos_o:w}
+% \begin{macro}[rEXP]
% {\@@_sqrt_npos_auxi_o:wwnnN, \@@_sqrt_npos_auxii_o:wNNNNNNNN}
% Prepare \cs{@@_sanitize:Nw} to receive the final sign~|0| (the
% result is always positive) and the exponent, equal to half of the
@@ -1595,7 +1595,7 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_sqrt_Newton_o:wwn}
+% \begin{macro}[rEXP]{\@@_sqrt_Newton_o:wwn}
% Newton's method maps $x\mapsto\bigl[(x + [10^{8} a_1 / x])/2\bigr]$
% in each iteration, where $[b/c]$ denotes \eTeX{}'s division. This
% division rounds the real number $b/c$ to the closest integer,
@@ -1673,7 +1673,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_sqrt_auxi_o:NNNNwnnN}
+% \begin{macro}[rEXP]{\@@_sqrt_auxi_o:NNNNwnnN}
% This function is followed by $10^{8}+x-1$, which has~$9$ digits
% starting with~$1$, then |;| \Arg{a_1} \Arg{a_2} \meta{a'}. Here, $x
% \simeq \sqrt{10^{8} a_1}$ and we want to estimate the square root of
@@ -1706,7 +1706,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_sqrt_auxii_o:NnnnnnnnN}
+% \begin{macro}[rEXP]{\@@_sqrt_auxii_o:NnnnnnnnN}
% This receives a continuation function~|#1|, then five blocks of~$4$
% digits for~$y$, then two $8$-digit blocks and a single digit
% for~$a$. A common estimate of $\sqrt{a} - y = (a - y^2) / (\sqrt{a}
@@ -1791,7 +1791,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]
% {
% \@@_sqrt_auxiii_o:wnnnnnnnn,
% \@@_sqrt_auxiv_o:NNNNNw,
@@ -1871,7 +1871,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]
% {\@@_sqrt_auxviii_o:nnnnnnn, \@@_sqrt_auxix_o:wnwnw}
% Simply add the two $8$-digit blocks of~$z$, aligned to the last four
% of the five $4$-digit blocks of~$y$, then call the \texttt{auxii}
@@ -1894,7 +1894,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]
% {\@@_sqrt_auxx_o:Nnnnnnnn, \@@_sqrt_auxxi_o:wwnnN}
% At this stage, $j=6$ and $10^{24} z < 10^{7}$, hence
% \[
@@ -1944,7 +1944,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]
% {\@@_sqrt_auxxii_o:nnnnnnnnw, \@@_sqrt_auxxiii_o:w}
% The difference $0\leq a+10^{-16}-m^2\leq
% 10^{-16}+(\sqrt{a}-m)(\sqrt{a}+m)\leq 2\cdot 10^{-16}$ was just
@@ -1984,7 +1984,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]{\@@_sqrt_auxxiv_o:wnnnnnnnN}
+% \begin{macro}[rEXP]{\@@_sqrt_auxxiv_o:wnnnnnnnN}
% This receives $9998$, $9999$ or $10000$ as~|#1| when $m$~is an
% underestimate, exact, or an overestimate, respectively. Then
% comes~$m$ as five blocks of~$4$ digits, but where the last
@@ -2027,8 +2027,8 @@
%
% \subsection{About the sign}
%
-% \begin{macro}[int, EXP]{\@@_sign_o:w}
-% \begin{macro}[aux, EXP]{\@@_sign_aux_o:w}
+% \begin{macro}[EXP]{\@@_sign_o:w}
+% \begin{macro}[EXP]{\@@_sign_aux_o:w}
% Find the sign of the floating point: \texttt{nan}, |+0|, |-0|, |+1| or |-1|.
% \begin{macrocode}
\cs_new:Npn \@@_sign_o:w ? \s_@@ \@@_chk:w #1#2; @
@@ -2047,7 +2047,7 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_set_sign_o:w}
+% \begin{macro}[EXP]{\@@_set_sign_o:w}
% This function is used for the unary minus and for \texttt{abs}. It
% leaves the sign of \texttt{nan} invariant, turns negative numbers
% (sign~$2$) to positive numbers (sign~$0$) and positive numbers